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Abstract: The methods for nonlinear time series analysis were used in the presented research to reveal eye
movement signal characteristics. Three measures were used: approximate entropy, fuzzy entropy, and the
Largest Lyapunov Exponent, for which the multilevel maps (MMs), being their time-scale decomposition,
were defined. To check whether the estimated characteristics might be useful in eye movement events
detection, these structures were applied in the classification process conducted with the usage of the kNN
method. The elements of three MMs were used to define feature vectors for this process. They consisted of
differently combined MM segments, belonging either to one or several selected levels, as well as included
values either of one or all the analysed measures. Such a classification produced an improvement in the
accuracy for saccadic latency and saccade, when compared with the previously conducted studies using
eye movement dynamics.

Keywords: eye movement events detection; nonlinear analysis time series analysis; approximate entropy;
fuzzy entropy; multilevel entropy map; time-scale decomposition

1. Introduction

Biological signals representing the electrical, chemical, and mechanical activities that occur during
biological events attracted the attention of many researchers. These interests are aimed at discovering
patterns which may prove useful in understanding the underlying physiological mechanisms or systems.
The range of biological signals explored in various studies include, inter alia: electroencephalogram (EEG),
electrocardiogram (ECG), surface electromyogram (sEMG), galvanic skin response (GSR), and arterial
blood pressure (ABP). Obtaining these characteristics is of great importance in medicine, as this it
may enable the differentiation of typical and atypical behaviors, supporting in this way diagnosing
and treatment. However, analysis of some of them may also be applied, for example, in cognitive or
psychological studies.

Acquiring bio-signal recordings requires various biomedical instruments to be applied. For example,
eye movement signals, which are of interest in this article, can be measured by means of the electrical
potential between electrodes placed at points close to the eye (electro-oculography (EOG)) or with the
usage of less intrusive video-oculography (VOD), using video cameras and image processing algorithms
for eye movement tracking.

Biological signals are naturally analogous; however, during measurement process conducted with a
specific sampling rate, they are converted to a discrete-time form and constitute a biological time series.
The distinct difficulty in the analysis of bio-signals is their nonlinear nature, therefore in order to extract
useful features and components of the recorded signal, it is important to use appropriate processing
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methods. Frequently, methods of nonlinear time series analysis, which can be deployed for many types of
bio-signals, are chosen for this purpose. Some of these are described in the following section.

1.1. Methods Used in Biological Signal Analysis

The approaches used for quantifying biological signal characteristics use fractal and dynamic feature
analysis. In the former group of traits, fractal power spectra and the fractal dimension are investigated,
usually, through detrended fluctuation analysis (DFA) [1]. This approach enables the assessment of the
existence of self-similarity and long-range correlations. The main goal of these kinds of studies is revealing
the long-term memory of an explored system and predicting the system’s future states. This method was
successfully applied to such biological processes as ECG, EEG, EMG [2–5].

Nonlinear system dynamics may also be represented by various entropy measures [6], and the
Largest Lyapunov Exponent (LLE) [7]. The entropy-based algorithms ascertain the degree of disorder and
uncertainty in the underlying system described by an observed variable. Two primary purposes of these
studies can be mentioned. The first of them is the discovery of the dynamic characteristics of biological
signals of healthy people to use them as reference data in revealing anomalous cases. The second one is to
determine events occurring within these signals.

For example, Chen et al. in [8] provided a review of entropy measures used in cardiovascular diseases.
Furthermore, approximate entropy (ApEn) was used in [9] to obtain a better understanding of abnormal
dynamics in the brain in the case of Alzheimer’s disease (AD). Yents et al. [10] used spatio-temporal
gait data from young and elderly subjects to investigate the performance of ApEn and sample entropy
(SampEn). Cao et al. [11] presented the fuzzy entropy (FuzEn) metrics comparison and pointed the FuzEn
out as a better tool than ApEn and SampEn, for distinguishing EEG signals of people with AD from those
obtained for non-AD. Additionally, the comparison of various fuzzy entropy measures was conducted in
the work [12]. Some synthetic datasets, together with EEG and ECG clinical datasets, as well as the gait
maturation database, were used for comparison purposes.

