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Persistent symptoms following COVID-19 infection have
been termed postacute sequelae of severe acute respira-
tory syndrome coronavirus 2 infection. Many of these
symptoms are neuropsychiatric, such as inattention,
impaired memory, and executive dysfunction; these are
often colloquially termed “brain fog”. These symptoms
are common and often persist long after the acute phase.
The pattern of these deficits combined with laboratory,
neuroimaging, electroencephalographic, and neuropsy-
chological data suggest that these symptoms may be
driven by direct and indirect damage to the frontal-
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subcortical neural networks. Here, we review this evi-
dence, share our clinical experience at an academic
medical center, and discuss potential treatment implica-
tions. While the exact etiology remains unknown, a
neurocircuit-informed understanding of postacute
sequelae of severe acute respiratory syndrome coronavi-
rus 2 infection can help guide pharmacology, neuro-
modulation, and physical and psychological therapeutic
approaches.
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INTRODUCTION

It is well established that severe acute respiratory syn-
drome coronavirus 2 (SARS-CoV-2) infections have a
broad range of neuropsychiatric symptoms. In the
acute infectious period, these can include headaches,
anosmia, dysgeusia, inattention, confusion, fatigue,
mood disturbances, anxiety, and psychosis. Delirium
(encephalopathy or acute brain dysfunction) is a com-
mon comorbidity in patients admitted to the hospital
with COVID-19.1 Neuropsychiatric symptoms may
persist past the initial infection, exist beyond strict
delayed recovery from delirium, and have significant
functional implications. The chronic subjective neuro-
cognitive complaints often include poor memory,
impaired concentration, and mental fatigue. These are
often colloquially referred to as “brain fog” and are
common symptoms of postacute sequelae of SARS-
CoV-2 infection (PASC), which typically refers to
symptoms that occur 4 weeks or longer after the initial
onset of illness. This was initially described in the press
as “long Covid”.
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Neurocircuitry Hypothesis and Clinical Experience Treating PASC
PASC can include a multitude of symptoms
including shortness of breath, decreased exercise toler-
ance, heart palpitations, and changes in bowel habits. It
also frequently includes neuropsychiatric symptoms
such as disrupted sleep, headaches, anxiety, depression,
impaired attention, and memory. This can occur after
severe or mild disease2 at a frequency of 31%–69%.3

Female sex, older age, pre-existing asthma, and
severity of initial disease have been found to increase
the risk of PASC.4 Elevated levels of inflammatory
markers, such as tumor necrosis factor-alpha, inter-
feron-gamma-induced protein 10, and interleukin 6,
during early recovery have been correlated with
increased risk of PASC.5 It is less clear what risk factors
predispose individuals to neuropsychiatric symptoms of
PASC; however, premorbid cognitive risk factors, such
as hypertension, sleep apnea, depression, anxiety, and
mild traumatic brain injury in addition to abnormal
cerebrospinal fluid findings, have been correlated with
cognitive symptoms of PASC.6

There are multiple hypotheses regarding the path-
ophysiology of these neuropsychiatric sequelae, many
of which posit the indirect effects of SARS-CoV-2 on
the frontal and adjacent neural networks. Neuro-
imaging and electroencephalogram (EEG) have shown
structural and functional abnormalities, often in the
frontal, temporal, and limbic regions. Neuropsycho-
logical testing indicates a frontal-subcortical pattern of
cognitive deficits.

Here, we review the pathophysiologic evidence
pertinent to PASC and discuss our clinical experience
assessing and treating this syndrome.
NEUROPSYCHOLOGICAL TESTING

Neuropsychological testing frequently shows deficits in
attention, processing speed, and executive function.7,8

While a direct causal relationship has not been estab-
lished, many studies addressing neuropsychological
profiles of post-Covid infection had consistent results:
significantly lower scores in cognition with the lowest
subscores in attention, verbal fluency, and executive
function followed by memory and language diffi-
culties.9,10 These findings can be seen upon measuring
digit span, semantic fluency, complex figure drawing,
and list memorization, to name a few examples of the
battery of tests given during neuropsychological testing.
Moreover, an extensive review by Efstathiou et al.
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found that long Covid is frequently associated with
depression, anxiety, posttraumatic stress disorder, sleep
disturbances, fatigue, and cognitive deficits specifically
related to the frontal network domain.11

