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SUMMARY

The intricate network of interactions between cells and molecules in the tumor
microenvironment creates a heterogeneous ecosystem. The proximity of the cells
and molecules to their activators and inhibitors is essential in the progression of
tumors. Here, we develop a system of partial differential equations coupled with
linear elasticity to investigate the effects of spatial interactions on the tumor
microenvironment. We observe interesting cell and cytokine distribution pat-
terns, which are heavily affected by macrophages. We also see that cytotoxic
T cells get recruited and suppressed at the site of macrophages. Moreover, we
observe that anti-tumor macrophages reorganize the patterns in favor of a
more spatially restricted cancer and necrotic core. Furthermore, the adjoint-
based sensitivity analysis indicates that the most sensitive model’s parameters
are directly related to macrophages. The results emphasize the widely acknowl-
edged effect of macrophages in controlling cancer cells population and spatially
arranging cells in the tumor microenvironment.

INTRODUCTION

Colorectal cancer (CRC) is one of the most common types of cancer. In 2020, it accounted for 1.93 million

cases and 916,000 deaths, placing it as the thirdmost diagnosed and secondmost lethal cancer type world-

wide.1 Among all the diagnosed CRCs, about 71% are colon and 29% are rectum cancers.2 Endoscopy,

along with biopsy, is the main diagnostic procedure. Patients with CRC can be treated via direct surgical

removal of the tumor, chemotherapy, radiotherapy, immunotherapy, and targeted drug therapy.3–6 How-

ever, like all the other cancer types, there is still a possibility of recurrence after treatments, especially in the

case of surgical removal of the tumor.7,8 This makes non-surgical options more attractive, at least as a

follow-up to the surgical removal procedure.9 Unfortunately, factors like the diversity of gene profiles of

cancer patients, their lifestyles and diet, and the complexity of the cancer microenvironment have made

it impossible to come up with a single drug combination or target a certain cell type or pathway for

everyone.

The tumor microenvironment (TME) is a region hosting cancer cells, infiltrating immune cells, necrotic cells,

extracellular matrix, blood vessels, and secreted factors.10 The numerous intricate interactions between

cancer cells and other constituents of the microenvironment play a significant role in cancer progression.

For example, the immune system, responsible for killing cancer cells, can have an opposite effect on cancer

progression.11,12 While some immune cells such as CD8+ T cells show their expected cancer-inhibiting attri-

bute either directly or through secretion of interferon (IFN)-g in many tumors, macrophages have a more

controversial role.13 Different Subtypes of tumor-associated macrophages (TAMs) (macrophages

infiltrating the tumor microenvironment) can have completely opposite effects. For instance, the M1 mac-

rophages can produce radicals that are deadly to tumors,14,15 while M2 macrophages produce substances

that promote cancer proliferation and invasion or impede CD8+ T cells from reaching tumor cells.16–19

Since macrophages are the most abundant leukocytes in the colon, such effects can have a decisive

outcome.20

Moreover, the interactions between cells and cytokines in the microenvironment have motivated an

ecological framework for cancer study that benefits from considering the spatial heterogeneity of the

microenvironment.21,22 For instance, one study confirms that the spatial distribution of TAMs is an impor-

tant factor in predicting clinical outcomes.23 Specifically, they show that lung tumors more proximal to M2-

type macrophages have a higher chance of survival. Another study on ovarian cancer shows that the
iScience 26, 106596, May 19, 2023 ª 2023 The Author(s).
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1

mailto:lshahriyari@umass.edu
https://doi.org/10.1016/j.isci.2023.106596
https://doi.org/10.1016/j.isci.2023.106596
http://crossmark.crossref.org/dialog/?doi=10.1016/j.isci.2023.106596&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/


ll
OPEN ACCESS

iScience
Article
colocalization of CD8+ T cells and B cells results in better prognoses.24 It has also been shown that a

prognosis based on the density and the location of immune cells works better than the classical histopath-

ological methods for determining the stage of colorectal cancer.25 On the other hand, the heterogeneity of

the tumor microenvironment can lead to nonuniform drug delivery and, thus, inefficient therapy.26 These

are just a few examples of the importance of the tumor microenvironment and its spatial attributes in

understanding and treating cancer.

Mathematical models can help scientists understand complex phenomena which are either impossible or

costly to experiment with. The interaction network between cells andmolecules in the tumor microenviron-

ment can be modeled using a system of ordinary differential equations (ODEs).27–33 One major benefit of

these models is the simplicity of their simulation and parameter estimation. Kirshtein et al. propose a

comprehensive data-driven ODE model of colon cancer microenvironment for five clusters of patients.

They find out the inhibition of cancer by cytotoxic T cells, IFN-g, and transforming growth factor b (TGF-

bÞ has the most significant effect on the population of cancer cells.28 In addition, among all the immune

cells, macrophages’ activation and decay rates were the most sensitive parameters for 4 out of 5 clusters

of patients. MohammadMirzaei et al. use the same approach for breast cancer using a PyMT-MMTVmouse

model and realize that the promotion of cancer proliferation by adipocytes and interleukin-6 (IL-6) plays a

significant role in the progression of breast tumors.33 Dritschel et al. study the cytotoxic and helper T cell

interactions with cancer cells in tumor microenvironment.27 They show that depending on the T cell infiltra-

tion intensity, there are two bistability scenarios; one between cancer elimination and escape and the other

between cancer escape and cancer coexistence with the immune cells. Despite valuable quantitative

description and prediction of the dynamics of a system, ODE models fail to capture the spatial interactions

and patterns that can significantly affect the system’s overall behavior. This drawback motivates scientists

to include spatial dependence in their models. This has been extensively pursued in modeling epidemio-

logical and ecological phenomena, where the proximity of key role players can significantly affect their

interaction and dynamics. The ODE models, however, provide a solid groundwork for building more

realistic partial differential equation (PDE) models. These models can investigate the change of quantities

in space and time. Given the importance of the spatial heterogeneity of the tumor microenvironment and

its significance in cancer progression, treatment, and prognoses, PDE models can be a valuable extension

to ODE models. Kim & Friedman investigate the early-stage progression of transformed epithelial cells

through their interactions with the fibroblasts and extracellular matrix in the tumor microenvironment.34

These interactions are formulated through the concentration of cytokines secreted by the mentioned

cell types, such as epidermal growth factor (EGF), transforming growth factor (TGF-b), and matrix metallo-

proteinase (MMP). They make several hypotheses, one of which says that haptotaxis induces increased

production of the tumor, cell migration, and MMP production. However, their model only considers one

spatial dimension and neglects the effect of immune cell interactions in the tumor microenvironment.

Mohammad Mirzaei et al. propose a PDE model of breast cancer progression based on PyMT-MMTV

mouse data.35 Their results show that, in the regions with more immune cells interaction, cancer population

is less dense, and a constant influx of immune cells controls the tumor size and cancer population. But,

they do not further investigate the patterns formed in the tumor microenvironment and the pathways

responsible for them. On the other hand, Owen and Sherratt investigate the patterns and heterogeneity

imposed on solid tumors by macrophages.36 Their model includes the interaction between macrophages,

tumor cells, and normal tissue cells. They investigate a traveling wave solution corresponding to the tumor

progression through the normal cells, with spatial instability forming behind the wavefront. The tumor

growth mechanisms in their model are minimalistic, and they do not consider the complex interactions

in the tumor microenvironment.

In this paper, we extend and enhance an ODE model of colonic tumors introduced by Kirshtein et al.28 to

investigate the spatial interactions among key players in the tumor microenvironment. We develop a reac-

tion-diffusion-advection (RDA) system of PDEs, with the ODE system accounting for the reaction terms.