EEG, ECG, and gait characteristics were also explored with the usage of the LLE. The works
conducted in [13,14] indicated that this measure can be used to identify sleep stages, whereas in [15]
the LLE was applied for the analysis of nonlinear changes of neural dynamics in the processing of
stressful anxiety-related memories. Furthermore, automated diagnosis of electrocardiographic changes
was successfully explored in [16] by using the Lyapunov Exponents for the detection of four types of
ECG beats. Additionally, some works were devoted to investigating the application of the LLE in human
locomotion for gait stability assessment. For example, Josinski et al., in their research [17] focused on
finding LLE-based, easy-to-measure, objective biomarkers that could classify PD (Parkinson’s disease)
patients in early (preclinical) stages of the disease.

Nonlinear analysis was also conducted in regard to eye movement signal. However, its dynamics in
this scope was not so widely explored as in other biological signals. Nonetheless, in several studies, it was
discovered, based on the LLE [18–20] and entropy measures: ApEn and SampEn ([21,22]), that various
phases of eye movement signal reveal different dynamic characteristics.

1.2. Dynamic Eye Movement Signal Characteristics

Eye movements are triggered by brain activity, which is a response to visual stimuli or an intention to
gain knowledge of the surrounding world. The biological signal evoked this way consists of two main
components: fixations, occurring when eyes are focused on part of a scene, and saccades taking place
when eyes move to another scene area. During both events, eyes are in constant motion, even during
fixations, generating micro-movements such as tremors, microsaccades, and drifts [23,24]. Additionally,
in the reaction to the observed stimulus movement, the brain needs some time to commit a saccade. This
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occurrence called saccadic latency [25] is shown, together with the preceding fixation and the following
saccade, in Figure 1.

Figure 1. An example of eye movement events. At the beginning the eye is focused on the stimulus. When
the stimulus moves to another location, the eye moves as well, yet after a period of saccadic latency [22].

Fixation and saccade differ in their characteristics. The first element is described by slow motions,
small spatial dispersion, and relatively long duration (200–300 ms up to several sec.), while during the
second one eyes move very quickly, reaching up to even 500◦/s, with a short duration (30–80 ms) and a
higher amplitude of movement [26]. These differences are of prominent importance when event detection
algorithms are considered. The most common approaches for extracting fixations and saccades from
registered signal use dispersion and velocity thresholds [27]. One of the major drawbacks of these solutions
is the dependency of the obtained results on user-defined thresholds and the lack of their commonly
accepted values. The alternative approach presented in [28] assumes the use of machine learning and
14-features vector constructed based on the 100–200-ms surroundings of each sample. This vector consists
of features describing the data in terms of dispersion, velocity, sampling frequency, and precision. The
results of these studies showed that the machine learning technique is a promising solution. It was
taken into consideration when a new approach was being developed using the findings of the previously
described nonlinear dynamic systems analysis. For eye movement events detection, in [22], a multilevel
map of ApEn was defined, and entropy values calculated at each map level were used for the feature
vectors construction. Determining particular eye movement segments was conducted using the kNN
classifier for various values of the k parameter. The classification outcomes were promising as well,
especially in the scope of saccadic period detection, confirming the usefulness of ApEn measure in such an
application. However, because one measure is only a single index describing the behavior of a dynamic
time series, further investigations are still required. The currently presented research is the answer to
this need.