These findings are consistent with our retrospective
cohort study that aimed to characterize the neuropsy-
chiatric symptoms of PASC and their treatment.
Briefly, in our cohort of 100 patients with persistent
symptoms after a short inpatient stay or who had never
been hospitalized, the most prevalent symptoms were
fatigue, “brain fog,” headache, anxiety, and sleep dis-
turbances. Attention and executive function were also
frequently impaired. The mean Montreal Cognitive
Assessment score was 26. Many from this study were
referred for full neuropsychological testing. While this
project did not include a statistical review of these re-
sults, the majority were consistent with deficits listed
above, often with an overlay of comorbid depression
and anxiety symptoms.10

This pattern of symptoms is often seen associ-
ated with disruption of the frontal subcortical sys-
tems. Broadly, this network includes the frontal
cortex, striatum, globus pallidus, and thalamus. The
frontal subcortical systems not only encompass
cognitive functions but also are relevant in mood,
language, and motor functioning. These domains
can be disrupted preferentially and lead to different
clinical presentations. For example, damage to the
dorsolateral system (involving the dorsolateral pre-
frontal cortex, dorsolateral caudate, globus pallidus,
and thalamus) can lead to a dysexecutive syndrome
with poor problem-solving, lack of motivation, and
perseveration. Damage to the orbitofrontal system
(involving the ventromedial caudate, globus pal-
lidus, and thalamus) can lead to emotional lability,
personality changes, disinhibition, and poor smell
discrimination. Damage to the medial frontal sys-
tem can lead to a syndrome of akinesia and
apathy.12,13 Many of those with PASC report a
constellation of these symptoms.
NEUROANATOMICAL EVIDENCE AND
HYPOTHESES

Direct invasion of SARS-COV-2 into the central ner-
vous system has not been proven to be common14;
however, neuroinflammation and break down of the
blood-brain barrier have been demonstrated.15 The
n-Liaison Psychiatry -:-, - 2022
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clinical neuropsychiatric syndrome that accompanies
acute SARS-CoV-2 infection has suggested to some
that direct and/or indirect effects of COVID-19 may
reflect a predilection for the frontal lobes and its circuits
as the primary target.16 It is not currently known why
certain structures or networks may be particularly
susceptible to neuroinflammation in PASC, but a few
good leads have emerged.

One line of inquiry implicating neuroinflammatory
processes reveals why the frontal network may represent
a selectively vulnerable area. There is evidence sup-
porting an indirect central nervous system effect of
COVID-19: studies reveal a high prevalence of autoan-
tibodies in cerebrospinal fluid of SARS-CoV-2 pa-
tients.17 Many autoantigens are currently unknown, but
some have been identified. For instance, in severe
COVID-19 patients, autoantibodies in the serum against
type I interferons have been reported.18 Interferons have
been implicated in the pathogenesis of Alzheimer disease
via neuroinflammation and synapse loss.19