This model is equipped with a solid linear elasticity problem that governs the domain deformation. This

is common assumption for solid tumors.37–39 Since for small time steps, the change in strain and elastic

response are proportional to each other,40 this leads to a locally linear response. However, the advective

effects dictated by biology introduce non-linear strains. Hence we assume that the domain deformation is

related to changes in cell densities and is coupled with the system of PDEs through the advection term. To

investigate the spatial effect of immune cells and their impact on cell dynamics, we model several extreme

scenarios in which sources are installed within the tumor microenvironment, constantly injecting immune
2 iScience 26, 106596, May 19, 2023
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Figure 1. Interaction network between cells and molecules in the tumor microenvironment

The black arrows point from activators to the cell type they activate. The blunt red arrows point from inhibitors to the cell type they inhibit. The blue arrow

implies that the cytokine group m1 promotes tumor cell proliferation. Each cytokine group and the cell types they are secreted by are shown in the yellow

boxes. Our model does not include different variables for macrophage subtypes. We do not include naive T cells in the tumor microenvironment interactions

since they are mostly activated in the lymphoid system.
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cells at separate locations. Finally, we perform several sensitivity analyses to investigate the importance of

the parameters in our study. To the best of the authors’ knowledge, there are not many (if any) studies that

investigate the spatiotemporal patterns and their possible causes in the tumor microenvironment through

an extensive reaction network and a free-boundary growth.
RESULTS

We investigate the effect of the spatial interaction of immune cells and cancer on the dynamics of the tumor

microenvironment in a controlled environment that is not necessarily replicable experimentally. The model

is based on the interaction network of key players given in Figure 1 obtained by Kirshtein et al.28 Table 1

shows the variable names and the corresponding data associated with each variable used in the model.

We create different scenarios where immune cells are injected into the environment constantly at separate

locations; see Figure 2. We do not include naive T cells inside the tumor microenvironment (See STAR

Methods section for more details).

The initial conditions for naive T cells, cancer, and necrotic cells and the reaction parameters q from Equa-

tion 20 are taken from the first cluster of patients in Kirshtein et al.28 We assume the cancer population has a

uniform distribution at the beginning and that necrotic cells do not exist initially. We also assume there are

no molecules present at t = 0. The initial distributions of immune cells follow Figure 2.
iScience 26, 106596, May 19, 2023 3



Table 1. State variables and their notations and definitions

Variable in PDE Variable in ODE Description

½X1� ½TN� Naive T-cells

½X2� ½Th� Helper T-cells

½X3� ½TC � Cytotoxic T-cells and natural killer cells

½X4� ½Tr � Regulatory T-cells

½X5� ½DN� Naive dendritic cells

½X6� ½D� Activated dendritic cells

½X7� ½M� Activated macrophages

½X8� ½C� Cancer cells

½X9� ½N� Necrotic cells

½X10� ½H� High mobility group box 1 (HMGB1)

½X11� ½m1� IL-6, IL-17, IL-21, and IL-22

½X12� ½m2� IL-10 and Chemokine Ligand 20 (CCL20)

½X13� ½Ig� IFN-g

½X14� ½Gb� TGF-b

The first column shows the variable notations in the PDE model, the second column shows their notation and definition in

Kirshtein et al.,28 and the last column shows their definition.
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The results of the simulations show that an egg-shaped pattern appears at the right side of the region for

some of the cells and most of the molecules after 3000 days (Figures 3 and 4). That region is significantly

affected by macrophages, and given their involvement in the production of all the molecules; they seem

to be the main reason for this behavior. Macrophages start close to their source location and accumulate

more in an egg-shaped region. Regulatory T cells and naive dendritic cells have a significant presence at all

the source locations. The other cell types and molecules, including cancer and necrotic cells, show the

opposite behavior. Dendritic cells and helper T cells are highly colocalized since dendritic cells are an

important activator of helper T cells. They both have a fairly significant presence everywhere in the domain

and near their source location. Cytotoxic T cells quickly get recruited to the site of macrophages. It seems

as if they mostly occupy a space that is the exact complement of where macrophages are focused. This is in

line with the hindering effect of macrophages against CD8+ cells mentioned in the introduction. In fact, all

T cells seem to be avoiding that region, but the effect is much more visible for cytotoxic T cells. Cancer and

necrotic cells are the most pronounced close to the tip and base of the egg-shaped region on the right

side. They are also the least present at the immune cells’ source locations. If we follow their progression,

they accumulate around the macrophage source location and slowly spread to the rest of the domain.

Figure 5 better illustrates the spatial patterns and their relationship with cancer cells and the rest of the im-

mune cells and cytokines. The contours super-imposed on cancer concentration mark the boundaries at

which each cell type or molecule is precisely at its half concentration value. A quick look at Figures 3

and 4 can help to determine which side of each contour represents higher and which side represents lower

concentrations of their respective quantity. Importantly, there are two general patterns shown in Figures 3,

4, and 5: (1) the circular regions formed at the immune cells’ source locations and (2) the egg-shaped re-

gions formed around the macrophage source at the right side. Below, we discuss these patterns in detail.

� We see circular regions for all cells and cytokines at the source locations. We speculate that some

pathway induced by regulatory T cells ðTrÞ might be the main reasons for forming the circular pat-

terns for most cells and cytokines. Regulatory T cells inhibit other T cells, and together they are

involved in activating macrophages and secreting all the cytokines. But what about the dendritic,

cancer, and necrotic cells? For naive dendritic cells ðDNÞ, our reaction network in Figure 1 shows

that they are only inhibited by HMGB1.44 That is why their pattern looks like it complements the

HMGB1 pattern. So Th indirectly affects DN too since all T cells are involved in producing HMGB1.

In addition, activated dendritic cells D differentiate from DN, so their pattern is also complementary

at the circular regions. Regarding the reactions in the model, none of the mentioned cell types

except for cytotoxic T cells ðTCÞ directly inhibit or promote cancer proliferation. But the cytotoxic

T cells do not have a significant presence in the circular regions. Similarly, none of the inhibiting
4 iScience 26, 106596, May 19, 2023



Figure 2. Location of each immune cell source inside the tumor microenvironment

The value shown by the color bar is non-dimensional. The rest of the variables are not shown because cancer cells have a

uniform distribution at the beginning, and cytokines start from zero initial value.
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cytokines like IFN-g and TGF-b have a strong presence in these circular regions. This leaves us with

two possible justifications: (1) cancer-promoting cytokines group m1, which is secreted by dendritic

cells, macrophages, and helper T cells, has such a significant effect that its lack of expression at those

locations leaves a considerable impact on cancer distribution and (2) the total effect of the reactions

in the model is creating a velocity field that repels the cancer cells and possibly other cells with the

same pattern from those locations. Figure 6 can attest to the second justification.

� We see an egg-shaped pattern located at the right side of the region. This region is heavily popu-

lated by macrophages, given the proximity of their source location. Unlike the other cell types,

macrophages do not seem to wander off to other places in the domain. This suggests that they

are the main reason for this egg-shaped pattern. Since macrophages are involved in producing all

the cytokines, they have more or less affected all the cytokines’ patterns. Helper T cells and activated

dendritic cells are more pronounced close to the macrophage’s source since they are activated by

cytokines group m1 and HMGB1, respectively. Cytotoxic T cells quickly get recruited to the site of

macrophages’ location. This is due to their activators Th and D, which have a significant presence

close to that region. In fact, helper T cells and dendritic cells play an essential role in activating

cytotoxic T cells by producing priming chemokines and cross-presenting exogenous antigens,

respectively.45,46 Additionally, regulatory T cells, which act as TC inhibitors, have much lower levels

there due to being inhibited by m1. Now, the reason that the number of cancer cells is higher closer to

the egg-shaped region is not clear from these results. We mentioned that the pro-tumor cytokines

group m1 is more pronounced inside the egg-shaped region. Other cells and cytokines with mixed

and indirect effects, such as macrophages, dendritic cells, HMGB1, and m2, are also abundant in

this region. However, one can deduce that pro-tumor activity dominates the anti-tumor activity for

this behavior. Since m1 is the only pro-tumor pathway in the model, the pro-tumor attributes of m1

can be the main cause, or there might be a more complex underlying interplay involved. For

instance, the macrophages act more as pro-tumors rather than anti-tumors. Note, the observed

egg shape of the region has no significance as it is an artifact of the geometry and the segregated

immune cell locations. These results only indicate that the macrophage patterns dictate the
iScience 26, 106596, May 19, 2023 5
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Figure 3. Spatial and temporal evolution of the model cell types

Parameters are extracted from Kirshtein et al.28 and Table 2. The first four columns show the spatial distribution of each

cell type at times t = 0; 1000; 2000 and 3000. The maximum, mean, and minimum curves in the fifth column correspond to

maxx˛UðtÞ½Xi �ðx; tÞ, meanx˛UðtÞ½Xi �ðx; tÞ, minx˛UðtÞ½Xi �ðx; tÞ, respectively, for the associated cell type ½Xi � and the domain at

time t ði:e:; UðtÞ Þ. There is an egg-shaped region close to themacrophage source location, which seems to impact several

other cells like cancer, necrotic, and T cells. Cancer and necrotic cells obtain their highest value close to the tip of this egg-

shaped region. Helper T cells show high colocalization with dendritic cells close to the dendritic cells’ source location.

ll
OPEN ACCESS

iScience
Article
microenvironment arrangement and have important implications for the spatial heterogeneity of the

tumor microenvironment.

Note that, to avoid complexity, a fraction of cancer cell death is the model’s only source of necrotic cell

production. As a result, their behavior is similar to cancer cells. However, we noticed two interesting

spatial patterns for cancer and consequentially necrotic cells: (1) the circular patterns at the immune cells

source locations where cancer and necrotic cells are the least present and (2) the egg-shaped region at

the right side of the domain where they are both more abundant. The former is probably due to the

shortage of promoting factors such as m1 or the direction of the velocity field at those locations since

there are no other inhibiting factors in those regions. The latter is more obscure since many types of

anti- and pro-tumor factors are present in that area. In other words, it is not clear which effect is more

dominant, the effect of pro-tumor factors or the effect of anti-tumor factors. But it is certainly interesting

to observe that, in our simulations, cytotoxic T cells travel quickly and purposefully to the site of macro-

phages and get blocked by them. The way the spatial distribution of TC and M complement each other

throughout the simulation is noteworthy. Furthermore, most of the cytokines follow the same pattern as

macrophages. This suggests that macrophages play an essential role in arranging the microenvironment.

Although the sensitivity analysis in Kirshtein et al.28 suggests that the cancer population is sensitive to the

parameters involved in the macrophage ODE, still, they come secondary to the parameters involved in

the ODE governing cancer. Therefore, standard ODE models can easily overlook spatial effects like our

observation.

The observed spatial effects discussed above are not particular to the specific experiment we designed

initially. We further confirmed our results by investigating three cases with a random distribution of im-

mune cell sources. We also considered random geometries to see whether our results were sensitive to

the shape of the tumor microenvironment or not. Figures S1–S3 show our results. Due to the mechanical

boundary condition, which is a function of the curvature Equation 30, the domains change according to

the curvature flow and converge to almost a circular region. Just like in the controlled case, the spatial

effect of macrophages can be traced in the rest of the cells and cytokines. All three figures show that

cytotoxic T cells are suppressed in regions with high macrophage presence, and cancer cells are more

abundant. We can also see regions of high colocalization between helper T cells and dendritic cells,

similar to the controlled case.

To investigate further, we create two extreme cases. One by entirely blocking the m1 production by

macrophages and making them anti-tumors and another by blocking IFN-g and TGF-b production by

macrophages and making them pro-tumor. The results indicate many pattern changes (Figure 7; to avoid

cluttering, we refrained from showing the other time steps and the evolution of minimum, mean, and

maximum values).
Table 2. Diffusion coefficients for the state variables used in the PDE system

i Di value Unit Reason

1 0 cm2

day

Naive T-cells are not a part of

the microenvironment

2,3,4,5,6,8,9 8.64 3 10� 6 cm2

day

Liao et al.41

10 7.9 3 10� 2 cm2

day

Hao and Friedman42

11,12,13,14 1.25 3 10� 3 cm2

day

Liao et al.43

iScience 26, 106596, May 19, 2023 7
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Figure 4. Spatial and temporal evolution of the model molecules

Parameters are extracted from Kirshtein et al.28 and Table 2. The first four columns show the spatial distribution of each cytokine at times t = 0; 1000; 2000

and 3000. The maximum, mean, and minimum curves in the fifth column correspond to maxx˛UðtÞ½Xi �ðx; tÞ, meanx˛UðtÞ½Xi �ðx; tÞ, minx˛UðtÞ½Xi �ðx; tÞ in ng/L,

respectively, for the associated cytokine ½Xi � and the domain at time t (i.e., UðtÞ). All cytokines are affected by the macrophage-mediated egg-shaped region

seen in Figure 3.
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In terms of interactions, the cytokine group directly promotes cancer proliferation (see Figure 1). Therefore,

blocking m1 production by macrophages significantly reduces the overall production of m1 in the TME and

negatively impacts the cancer population. Even though macrophages do not change their spatial pattern,

preventing them from producing the pro-tumor cytokines m1 causes a significant change in the microenvi-

ronment patterns. Cancer and necrotic cells are now more focused in the center. Helper T cells are now

more inclined toward the left, unlike in the first case. More importantly, it changes the cytotoxic regions

by focusing the TC cells toward the left and center of the region. In this case, cytotoxic T cells are no longer

being suppressed by macrophages and are strongly present where cancer cells are located. As a result, the

final population of cancer cells is much less in this case than in the first results. Moreover, regulatory T cells

also change their pattern, focusing more on the right and top-right of the domain. Naive dendritic cells are

still located around the source locations, but they are much more intense now, and active dendritic cells

show a significant migration to the center part of the tumor. Among the cytokines, m2 and TGF-b maintain

their original pattern more or less. But m1 no longer is egg shaped, which is expected since it is not pro-

duced by macrophages anymore. HMGB1 is now mainly in the center, and IFN-g is less egg shaped and

more dragged toward the center. For the pro-tumor case, looking at the reaction network in Figure 1,

we can see that IFN-g and TGF-b directly inhibit cancer proliferation. Therefore, reducing their levels by

blocking their production via macrophages should lead to a lower cancer population. Additionally,

decreasing IFN-g and TGF-b results in decreased levels of macrophages and regulatory T cells, which

causes less helper T cell differentiation and, consequently, less cytotoxic T cell numbers in the TME. So,

reduced levels of IFN-g and TGF-b have direct and indirect pro-tumor effects. In terms of the spatial dis-

tributions, regardless of the changes in the final values, the patterns look pretty similar to the original

case. For IFN-g and TGF-b, they follow the pattern of their other sources. In other words, IFN-g is now

affected by Th and TC patterns and TGF-b by Tr . Maybe the most important visible change in cells’ distri-

bution is the distribution of cancer cells. An egg-shaped pattern is more discernible now, meaning macro-

phages have been more successful in preventing the anti-tumor responses, especially from TC cells.

To share the results of our sensitivity analysis, it is best to get acquainted with our parameter-naming

schemes. Besides the diffusion parameters we introduced earlier, we have six other sets of parameters;

see Table 3.

We find the sensitivity of 4 objective functions to the parameters of our problem using adjoint-based sensi-

tivity analysis (see the STAR Methods section for more detail). The objective functions are as follows:

J1 =

Z T

0

Z
UðtÞ

Cðx; tÞ dx dt; (Equation 1)
J2 =

Z T

0

Z
UðtÞ

Cðx; tÞ
Thðx; tÞ+TCðx; tÞ+Tr ðx; tÞ+DNðx; tÞ+Dðx; tÞ+Mðx; tÞ dx dt; (Equation 2)
J3 =

Z T

0

Z
UðtÞ

kvðx; tÞk dx dt; (Equation 3)
J4 =

Z T

0

Z
UðtÞ

uðx; tÞ dx dt; (Equation 4)

where uðx; tÞ is the angle that the position vector of each mesh point makes with the positive x-axis. We

picked these four objective functions because the total cancer population and cancer-immune cells ratio

have important prognostic values. Also, the norm of the velocity field and uðx; tÞ can be a good measure-

ment of the microenvironment spatial arrangement. The functional J3 quantifies the total speed of cell

movements in the domain, and J4 gives a scalar quantification of the collective direction of the movement.

The parameters which are subject to our sensitivity analysis of functions Equations 1, 2, 3, and 4 include the

reaction parameters introduced in Table 3 and diffusion coefficients. We do not include the location of
iScience 26, 106596, May 19, 2023 9



Figure 5. Cells and molecules half-concentration contours

The contours are super-imposed on cancer distribution for t = 3000 days. The patterned regions show locations where

cancer concentration is higher than 95% of its maximum value. Two patterns are evident in both figures. The egg-shaped

region and the circular regions coincide with the immune cells source locations.
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sources (i.e., ðAi;BiÞ in Equation 21) as parameters for sensitivity analysis for two reasons: (1) the location of

the sources is based on a possibly unrealistic experiment assumption, as mentioned before, and it is trivial

that moving them around will change the microenvironment arrangement and (2) their addition to the

sensitivity problem as parameters jeopardizes the bilinearity of the weak form Equation 42, which is unde-

sirable. Instead, in the appendix, we have included results based on randomly generated sources and

boundary geometry. Figure 8 shows the top 20 most sensitive parameters for each of the objective func-

tions Equations 1, 2, 3, and 4. Negative values mean that, if we increase the value of that parameter, it

decreases the value of its corresponding objective function and vice versa.
Figure 6. Cells velocity field

The velocity field is super-imposed on cancer distribution for t = 3000 days. The arrows show the velocity field of the

microenvironment. The color bar indicates the magnitude of the velocity field (speed) at each point.