Angiotensin-converting enzyme 2 (ACE2) has been
established as the functional host receptor for SARS-
CoV-2, and there is evidence of development of anti-
bodies against ACE2.20 Infection with COVID-19 is
thought to affect organs and tissues that express ACE2
due to the presence of a spike protein on the viral
surface that attaches to this particular receptor. Brain
regions that express ACE2 have been studied in the
mouse model and include areas involved in brainstem
arousal and respiratory networks (ascending reticular
activating system). These include the aminergic nuclei
involved in brain reward and motor circuitries, such as
the locus coeruleus, nucleus raphe, substantia nigra,
and ventral tegmental area nuclei. These nuclei modu-
late the medial prefrontal cortex structures, especially
the anterior cingulate cortex, which is relevant in
motivation, behavioral activation, and executive func-
tion. These nuclei also support the diencephalic ho-
meostatic networks, which include the lateral habenula
(that modulates the ventral tegmental area), the
mammillary bodies, the hypothalamic paraventricular
nucleus, and the supraoptic and supramammillary
nuclei. They also are relevant in memory networks with
high expression in hippocampal astrocytes and CA1
and CA2 cell layers and in the olfactory bulb, which
through the uncinate fasciculus will have modulatory
effects on the medial prefrontal cortex, especially the
anterior cingulate cortex and its emotion regulation
roles.21,22
Journal of the Academy of Consultatio
Arthur et al. studied the plasma or serum of 67
SARS-CoV-2 patients and of 13 patient subjects with
no history of COVID-19; they reported that ACE2-
specific antibodies were detected in 93% of the acutely
ill inpatients with COVID-19 compared to none of
those without COVID-19.20 In a different cohort of 32
patients who had had a positive PCR test for SARS-
CoV-2 and had been symptom-free for at least 2
weeks prior to donating convalescent plasma, 81% (26/
32) had ACE2-specific antibodies. While the authors
acknowledge that they do not have data concerning
PASC in their study, they hypothesize that ACE2 an-
tibodies that inhibit ACE2 activity, thus elevating
angiotensin II levels, may contribute to chronic symp-
toms.20 Major effects of elevated angiotensin II, which
can be seen in COVID-19 infection, include vasocon-
striction, renal sodium reabsorption and potassium
excretion, aldosterone synthesis, blood pressure eleva-
tion, and induction of profibrotic and inflammatory
pathways.23 The presence of lingering ACE2 antibody
titers could initiate a deleterious subchronic innate in-
flammatory process and result in PASC symptoms.

There are also blood-brain barrier pericytes and
endothelial cells which express ACE2.21 This may be
pertinent to a selective vulnerability of the frontal
network in PASC especially if one considers the fenes-
trated endothelial circumventricular regions bordering
the medial prefrontal cortex and anterior cingulate
cortex (organum vasculosum) and the aminergic nuclei
that feed the mesocortical and mesolimbic systems (area
postrema).24 In addition, studies of single-nucleus tran-
scriptomes of frontal cortex and the choroid plexus in 30
SARS-CoV-2 patients reveal cellular changes in
COVID-19-associated microglia and astrocytes that
share features with pathological cell states in neurode-
generative disorders, such as Alzheimer disease.15 These
include cellular perturbations in choroid plexus barrier
cells. The key notion is that widened gap junctions in
certain parts of blood-brain barrier and choroid plexus
sense and relay peripheral inflammatory signals from
macrophages and T cells into the brain in vulnerable
areas such as the medial prefrontal cortex resulting in
microglial and astrocytic activation and neuro-
inflammation. Similar pathophysiology has been pro-
posed in schizophrenia, which has been associated with
hypofrontality. The choroid plexus of patients with
schizophrenia is thought to respond to signals from the
periphery by upregulating inflammation-related glial
genes to protect the brain andmaintain homeostasis, but
n-Liaison Psychiatry -:-, - 2022 3



FIGURE 1. Hypotheses of encephalopathy pathogenesis in COVID-19. Note that the model depicted above is hypothetical in nature and is meant to
demonstrate the myriad ways in which SARS-CoV-2 infection may induce encephalopathy. For example, while a hallmark of COVID-
19 is ARDS and associated hypoxemia, the mechanism of immune dysfunction in COVID-19 and its role in encephalopathy are yet to be
established31 (image reproduced with primary author permission). ACC = anterior cingulate cortex; ARDS = acute respiratory distress
syndrome; BBB = blood-brain barrier; CVA = cerebrovascular accident; DAD = diffuse alveolar damage; DIC = disseminated
intravascular coagulation; FTC = frontotemporal circuits; IL1-R = interleukin-1 receptor; IRS = immune reconstitution syndrome;
LC = locus coeruleus; MODS = multiorgan dysfunction syndrome (sepsis); PE = pulmonary embolism; RN = raphe nucleus; SARS-
CoV-2 = severe acute respiratory syndrome coronavirus 2; SN = substantia nigra; VTA = ventral tegmental area.
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this process fails to prevent immunopathology in the
brain.25 Furthermore, in a case report of a COVID-19
patient with evidence of right orbitofrontal involve-
ment on imaging, it was posited that COVID-19 may
produce local inflammation in frontal-subcortical net-
works via its known invasion of the olfactory bulb.26