10 iScience 26, 106596, May 19, 2023
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Figure 7. Effect of macrophage subtypes on cells and cytokines distribution

The figures show the distributions after t = 3000 days with (A) Anti-tumor macrophages (blocked m1 production) keep their egg-shaped pattern, but helper

T cells, dendritic, cancer, and necrotic cells are nowmore focused in the center. Regulatory and cytotoxic T cells show opposing patterns, with cytotoxic cells

no longer being suppressed by macrophages in the high-concentration cancer regions. The distribution of cytokines is mainly affected by macrophages

except for m1 and HMGB1.

(B) Pro-tumor macrophages (blocked IFN-g and TGF-b production) keep their egg-shaped pattern; the rest of the cell patterns are similar to Figure 3. Cancer

and necrotic cells are more pronounced in the egg-shaped region in this scenario. The two blocked cytokines IFN-g and TGF-b follow the pattern of their

other sources, i.e., Th, TC for IFN-g and Tr for TGF-b.
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The sensitive reaction parameters agree with the findings of the ODE study.28 However, in that study, for

each patient cluster, when the sensitivity of cancer to parameters lMm2
, lMIg , and lMTh

is negative, we get a

positive value for dM and vice versa. However, here, all of them attain negative values. We validated the

signs by running several experiments on these parameters and comparing the total cancer values. The

difference between patients comes from the difference in their immune profiles. More specifically, the

patients with positive sensitivity for the activation rates and negative for dM started with much lower total

macrophages than the ones with the opposite behavior. This can be simply due to some parts of the

domain acting like one patient and others acting like another, which constantly changes as the macro-

phages, other cells, and cytokines move around. This can be an interesting instance of the difference

between ODE and PDE models. Furthermore, as expected, the cancer production and inhibition parame-

ters are largely effective at controlling the cancer population and cancer-immune cell ratio. However, they

are not the most sensitive parameters. The diffusion coefficients are the top parameters for each objective

function. Given the spatial nature of these coefficients, it is expected to see them among the most sensitive

parameters for spatial measures such as J3 and J4. As for J1 and J2, increasing the diffusion increases the

cell-cell or cell-cytokine handshakes. For example, increasing cancer diffusion exposes them to more anti-

tumor agents. Therefore, it kills more of them, or the diffusion of macrophages leads to less localized IFN-g

and TGF-b distributions, which inhibit cancer. However, these parameters are obscure. For instance, the

motion of cells can differ based on the cellular matrix properties, effects such as chemotaxis or durotaxis,

etc. So, it is hard to directly relate them to a certain biological factor in our model that can be controlled

experimentally. Aside from that, we should point out the importance of macrophage-related parameters in

all four sensitivity results. This is in line with our initial results about macrophages’ overwhelming involve-

ment in tumor microenvironment dynamics and arrangement.

All four objective functions are sensitive to the parameters inside red boxes, which means they control can-

cer and cancer-immune cell ratio and spatial measures such as the magnitude and orientation of the cell

movements. We perturb the parameters in red boxes to see their effect on the objective values. We do

a 75% perturbation to get more discernible changes. To clarify, whenever we use the term perturbation

in this study, we refer to a random deviation with a certain magnitude from a known numerical value.

The results show that the overall population of cancer changes significantly (Figure 9). The pattern of re-

gions with the highest cancer population also undergoes a drastic change. It moves from the center to

near the boundary at the right side. Other cells and cytokines also change their pattern, some slightly

and some very extremely. For instance, the circular contours for Th, DN, and D slightly change their diam-

eters. On the other hand, we see drastic changes in the contours for Tr and TC . Additionally, the size of the

egg-shaped contour changes for M, and its area shrinks from left to right. As for the cytokines, we see a

significant change in the contours pattern for HMGB1 and IFN-g. For m1, m2, and TGF-b, we see a slight

change in the area enclosed by the egg-shaped contours. Perturbing the common sensitive parameters
Table 3. Naming scheme for reaction parameters involved in our problem

Function Notation Definition

Activation/Production rates lXY Activation or production rate of X by Y

Inhibition/Removal rates dXY Inhibition or removal rate of X by Y

Natural death or decay rates dX Natural death or decay rate of X

Independent production rates AX Independent production rate of X

Fractions aXY Fraction of X which turns into Y

Source rates SX The rate for which X is produced by its source

12 iScience 26, 106596, May 19, 2023
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Figure 8. Adjoint-based sensitivity analysis results

Top 20 most sensitive parameters for objective functions Equations 1, 2, 3, and 4. The parameters in red boxes are

repeated in all four plots. Positive values mean that there is a direct relationship between the parameter value and the

objective function value, and negative values mean an opposite correlation. The magnitude of the sensitivities is

comparable within the same plot for the corresponding objective function.
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creates the pink- and light blue-shaded regions for the total cancer population and cancer-immune cell ra-

tio. The non-symmetry of these regions is expected since we perturbed the parameters that not only were

sensitive for J1 and J2 but were also significantly sensitive for objective spatial measures J3 and J4.

We finish our results section by applying the model to real-world spatial data obtained from colorectal can-

cer patients. The data are acquired from a study by Schurch et al. in 2020.47 In their study, they investigated

140 tissues of 35 CRC patients using formalin-fixed, paraffin-embedded (FFPE) Co-detection by indexing

(CODEX) multiplexed tissue imaging to gain insight into the spatial organization of the tumor microenvi-

ronment. Using 56 protein markers, they were able to find distinct cellular neighborhoods with different

immune characteristics. Their important results include colocalization of cancer with immune cell neighbor-

hoods, fragmentation of T cells and macrophages, and worse outcomes due to the communication inter-

ruption between cellular neighborhoods. Our study agrees with their first two results. We used the data

corresponding to Data S4 in the mentioned study’s supplemental information. We used these data to

create initial conditions for immune cells and tumor cell sources in our model. Figure 10 shows the locations

of the cells in Schurch et al. study. We have included some cell types in Figure 10 that are not used in our

model just for comparison. For example, we do not use B cells or non-immune cells andmixed immune cells

in our model. The group of mixed immune cells is classified by CD3+ biomarker expression. Since this

biomarker is expressed by all T cell subtypes,48 we titled this group mixed immune cells. The group of

non-immune cells contains granulocytes, plasma cells, smooth muscle cells (SMCs), stroma, vasculature,

and adipocytes, none of which are included in our model. In Kirshtein et al. and consequently, in this study,

we have grouped the natural killer cells and cytotoxic T cells under one variable, namely, TC . So we will

combine the data for these two groups to create the source location for TC in our model. Also, Schurch

et al. explore two combinations of biomarkers CD4+ and CD4+CD45RO+, both of which correspond to

helper T cells. The difference is that the latter shows a stronger helper function for the production of anti-

bodies.49 Again, our model combines these biomarkers into one group of helper T cells, namely Th. As for

the dendritic cells, the data only consider CD11c as the biomarker, which is a biomarker expressed by

immature dendritic cells.50 So, we consider these data for DN and let the distribution of mature dendritic

cells ðDÞ, which differentiate fromDN, start from zero and be decided by the dynamics of our model in time.

Finally, the data consider two sets of biomarkers, CD68+ and CD68+CD11b+, for macrophage, which we

combine for the variable M in our model. We consider the model domain to be the boundary of the

data; see Figure 10.

We prepare these data for our PDE model by creating a triangulated version of the domain shown by the

orange curve in Figure 10. Then we count the number of cells for each model variable in each triangle and

then normalize them. The result will look like Figure 11A, which represents each variable as a function in a

discontinuous Galerkin function space. We then project the discontinuous functions onto a continuous

linear Galerkin space and smoothen them using a pre-diffusion to avoid any irregularities caused by the

projections. We, therefore, arrive at the functions shown in Figure 11B. These are ready to be fed to our

PDE model for simulation.

Figure 12A shows the distribution of immune cells, necrotic cells, and cytokines after t = 3000 days.

Figures 12B and 12C show the half-concentration contours of immune cells and cytokines super-imposed

on the final distribution of cancer cells. We can again observe the fingerprint of macrophages on most cells

and cytokines. More importantly, TC once again occupies the complement of the regions occupied by

macrophages. In Figure 12B, we can see high values of cancer cells close to regions with high macrophage

concentrations. These results qualitatively agree with our controlled experiment at the beginning of this

section and show the importance of macrophages in TME spatial arrangements.
DISCUSSION

In this study, we investigated the colon cancer tumor microenvironment spatiotemporal dynamics through

a system of PDEs coupled with a linear solid elasticity problem. The reaction network and the parameters
14 iScience 26, 106596, May 19, 2023



Figure 9. Results acquired from perturbing the most common sensitive parameters

Top: Changes in the half-concentration contours for cells by perturbing the common sensitive parameters by 75%. Middle: Changes in the half-

concentration contours for molecules by perturbing the common sensitive parameters by 75%. Bottom: Changes in total cancer population (left) and total

cancer-immune cells ratio (right) by perturbing the common sensitive parameters by 75%. The patterned regions in the top and middle figures are the

regions with over 95% cancer population. These perturbations significantly affect the pattern of cell and cytokine distribution in the microenvironment.
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Figure 10. Real-data location of different cell types

Data acquired from a study by Schurch et al.47 Some cell locations, such as B cells, Mixed immune cells, and non-immune cells, are presented for comparison

with the original study and are not model variables. Mixed immune cells are CD3+ cells, which may include all types of T cells. Non-immune cells contain

granulocytes, plasma cells, smooth muscle cells (SMC), stroma, vasculature, and adipocytes. We combine natural killer cells and cytotoxic T cells as TC (see

Table 1). The rest of the titles can be directly associated with model variables based on Table 1. The bottom plot shows all cells together, with the orange line

marking the boundary of the data.
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were extracted from an earlier study by Kirshtein et al.28 We studied different scenarios in which we

assumed separate and constant sources of immune cells within the microenvironment to provide a clearer

picture of the spatial effects of immune cells inside the environment.

We used the finite element method for the simulations. We applied a mixed finite element space to search

for the solution of themechanical problem, namely the velocity v and pressure p. We then used this solution

to move our triangulated domain. Next, we incorporated a mixed finite element space stabilized with bub-

ble elements to solve for the cell and cytokine values in the moved domain. This procedure was repeated

until the simulation reached t = 3000 days. We noticed two interesting spatial patterns formed close to the

end of our simulation time: (1) circular regions at the location of the sources of the immune cells and (2) an

egg-shaped region located at the right side of the domain. All the cells and cytokines were affected by

these regions. Some reached their maximum and some their minimum concentration in the vicinity of these

locations. We studied the probable reasons for these patterns. We think regulatory T cells (through the
16 iScience 26, 106596, May 19, 2023



Figure 11. Initial spatial data preparation for the PDE system

(A) Shows the normalized discontinuous data obtained by counting the number of corresponding cells from Figure 10 in each triangle of the discretized

domain.

(B) Shows the continuous data acquired by the projection of the discontinuous data functions onto a continuous linear Galerkin space and then smoothening

the result using a pre-diffusion.
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production of cytokines group m1) and the outflow of the velocity field at the source locations are the rea-

sons behind the formation of the circular regions. However, all the clues for the egg-shaped region led to

macrophages. We further investigated three general cases with random immune cell sources and random

domain shapes. These results confirmed that the effect of macrophages on the microenvironment spatial

arrangement is independent of the location of the source of immune cells and the tumor’s initial geometry.

Additionally, we extracted cell location data from CODEX multiplexed tissue imaging of CRC patients’

tumor microenvironment.47 We processed the data by counting the number of cells in each triangle in

our discretized domain and then projected the results onto a continuous space. This provided our model

with amore realistic spatial initial condition.We observed that the patterns of most cells and cytokines were

affected by macrophages, and our results were in qualitative agreement with the Schurch et al. study.

Namely, we saw the colocalization of cancer and immune cells as well as the fragmentation of T cells

and macrophages.

We then hypothesized that macrophage pro- and anti-tumor pathways heavily affect the tumor microenvi-

ronment spatial arrangement. To test this hypothesis, we created anti-tumor macrophages by blocking

their m1 (IL-6, IL-17, IL-21, and IL-22) production and created pro-tumor macrophages by blocking their

IFN-g and TGF-b production. We observed that all the major patterns were affected in the anti-tumor

case. Circular regions changed their diameter for all the cells and cytokines; some even faded. Cancer

and necrotic cells becamemore centered, and the egg-shaped regions became smaller. More importantly,

cytotoxic T cells were no longer accumulated close to macrophages to be suppressed by them. As a result,

we noticed better anti-tumor response by them and hence fewer cancer cells. In the pro-tumor case, most

patterns persisted but with different sizes. Cytotoxic T cells were more significantly suppressed in this case;

therefore, we ended up with a significantly larger population of cancer cells. This further confirms the

importance of the network of interactions within the tumor microenvironment. The immune cell hubs

and cross-talks between different cell types through cytokines affect both the levels and the spatial

arrangement of cells, which is supported by the available literature. For example, Bocci et al. show that

the sporadic localization of cancer stem cells with varying epithelial-mesenchymal transition (EMT) is

related to TGF-b and IL-6.51 Through single-cell data analysis, Mulder et al. confirm an interaction between

macrophages and CD8+ T cells through IFN-g signaling, which leads to an immunosuppressive environ-

ment in tumors.52 Berthel et al. also show that tumor-associated macrophages directly suppress the

T cells’ immune response. Through a detailed resolution analysis of T cell distribution, they notice that
iScience 26, 106596, May 19, 2023 17



Figure 12. Final distribution of cells and cytokines based on real-data initial conditions

(A) Shows the distribution of immune cells, necrotic cells, and cytokines after t = 3000 days. The pattern of macrophages seems to be affectingmost cells and

cytokines.

(B) Shows the distribution of cancer cells after t = 3000 days with the half-concentration contours of immune cells. Cancer cells’ population is more

pronounced in the regions with high levels of macrophages.

(C) Shows the distribution of cancer cells after t = 3000 days with the half-concentration contours of cytokines.
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activated macrophages are proximal to cytotoxic T cells and create a physical barrier that is difficult for

most T cells to overcome.53

To find more realistic control values rather than completely blocking the production of some cytokines, we

used an adjoint-based sensitivity analysis to calculate the sensitivity of 4 objective functions to our param-

eters. The objective functions were total cancer population ðJ1Þ, total cancer-immune cell ratio ðJ2Þ, the to-

tal magnitude of the velocity field ðJ3Þ, and total angular measures of mesh points ðJ4Þ. We noticed that, for

J1, we got the same set of sensitive reaction parameters as the ODE study.28 However, they were not the

most sensitive parameters. In fact, spatial parameters such as diffusion coefficients were the most sensitive

parameters for all the objective functions. Moreover, there was an abundance of macrophage-related sen-

sitive parameters for all four cases, which was in line with our speculations. We picked a set of 9 parameters

introduced in all four cases as sensitive and perturbed them by 75%. We expected a significant change in

the common spatial patterns and total cancer and cancer-immune cell ratio, and wewere not disappointed.

There were significant changes in the diameter of the circular regions and the area of the egg-shaped
18 iScience 26, 106596, May 19, 2023
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region. In addition, we saw drastic changes in the contours representing the half-concentration of cells and

cytokines such as Tr , TC , M, HMGB1, and IFN-g. The high-concentration regions of the cancer population

also shifted from the center of the domain to a boundary-adjacent region at 3 o’clock. The confidence in-

terval for the total cancer population and the cancel-immune cell ratio was also affected but in a non-sym-

metric fashion. This was due to changing parameters that affected these two measures and had a signifi-

cant spatial impact.