Proinflammatory cytokines, such as interleukin-1,
interleukin-6, and interleukin-10 and tumor necrosis
factor-alpha, are frequently elevated in COVID-19
infection cases. These inflammatory cytokines are able
to cross the blood-brain barrier and activate microglia
and astrocytes.27,28 This leads to further release of in-
flammatory mediators in the central nervous system,
notably quinolinic acid and glutamate. These can lead
to excitotoxicity directly and also upregulate N-methyl-
D-aspartate receptors, which can contribute to further
injury.27,29 It has been theorized that the cytokine-
mediated hyperinflammatory process can lead to a
frontal lobe presentation with akinetic mutism, frontal
4 Journal of the Academy of Consultatio
lobe slowing on EEG, and hypometabolism on
fluorodeoxyglucose-positron emission tomography
(FDG-PET)/computed tomography.30 See Figures 1
and 2 for graphical depictions.
NEUROIMAGING

Neuroimaging has demonstrated multiple findings; the
most common structural abnormalities have been
found within the olfactory network, which includes the
limbic and prefrontal structures, and corpus callosum,
followed by involvement of the insula, temporal lobe,
basal ganglia, brainstem, and cerebellum.33 More spe-
cifically, magnetic resonance imaging before and after
SARS-CoV-2 infections has shown a greater reduction
in grey matter thickness in the orbitofrontal cortex and
parahippocampal gyrus in addition to greater reduction
in brain size overall.34 Studies involving functional
n-Liaison Psychiatry -:-, - 2022



FIGURE 2. The cortico-striato-thalamo-cortical (CSTC) loops are
relevant to the reward and motivation-to-movement
pathways. This image shows key sites along this
pathway where COVID-19 may cause injury via
inflammation and neurotransmitter disruption.
DA = dopamine; GABA = gamma aminobutyric acid;
GP = globus pallidus; Glu = glutamate; MFB = medial
forebrain bundle; NAc = nucleus accumbens;
PFC = prefrontal cortex; Thal = thalamus;
VTA = ventral tegmental area32 (image reproduced with
primary author permission).
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imaging with FDG-PET have shown frontoparietal
hypometabolism.35

Associated with PASC dysexecutive and encepha-
lopathic behavioral symptoms, researchers have found
frontotemporal hypoperfusion on functional magnetic
resonance imaging, frontal EEG slowing, and frontal
hypometabolism on 18F-FDG-PET neuroimaging, all
of which suggest dysfunction in the frontal lobes or
frontal network.16 In this vein, recent studies may shed
light on the etiopathogenesis of PASC. One FDG-PET
study in patients suffering from long Covid demon-
strated hypometabolism in the olfactory gyrus and
associated limbic and paralimbic regions.36 Another
study examined 7 patients with variable clinical pre-
sentations of COVID-19-related encephalopathy and
performed imaging at 3 longitudinal time points (acute
phase, at 1 month, and at 6 months) with brain 18F-
FDG-PET/computed tomography in order to study
long-Covid impact on the brain metabolism.37 PET
images were analyzed with voxel-wise and regions-of-
interest approaches in comparison with 32 healthy
controls. All patients at 6 months showed a pattern of
hypometabolism in a cerebral network that included
Journal of the Academy of Consultatio
prefrontal cortex, anterior cingulate, insula, and
caudate nucleus. At 6 months after COVID-19, most
patients showed neuropsychiatric improvement but
attentional and executive function deficits, anxiety and
depressive symptoms, and fatigue and apathy of vary-
ing severity persisted coinciding with lasting prefrontal
cortex, anterior cingulate cortex, insular, and subcor-
tical 18F-FDG-PET/computed tomography abnor-
malities.37 Taken together, neuroimaging evidence
indicates that both structural and functional abnor-
malities occur in patients with persistent neuropsychi-
atric symptoms of COVID-19, and these deficits
primarily implicate the frontal-subcortical system.
ELECTROENCEPHALOGRAPHY