Given the flexibility of mathematical experiments, we could create a situation that might not be feasible

experimentally. However, the results from this study can help scientists design specific targeted lab exper-

iments. For example, we noticed an exciting colocalization pattern between macrophages and cytotoxic

T cells. Cytotoxic T cells were quickly recruited to the site of macrophages in the case of pro-tumor-domi-

nated macrophages. Moreover, it was visually observable that macrophages prevented the contact

between cytotoxic cells and cancer cells. This effect was almost wholly obviated when we changed the

macrophages to anti-tumor. While the suppression of anti-tumor immunity by M2 (pro-tumor) macro-

phages in the microenvironment is discussed in the field,16–18 how they do it is widely unknown.54 We

must also emphasize that our model does not include chemotaxis, durotaxic, or similar effects. These

spatial recruitment and suppression effects are created mainly by simple mass action laws. This attests

to the necessity of investigating the tumor microenvironment interactions as detailed as possible. In

addition, we saw that activation rates of macrophages (when both anti-tumor and pro-tumor macrophages

were included) by IFN-g, Th, and m2 (including IL-10 and CCL20) are important control parameters for con-

trolling the concentration and pattern of most cells and cytokines, especially cancer cells. It has been seen

that high levels of macrophages lead to better prognoses for colon cancer.55,56 On the other hand, we saw

that the natural death of macrophages also leads to less cancer population. Interestingly, it has also been

confirmed that lower levels of macrophages are better for colorectal patients.57,58 It is hypothesized that

co-treatment of patients by balancing the macrophage activation and the cytotoxicity of the tumor can

be of great importance.59 This is due to the delicate balance of macrophages in CRC that can go either

way based on the differences in tumor microenvironments and gene profiles of different patients.60

In this paper, we used static data acquired from CRC patients using CODEXmultiplexed tissue imaging for

characterizing cell neighborhoods conducted by Sch}urch et al. While we understand that a time course

validation of these results for humans might be very difficult, genetically engineered mouse models or

in vitro models of CRC can be useful to get insight into tumors’ development and progression. Although

both models have the same disadvantage of lacking invasiveness, metastasis, and tumor heterogeneity

compared to human CRC,61 they both have more flexibility in activating or inhibiting certain molecular

pathways. For example, using an ApcMin=+ mouse model, Nakanishi et al. discover that cyclooxygenase-2

(COX-2) inhibition positively affects the polarization from M2 to M1 macrophages accompanied by

increased IFN-g production.62 In another study, Smith et al. investigate the hysteresis-like behavior of

macrophage polarization using in vitro assays and polarization stimuli such as Lipopolysaccharide (LPS)

or IFN g and IL-4 or IL-13 as inputs.47,63 We hope our study can motivate similar longitudinal experiments

to unveil the most responsible pathways for the spatial arrangement of the tumor microenvironment.
Limitations of the study

We acknowledge that this study comes with various limitations. To reduce the burden of parameter esti-

mation and avoid too much complexity, we tried to stay faithful to an earlier ODE study.28 Therefore, we

refrained from adding new variables to the models, such as metabolites, fibroblasts, oxygen, etc. These

factors play an essential role in the development and progression of cancer.64–66 Additionally, for

simplicity, we assumed linear elasticity for this problem; but colon tissue and colon cancer might follow

non-linear elastic behaviors.67 Finally, our diffusion coefficients can have more realistic interpretations.

For example, we can include a necrotic core that affects the value of the diffusion coefficients for cells

and cytokines. In the future, we plan to prevent as many limitations as possible and include therapy. We

hope to show that the spatial arrangement of the tumor microenvironment and drug administration

significantly impact cancer treatment.
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METHOD DETAILS

The ODE model

The model includes 14 variables denoted by the state variable vector ½X� = ð½X1�;½X2�;.;½X14�Þ, see Table 1

for the definition of each variable.

The following is the system of ODEs used by Kirshtein et al.28

d½TN�
dt = ATN � �

lThD ½D�+ lThM½M�+ lThm1 ½m1�
�½TN� �

�
lTCTh ½Th�+ lTCD ½D��½TN�

� �lTr Th ½Th�+ lTrm2 ½m2�+ lTrGb

�
Gb

��½TN� � dTN ½TN�
(Equation 5)
d½Th�
dt

=
�
lThD ½D� + lThM½M� + lThm1 ½m1�

�½TN� �
�
dThm2 ½m2� + dThTr ½Tr � + dTh

�½Th� (Equation 6)
d½TC �
dt

=
�
lTCTh ½Th� + lTCD ½D��½TN� �

�
dTCm2 ½m2� + dTCTr ½Tr � + dTC

�½TC � (Equation 7)
d½Tr �
dt

=
�
lTr Th ½Th� + lTrm2 ½m2� + lTrGb

�
Gb

��½TN� �
�
dTrm1 ½m1� + dTr

�½Tr � (Equation 8)
d½DN�
dt

= ADN
� ðlDH½H� + lDC ½C�Þ½DN� � ðdDH½H� + dDÞ½DN� (Equation 9)
d½D�
dt

= ðlDH½H� + lDC ½C�Þ½DN� � ðdDH½H� + dDC ½C� + dDÞ½D� (Equation 10)
24 iScience 26, 106596, May 19, 2023

mailto:lshahriyari@umass.edu
https://github.com/ShahriyariLab/Investigating-the-spatial-interaction-of-immune-cells-in-colon-cancer
https://github.com/ShahriyariLab/Investigating-the-spatial-interaction-of-immune-cells-in-colon-cancer
http://www.python.org/downloads/
http://www.fenicsproject.org/download/
http://www.mathworks.com/products/matlab.html
http://www.gmsh.info/#Download
http://www.paraview.org/download/
http://www.github.com/ShahriyariLab/Investigating-the-spatial-interaction-of-immune-cells-in-colon-cancer
http://www.github.com/ShahriyariLab/Investigating-the-spatial-interaction-of-immune-cells-in-colon-cancer


ll
OPEN ACCESS

iScience
Article
d½M�
dt

=
�
lMm2

½m2� + lMIg

�
Ig
�
+ lMTh ½Th�

�ðM0 � ½M�Þ � dM½M� (Equation 11)
d½C�
dt

=
�
lC + lCm1

½m1�
�½C��1 � ½C�

C0

�
� �

dCGb

�
Gb

�
+ dCIg

�
Ig
�
+ dCTC ½TC � + dC

�½C� (Equation 12)
d½N�
dt

= aNC

�
dCGb

�
Gb

�
+ dCIg

�
Ig
�
+ dCTC ½TC � + dC

�½C� � dN½N� (Equation 13)
d½H�
dt

= lHN½N� + lHM½M� + lHTh ½Th� + lHTC ½TC � + lHTr ½Tr � � dH½H� (Equation 14)
d½m1�
dt

= lm1Th ½Th� + lm1M½M� + lm1D ½D� � dm1 ½m1� (Equation 15)
d½m2�
dt

= lm2M½M� + lm2D ½D� + lm2Tr ½Tr � � dm2 ½m2� (Equation 16)
d
�
Ig
�

dt
= lIgTh ½Th� + lIgTC ½TC � + lIgM½M� � dIg

�
Ig
�

(Equation 17)
d
�
Gb

�
dt

= lGbM½M� + lGbTr ½Tr � � dGb

�
Gb

�
(Equation 18)

For understanding our parameter naming scheme, see Table 3. This system of ODE has the general form

d½Xi�
dt

= fið½X�; qÞ (Equation 19)

where the right hand side fið½X�;qÞ models the interaction network depicted in Figure 1. The vector q =

ðq1;.; q63Þ contains all 63 ODE parameters estimated in the paper28 using steady-state assumptions for

each cluster of patients. These model parameters include each cell andmolecule’s proliferation, activation,

inhibition, and decay rates. These rates are either induced by interaction with other cells and molecules or

describe intrinsic properties such as natural production or decay. This paper utilizes the published ODE

system as the reaction portion of the RDA PDE model.

Macrophages in the model include both pro- and anti-tumor subtypes. Also, the cytotoxic cells are consid-

ered to include the effect of both CD8+ and natural killer cells. We assume that all T-cells in the model

differentiate from naive T-cells ðTNÞ. Still, we omit TN in Figure 1 since the differentiation happens primarily

outside the tumor microenvironment and in the lymphoid system.70 To avoid too much complexity, we

refrain from including nutrient sources or vasculature in the model.
The PDE model

The PDE system is then formulated as follows:

d½Xi�
dt

+biV$ðv½Xi�Þ = DiD½Xi�+ fið½X�;qÞ+ SiðXÞ; for i˛ f1;.;14g (Equation 20)

where v is the advection velocity, Di is the diffusion coefficient, fið½X�;qÞ is the reaction term from Equa-

tion 19, and SiðXÞ for i = 2; 3;.; 7 are the source terms for immune cells

SiðXÞ =

(
0:5 if kX � ðAi;BiÞk22 %0:005;

0 otherwise
(Equation 21)

where X is the reference domain coordinates and ðAi;BiÞ is the location of immune cell sources in the refer-

ence domain. We have seven types of parameters in this model: Activation rates, inhibition rates, natural

death or decay, independent production rate, fractions, and diffusion coefficients, see Table 3.

We only model the advection of cell types present within the tumor microenvironment. Hence we take
iScience 26, 106596, May 19, 2023 25
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bi =

�
0 if i = f1gWf10;.;14g;
1 otherwise:

(Equation 22)

The indices i = f1gWf10;.; 14g correspond to naive T-cells and the molecules in the model. The diffusion

rates are extracted from the literature. For simplicity, we assume that the volume and surface area of all the

cell types is approximately the same; thus, we take their diffusion coefficient to be the same. Since naive

T-cells mostly activate outside of the microenvironment (in lymph nodes71,72), we assume they are not a

part of the computational domain, so we do not consider any diffusion coefficient for them. However, den-

dritic cells go through activation/maturation in response to other cells and cytokines inside the tumor

microenvironment.73,74 So, with no diffusion and no advection (see Equation 22) considered for the naive

T-cells, they are the only state variable modeled via anODE. See Table 2 for the diffusion coefficient values.

Ramos proves the existence and uniqueness of a solution for a PDE system similar to the one introduced in

Equation 20 using an iterative method that takes advantage of Banach’s fixed point theorem.75 The PDE

system Equation 20 can be coupled with a solid linear elasticity problem. This coupling can help determine

the solid tumor’s deformation and its cellular constituents’ velocity field. To establish the coupling, we use a

method applied by several other researchers.76–78 We start by assuming that the change in cells’ volume

and surface area is negligible and that the solid tumor is densely packed with no significant gaps or holes

inside. So, the sum of cell densities in the tumor microenvironment is a constant, namely c, i.e.X
i˛ I

½Xi� = c; (Equation 23)

where I = f2; 3; 4; 5; 6; 8; 9g contains the indices referring to cell types involved in the tumor microenviron-

ment. Human tissue (in all organs), on average, has the density 1 g
cm3,

79 so we take c = 1. Thereafter, sum-

ming the Equation 20 over I and using the Equation 23, yields:

d

dt

 X
i˛ I

½Xi�
!

+ biV $

 
v
X
i˛ I

½Xi�
!

= DiD

 X
i˛ I

½Xi �
!

+
X
i˛ I

fið½X�;qÞ+
X7
i = 2

SiðXÞ: (Equation 24)

But since
P
i˛ I

½Xi� is constant, its spatial and temporal derivatives are zero. So, Equation 24 simplifies to give

V $ v =

P
i˛ I

fið½X�; qÞ+
P7
i = 2

SiðXÞ
c

; (Equation 25)

which can be rewritten in terms of the displacement u as:

V $

�
vu

vt

�
=

v

vt
ðV $ uÞ =

P
i˛ I

fið½X�; qÞ+
P7
i = 2

SiðXÞ
c

: (Equation 26)

Next, we take the incompressible Cauchy stress tensor

s = � pI+m
�
Vu + VuT

�
; (Equation 27)

where p is the hydrostatic pressure, I is the identity matrix and m is the shear modulus. Balance of mo-

mentum gives

dv

dt
+ V$s = B; (Equation 28)

where B is the body force. Now, neglecting the body forces and tissue inertia gives us

V $s = 0: (Equation 29)

The derivation of the constitutive law Equation 27 and the balance of linear momentum are standard pro-

cedures covered in many continuum mechanics books.80,81 Moreover, we assume that the cell-cell adhe-

sion forces keep the tumor from falling apart.76,77 So, on the boundary of the tumor, we have

sn = � kgn; (Equation 30)

where n and k are the point-wise defined unit outward normal vector and mean curvature for the boundary,

respectively, and g is the cell-cell adhesion force. Sancho et al. propose g = 200 ðmgÞ$ðmmÞ
s2

for in-vitro cell--

cell‘adhesion forces.82 Also, Deptula et al. report the average Young modulus E = 7500 kPa for colon
26 iScience 26, 106596, May 19, 2023
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cancer considering the Poisson ratio n = 0:5 for all their samples.83 Using the conversion m = E
2ð1+ nÞ we can

take m = 2500 Pa. However, after scaling the problem by m we can take bm = 1 and bg = 0:08.

Finally, the mechanical problem we have introduced so far has a non-trivial three-dimensional (six if in 3D)

kernel Z consisting of the basis vectors of rigid rotation and translation,84 namely

u0 = a+b3 x; p0 = 0 (Equation 31)

where a and b are arbitrary constant vectors and x is the Eulerian coordinate vector (i.e., coordinates of

the deformed domain). In other words, if the displacement field umaps the reference domain coordinates

to x and satisfies Equation 29, then any rigid rotation and translation of it also satisfies Equation 29 and

gives a rigid rotation and translation of x. This jeopardizes the uniqueness of the solution, given that there

are infinitely many translated and rotated versions of each solution. Therefore, To ensure the uniqueness of

the solution, we add the following equation to our mechanical problem:

lðuÞ =
X3
i = 1

ðu; ziÞUzi = 0 (Equation 32)

where zk are basis elements for Z and ðu; zkÞU =
R
UuðxÞzkðxÞdx. In other words, if uðxÞ is a solution to our

mechanical problem and satisfies Equation 32, then it is orthogonal to Z. Given UðtÞ and GðtÞ as the domain

and its boundary at time t, it is customary to add Equation 32 to Equation 29 and rewrite the problem as:8>>>>>><>>>>>>:

V$s+ lðuÞ = 0 in UðtÞ

d

dt
ðV$uÞ =

P
i˛ I

fið½X�;qÞ+
X7
i = 2

SiðxÞ

c
in UðtÞ

sn = � kgn on GðtÞ

(Equation 33)

The Schmidt lemma85 guarantees the existence and uniqueness of a solution for problem Equation 33.
Weak forms and discretization

Let bx and q be appropriate arbitrary vector and scalar test functions, respectively. Then multiplying both

sides of Equation 25 by q and both sides of Equation 29 by bx and integrating over UðtÞ gives

Z
UðtÞ

d

dt
ðV $uÞq dx =

Z
UðtÞ

P
i˛ I

fið½X�;qÞ+
P7
i = 2

SiðXÞ
c

q dx (Equation 34)
Z
UðtÞ

ðV $sÞ $bx dx = 0: (Equation 35)

Applying integration by parts to Equation 35, we getZ
UðtÞ

s : Vbx dx �
Z
GðtÞ

sn$bx ds = 0: (Equation 36)

Replacing sn with �gkn from Equation 30 and summing up Equations 34 and 36 results in the following

weak form:

F�u;p;bx;q� =

Z
UðtÞ

s : Vbx dx +

Z
GðtÞ

gkn $bx ds
+

Z
UðtÞ

0BB@d

dt
ðV $ uÞ �

P
i˛ I

fið½X�; qÞ+
P7
i = 2

SiðXÞ
c

1CCAq dx = 0:

(Equation 37)

Then solving the strong forms Equations 29 and 30 corresponds to searching for a pair ðu;pÞ which satisfies

the weak form Equation 37. Similarly, We can turn Equation 32 into a weak constraint using Lagrange mul-

tipliers. In other words, instead of finding u which satisfies the strong Equation 32 we seek Lagrange multi-

plier vector bl = ðl1; l2; l3Þ which satisfy the weak form
iScience 26, 106596, May 19, 2023 27
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Lðu; bl;bx; buÞ =

Z
UðtÞ

"X3
i = 1

liðbx $ ziÞ
#
dx +

Z
UðtÞ

"X3
i = 1

uiðu $ ziÞ
#
dx = 0; (Equation 38)

for all appropriate test vector functions bu = ðu1;u2;u3Þ and i = 1; 2; 3 (for more details see V.A. Solonnikov

(1999)84). These li s conveniently replace the inner products ðu; ziÞU in the weak form. Therefore, in the weak

sense, problem Equation 33 turns into finding ðu;p; blÞ which uniquely satisfies the weak form:

F�u;p;bx;q� + Lðu; bl;bx; buÞ = 0 (Equation 39)

for all choices of test functions bx;q, and bu. We then use u to displace the domainUðtÞ and the boundary GðtÞ
to Uðt + 1Þ and Gðt + 1Þ respectively.