EEG studies have demonstrated a high rate (96%) of
abnormal background activity among hospitalized
COVID-19 patients,38 which is consistent with the high
incidence of encephalopathy.39 The most common ab-
normalities have been identified as generalized slowing,
burst attenuation, generalized periodic discharges, and
generalized rhythmic delta activity.40–42 In patients
with severe disease, different subgroups have been
identified based on EEG patterns. For example, low-
amplitude EEG activity and delta range oscillations
were associated with unfavorable outcomes (deceased
or still in the intensive care unit) at day 14 of hospital
admission.43 These findings could be used as potential
predictors of prognosis or to identify those in need of
more intensive treatment earlier in their admission.
Focal slowing was found predominantly in the frontal
lobe,44 which may underlie some of the persistent dys-
executive deficits in the postacute phase of the illness.
More EEG studies investigating both background ac-
tivity and evoked potentials during both the acute and
postacute phase of the illness are needed to identify the
neurophysiological biomarkers of these persistent
PASC symptoms.
CLINICAL EXPERIENCE

As we have outlined above, pathophysiologic phe-
nomena have been associated with clinical manifesta-
tions in some instances. The pathophysiologic-clinical
correlation is far from complete however. Often, clini-
cians are confronted with patients who complain of
“brain fog,” a phrase which refers to a medley of
n-Liaison Psychiatry -:-, - 2022 5
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symptoms that are not universally defined. The differ-
ential diagnoses of this term include mood, anxiety,
sleep, attention, and executive function disorders that
may be primary in nature or secondary to causes such
as vitamin deficiencies, hormonal disturbances, or other
medical etiologies. To the extent possible, it is the cli-
nician’s role to delineate exactly which cognitive do-
mains are referred to by each patient. Often this ends up
being multifactorial. As an example of the difficulties
this poses, a patient might use the term “brain fog” to
describe difficulty with short-term memory, whereas
with further history and upon bedside testing, the def-
icits actually fall in the realm of attention. Or a patient
might use the term “brain fog” to describe an inability
to make decisions that upon further questioning seems
to stem from impaired sleep and heightened anxiety.
Another example would be a patient with previously
well-compensated attention deficit disorder, who now
has exhausted the utility of previous coping strategies
and subsequently struggles with tasks at work.

In our own clinical experience, that is reflected in the
abovementioned cohort of 100 patients treated at a large
multispecialty hospital, several patterns have begun to
emerge.10 The most common neuropsychiatric symp-
toms were fatigue, “brain fog,” and headache, followed
by anxiety, sleep, and depression. “Brain fog” signifi-
cantly correlated with attention and memory impair-
ment, depression with anxiety, and headache with
sleep.10 We have observed that patients fall broadly into
several different “brain fog” subgroups. First, PASC
with a predominant executive dysfunction (frontal-
subcortical profile) present with attentional and naming
difficulties, as well as more generalized confusion. Sec-
ond, we have seen PASC presenting as an amnestic
disorder, but upon examination, the memory issues are
driven by encoding and retrieval impairments, related to
frontal-subcortical circuitry, rather than hippocampal
dysfunction. Some with PASC have exacerbation of
existing neuropsychiatric syndromes, such as migraines,
other headaches, depression, anxiety, and sleep disor-
ders. Finally, it appears that PASC may also unmask
previously unknown subclinical disorders or vulnerabil-
ities, such as early-stage neurodegeneration.
POTENTIAL THERAPIES