For numerical convenience, the RDA system Equation 20 can be written in the Eulerian form:

Dt ½Xi� + bi½Xi�V $ v = DiD½Xi� + fið½X�;qÞ + SiðxÞ; for i˛ f1;.; 14g (Equation 40)

where Dt =
d
dt + v$V is the material derivative and x is x = X+u, namely the current domain coordinates.

This makes the numerical methods easier since we always solve this problem in the current/deformed

domain. Let’s assume that the deformed domain and boundary are Uðt + 1Þ and Gðt + 1Þ. Using the appro-

priate test functions zi for i = 1;.;14, we can write the weak form for the system Equation 40:

X14

i = 1

"Z
Uðt + 1Þ

ðDt ½Xi� + bi½Xi�V $ v � fið½X�; qÞ � SiðxÞÞzi dx
#

+
X14
i = 1

"Z
Uðt + 1Þ

DiD½Xi� $ zi dx
#

= 0:

(Equation 41)

Then using integration by parts on the second integral, we obtain:

Bð½Xi�; zi;Dt ½Xi�Þ =
P14
i = 1

hZ
Uðt + 1Þ

ðDt ½Xi�+bi½Xi�V$v � fið½X�; qÞ � SiðxÞÞzi dx
#

+
X14
i = 1

"Z
Uðt + 1Þ

DiðV½Xi�$VziÞ dx
#
= 0:

(Equation 42)

For the discretization, we considerUt
h to be a triangulated discrete mesh approximatingUðtÞ. Let Vt

h and St
h

be piece-wise quartic vector function space and piece-wise linear scalar function space defined on Ut
h,

respectively. We use a mixed finite element space Wt
h for our solution space:

Wt
h =

	�
ut
h;p

t
h;
bl�

ut

h ˛ Vt
h;p

t
h ˛ St

h;
bl ˛ R3

�
: (Equation 43)

Notice that we do not use any discretization for R3. That’s because bl is a constant vector containing La-

grange multipliers. If we denote the set of basis functions for Vt
h and St

h by fbxth;igNi = 1
and fqt

h;igMi = 1
, then:

ut
h =

XN
i = 1

cti bxth;i; pt
h =

XM
i = 1

kt
i q

t
h;i: (Equation 44)

So the discretized version of problem Equation 39 reduces to finding the solution ðuth;pt
h;
blÞ for

F h

�
ut
h;p

t
h;
bxth;i;qt

h;i


+ Lh

�
ut
h;
bl;bxth;i; bu = 0; (Equation 45)

for all basis functions bxth;i ˛Vt
h, q

t
h;i ˛St

h and bu ˛R3. Here, we spared the details about the numerical inte-

gration and differentiation distinguishing the operatorsF h andLh fromF andL, as well as the replacement

of test functions with basis functions. An avid reader can refer to any basic finite element book for more

information (e.g., see chapter 5 of the book by Gander and Kwok for a quick introduction86).

After retrieving uth, we displace themeshUt
h toUt + 1

h . So, the flowmap xðx0h; t + 1Þ = xðx0h; tÞ+uth is applied for

moving from Ut
h to Ut + 1

h . The material derivative can be discretized in Ut + 1
h using a forward Euler scheme:

Dt ½Xi�zDh;t ½Xi� : =
½Xi�
�
x
�
x0h ; t + 1

�
; t + 1

� � ½Xi�
�
x
�
x0h ; t

�
; t
�

dt
; (Equation 46)
28 iScience 26, 106596, May 19, 2023
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where dt is a small enough time step. Here, we do not need to interpolate anything since we are solving the

problem in Ut + 1
h , and the mesh points move with the flow map. Furthermore, the discrete velocity field vth

can be calculated by:

vthz
ut
h

dt
: (Equation 47)

Again, since the mesh points move with the flow map.

Looking back at Table 2, we can see that the cell diffusion coefficient is very small. This may lead to an

advection or reaction-dominated numerical problem, resulting in numerical instabilities. To circumvent

this issue, we use a space enrichment method using bubble elements.87–89 This method is a very efficient

stabilization method since it does not increase the size of the problem significantly. For the moved mesh

Ut + 1
h we define bubble-enriched piece-wise linear function spacesQt + 1

h;B = Qt + 1
h 4Qt + 1

B , and use the mixed

space given by

Et + 1
h =

n�
½X1�t + 1

h ;.; ½X14�t + 1
h




½Xi�t + 1
h ˛ Qt + 1

h;B

o
: (Equation 48)

Finally, we solve

Bh

�
½Xi�t + 1

h ; zt + 1
h;i ;Dh;t ½Xi�t + 1

h


= 0; for all basis functions zt +1

h;i in Et+ 1
h (Equation 49)

for cells and molecules concentrations in the current domain.

Simulation

We use FEniCS for the numerical simulation of our problem.68 FEniCS is a powerful Python package that

makes finite-element-based computations very easy. Complicated constructions such as higher-dimen-

sional spaces, mixed spaces, and element-based enrichment are done in just a few lines. We also used

GMSH software, which can easily handle structured and unstructured meshes and has several meshing

algorithms, to create the domain surface and boundary meshes69 as creating meshes with several sub-do-

mains and interfaces can be done painlessly through GMSH. The bonus feature of thementioned packages

is that they can communicate with each other dynamically. We call GMSH through FEniCS for faster and

more flexible re-meshing.

Adjoint-based sensitivity analysis

We performed Adjoint-based Sensitivity Analysis (ABSA).90 Suppose we have a general system consisting

of N number of PDEs

Fðx;qÞ = 0 (Equation 50)

where the solution x can be considered an implicit function of the parameters q. Suppose we have a quan-

tity of interest JðxÞ, and we are interested to know its sensitivity to the parameters, i.e., vJvq. The direct way to

do so is to perturb the parameters and see how they affect the quantity of interest. This method is not

generally a bad approach, especially if q is low-dimensional. However, it can quickly become impossible

computationally if q is a high-dimensional vector. Moreover, if the Equation 50 is time-dependent, it can

significantly add to the computational burden, and our problem is a time and space-dependent PDE sys-

tem with 82 parameters. A way to circumvent this issue is to use ABSA. The idea of this method is to obviate

the dependence of vJvq on the solution x as much as possible. From Equation 50, we can immediately deduce

that

JðxÞ = JðxÞ+Fðx; qÞ; (Equation 51)

or more generally,

JðxÞ = JðxÞ+jTFðx;qÞ; (Equation 52)

holds for all vectors j˛RN. Now, if we slightly perturb q, it will cause a slight perturbation in x and J, i.e.:

dq/ dx/dJ: (Equation 53)
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By the way of the chain rule, this can be rewritten using Equation 52 as:

dJ =
vJ

vx
dx + jT

�
vF

vx
dx +

vF

vq
dq

�
=

�
vJ

vx
+jTvF

vx

�
dx|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}

ð�Þ

+jTvF

vq
dq: (Equation 54)

So if we set (*) equal to zero, we have achieved our goal. In fact, the equation�
vF

vx

�T

c = �
�
vJ

vx

�T

(Equation 55)

is known as the adjoint equation. Since vF
vx is non-singular by the implicit function theorem, it is guaranteed

to give us a vector c which makes (*) from the Equation 54 zero. Therefore, using the solution c from Equa-

tion 55 we can rewrite Equation 54 completely independent of x as follows:

vJ

vq
= cTvF

vq
: (Equation 56)

Note that we still need to calculate x for a nominal set of parameters q from Equation 50 to be able to getc

from the adjoint equation. But, this needs to be done only once, and after that, the sensitivity calculation is

independent of the solution. Computationally, we utilized a FEniCS package called dolfin-adjoint,

which makes these calculations much easier.91
QUANTIFICATION AND STATISTICAL ANALYSIS

The detail of the statistical analysis of data for kinetic parameter estimations can be found in the paper by

Kirshtein et al.28

The half-concentration values refer to values that are exactly between the minimum and maximum values.

The half-concentration contours in Figures 5, 9, 12, and S1–S3mark the points in the region which have half-

concentration values. Therefore, they separate the regions with values higher than the half-concentration

values from the regions with values lower. Using the Contours command in Paraview (5.10.0, Kitware, Inc.)

we can determine these contours for a concentration field.

Moreover, the maximum, minimum, and mean curves in Figures 3 and 4 refer to the maximum, minimum

and mean density/concentration of their associated variable across the whole domain at time t = 3000

days. Using the Descriptive Statistics filter in Paraview (5.10.0, Kitware, Inc.) we can extract these

measurements and then using Plot selection over time command, we can plot them.
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