Correlation of recently revealed pathophysiologic events
with clinical manifestations is, as we have seen, in its very
6 Journal of the Academy of Consultatio
early stages. Development of specific therapies for “brain
fog” is at an even more embryonic stage. While there are
no Food and Drug Administration-approved treatments
for PASC, we have found that taking a symptom-based
approach using existing treatments can be useful. For
example, if the primary symptoms are headache, other
pain, and disrupted sleep, a tricyclic antidepressant could
be an early choice. Our recommendation is to pick a
tricyclic antidepressant with the least anticholinergic side
effects as not to aggravate the cognitive impairment, such
as desipramine or nortriptyline. If the primary symptoms
are apathy, fatigue, and poor concentration, bupropion
may be particularly useful, since it targets the meso-
cortical dopaminergic system.45 If depression and anxiety
are the most prominent, starting with a selective seroto-
nin reuptake inhibitor may be appropriate. Melatonin or
modafinil can be useful when targeting disrupted sleep
and circadian rhythm. If attention deficits persist after
sleep and mood symptoms are improved, stimulants can
be considered. If adrenergic symptoms, such as palpita-
tions, sweating, and anxiety are most prominent, pro-
pranolol or clonidine could be considered. Attention to
cardiovascular side effects of psychotropic medication is
important as COVID-19 has been shown to damage
myocardium among other organ systems. While much of
this is relatively basic medication management of mood
and attention disorders, it can be helpful to use these
symptom profiles in deciding upon treatment and in
discussions with patients. While there is no “post-Covid
pill,” many symptoms can be alleviated over time.

Device neuromodulation therapies (particularly
noninvasive techniques) may also be considered as an
alternative treatment to mitigate neuropsychiatric
symptoms in PASC, including dysexecutive deficits.46,47

In particular, transcranial direct current stimulation, a
noninvasive form of neuromodulation, has been shown
to improve processing speed in inhibition tasks (e.g.,
Flanker task) in both healthy individuals and patients
with attention deficit/hyperactivity disorder.48,49 The
stimulation also enhanced the amplitude of the EEG
P300 component, which is thought to underlie sustained
attention and inhibitory control. Moreover, techniques
such as transcranial alternating current stimulation,
another form of noninvasive electrical stimulation, have
proven to improve working memory performance in
older adults by synchronizing interregional theta band
activity.50 Clinical trials are needed to test the potential
benefit of these paradigms in PASC populations and
may provide important insight into the underlying
n-Liaison Psychiatry -:-, - 2022
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pathophysiology of cognitive deficits in PASC. Stan-
dardized scales to assess symptom burden in PASC, such
as 1 recently published quality-of-life instrument, post-
acute COVID-19 Quality of Life, will be useful not only
in research but also in clinical practice as PASC treat-
ment centers emerge.51 Finally, a global initiative is
underway to determine a consensus set of assessments of
PASC symptoms with input from researchers, clinicians,
and patients. This international study will help establish
a standardized set of outcomes that can be used by all
future research studies and clinical practice in individuals
with PASC.52

Finally, nonsomatic or behavioral treatments, such
as psychotherapy, physical therapy, occupational ther-
apy, and cognitive rehabilitation, need to be considered
and have shown to be quite useful as a holistic
approach to patient care. Exercise has been shown to
improve mental health and cognitive function directly
as well as indirectly.53 Prioritizing small physical goals
with the long-term outcome of wellness can instill hope
and help patients maintain motivation. While treatment
development efforts continue, clarifying the clinical
phenomenology, symptom targets, and pathophysi-
ology of PASC will be critical to support the expansion
of effective therapies. For now, we have seen clinical
benefit in utilizing a neurocircuit-informed treatment
approach to PASC.
Journal of the Academy of Consultatio
CONCLUSION

The pathophysiology of the symptoms of “brain fog” in
PASC, which typically consist of impairments in
attention, executive function, and memory, is only
beginning to be understood. Evidence suggesting that
this syndrome reflects disturbance to the frontal-
subcortical networks, which in turn may be due to
neuroinflammatory susceptibility of these regions, is
beginning to emerge. Our clinical experience is consis-
tent with this theory. Thoughtful pharmacology, neu-
romodulation, and physical and psychological
rehabilitation, in conjunction with time, do seem to
benefit these PASC symptoms. As we all gain further
understanding and experience, more effective treat-
ments will likely emerge.
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