1.3. Contribution

These studies introduce an extended application of the multilevel map by adding two additional
measures: FuzEn and the LLE. According to the authors’ knowledge, the fuzzy entropy has not been
applied in exploring eye movement dynamics so far. The idea of the application of the multilevel map,
built based on FuzEn and the LLE, for eye movement time series analysis is also a novel approach, as well
as combining three multilevel maps in order to define feature vectors for machine learning eye movement
event detection.
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2. Materials and Methods

2.1. The Dataset Description

The presented research was conducted with the usage of the same dataset, which was applied in the
studies described in [22]. It was collected during the”jumping point” experiment, using 29 dark points
(Npp), distributed over a white 1280× 1024 (370 mm × 295 mm) screen. The points’ layout was designed
in such a way to ensure both covering a screen area evenly and to obtain varying lengths of saccadic
movements. Although the point was displayed in each location for 3 sec, only the first NEMr = 1024 ms
were taken into account during further analysis. Eye movement signals were acquired employing the
head-mounted JAZZ-novo eye tracker [29], with a sampling rate equal to 1000 Hz. It uses Direct Infra Red
Oculography (IROG), which is embedded in the Cyclop ODS sensor measuring the resultant rotations
of the left and the right eye. During registration, eyes are illuminated with a low intensity infrared (IR)
light. The difference between the amounts of IR reflected back from the eye surfaces, carries information
pertaining to the eye position changes.

24 participants (Np) aged between 22 and 24, with normal vision, took part in the experiment, which
consisted of two sessions, separated by three weeks (Nspp). As a result,NEMs participants’ sessions were
gathered, Nps = Np ∗ Nspp, each of which comprised subsequent eye positions for all points’ locations.
Such a dataset was divided into NEMs eye movement series (NEMs = Np ∗ Nspp ∗ Npp), which are later
referred to as EM series. Each of them included one participant’s eye positions registered between the
moment of the appearance of the stimulus and the time of its position change. Due to some registration
and processing problems four participant session were removed from further analysis. Thus, the Nps value
decreased by 4, and NEMs by 4× Npp. Finally, NEMs—the number of eye movement time series—was 1276
(44 participants_sessions× 29 points)

Subsequently, by applying the standard procedure of the two-point signal differentiation, the first
derivative of horizontal coordinates for each EM series was obtained. Thus, each series corresponds to the
velocity of eye movement in a period between two appearances of the stimulus. This quantity was used to
make research independent to the point positions.

2.2. The Method

The first step of the nonlinear time series analysis was the evaluation of the three chosen measures:
ApEn, FuzEn and the LLE, for each EM series. These calculations were conducted taking into account
the structure of the multilevel map (MM) introduced in [22]. It represents the concept of a time-scale
decomposition of the particular measure, whose values are calculated for various segments of EM series
following the schema presented in Figure 2.

Figure 2. Segments in the multilevel time-scale structure.
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A signal at the (l + 1)-th level of the map is divided into two shorter segments at the l-th level. The
smallest size of segments was used at the 1st level of the map, and for this research, it was set to Nss=64 ms.
As mentioned, the time series length NEMr was set to 1024 ms, which resulted in l = 5 map levels. This
means that at the 2nd level the length of a segment equaled 128 ms, at the 3rd: 256 ms, at the 4th: 512 ms
and finally at the 5th: 1024 ms. For each map cell, all three measures were estimated independently; thus,
three MMs were obtained for each EM series (Figure 4).

2.3. Approximate Entropy

The approximate entropy method was proposed in [30] as a measure of regularity for quantifying
complexity within a time series. For a given integer parameter m and a positive real one r, for a time
series u(1), . . . , u(N) in R, the sequence of vectors x(1), . . . , x(N −m + 1) in Rm can be defined, where
x(i) = [u(i), . . . , u(i + m− 1)].
For 1 ≤ i ≤ N −m + 1, using probability that any two vectors of length m are similar within a tolerance
given by r:

Cm
i (r) =

number of j ≤ N −m + 1 : d[x(i), x(j)] ≤ r
N −m + 1

(1)

where the distance d is defined as follows:

d[x(i), x(j)] = max
k∈(1,m)

(|u(i + k− 1)− u(j + k− 1)|) (2)

and the average logarithmic probability over all m-patterns:

Φm(r) = (N −m + 1)−1
N−m+1

∑
i=1

log Cm
i (r) (3)

approximate entropy can be obtained:

ApEn(m, r) = lim
N→∞

[Φm(r)−Φm+1(r)]. (4)

The asymptotic formula in Equation (4) cannot be used directly, and the estimator of approximate
entropy (for sufficiently large values of N) is defined as:

ApEn(m, r, N) = Φm(r)−Φm+1(r). (5)

There is usually significant variation in ApEn(m, r, N) over the range of m and r, when a particular
system is taken into consideration [31]. Thus, based on the analysis conducted in [22], in this research
m was set to 2 and r as 0.2× SD (the standard deviation of the entire time series) in order to define the
first MM.

2.4. Fuzzy Entropy

The second MM was prepared based on the fuzzy entropy values calculated according to the method
introduced in [32], which consists of several steps.

For a given time series u(1), . . . , u(N) and integer parameter m, the sequence of vectors
Xm

1 , . . . , xm
(N−m+1) is defined as:

Xm
i = u(i), . . . , u(i + m− 1)− u0(i) (6)
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where Xm
i represents m consecutive u values, commencing with the i − th point and generalized by

removing a baseline:

u0(i) =
1
m

m−1

∑
j=0

u(i + j) (7)

Subsequently, the distance between two vectors is defined as:

dm
ij = d[Xm

i , Xm
j ] = max

k∈(0,m−1)
|(u(i + k)− u0(i))− (u(j + k)− u0(j))| (8)

and given n and r the similarity degree Dm
ij of Xm

j to Xm
i through a fuzzy function µ(dm

ij , n, r) is calculated:

Dm
ij = µ(dm

ij , n, r) (9)

where:

µ(dm
ij , n, r) = exp

(
−
(dm

ij )
n

r

)
(10)

Finally, the fuzzy entropy for finite sets is estimated as:

FuzEn(m, n, r, N) = ln φm(n, r)− ln φm+1(n, r) (11)

where

φm =
1

N −m

N−m

∑
i=1

(
1

N −m− 1

N−m

∑
j=1,j 6=i

Dm
ij ) (12)

N corresponds to the size of the time series, which depends on the MM level under consideration. m is
the length of sequences to be compared and was set to the same value as for evaluating approximate entropy.
The parameters n and r, determining the width and the gradient of the boundary of the exponential
function, respectively, were chosen based on experimental data, following suggestions provided by
the method’s authors. Fuzzy entropy was evaluated for 20 time series with different r and n values.
Subsequently, standard deviation (SD) of the results was calculated. The parameter values for which a
slow decrease in SD was observed were chosen for the purpose of these studies. They were 2 for n and
0.075× SD (of the particular EM series) for r.

2.5. The Largest Lyapunov Exponent

The Largest Lyapunov Exponent is a measure which estimates the amount of chaos in dynamic
systems. Chaos is observed when neighbouring paths followed by the system, starting from very close
initial conditions, rapidly—exponentially fast—move to different states. The reconstruction of the system
states is feasible based on measurements of a single observed property when Takens’ embedding theorem
is applied [33]. A time delay embedded series—with time lag denoted by τ and embedding dimension by
m—can be defined as a transformation of the original time series u, such that:

x (i) = [u (i) , u (i + τ) , · · · , u (i + (m− 1) τ)] , i = {1, 2 · · · , M} (13)

where M = N − (m− 1)× τ.
A pair [x(i), x(j)] of nearest neighbours, starting close to one another in a chaotic system, diverges

approximately at a rate given by the Largest Lyapunov Exponent λ [34]:

dj(i) ≈ dj0eλ(i∆t) (14)
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where dj(i) is the Euclidean distance after i time steps, ∆t is the sampling rate of the time series and dj0 is
the initial pair separation. Solving the Equation (14) by taking the logarithm of both sides, the Largest
Lyapunov Exponent can be calculated as follows:

λ ≈ 1
i∆t

ln(
dj(i)
dj0

) (15)

Equation (15) provides the way for evaluating λ for two specific neighbouring points over a specific
interval of time. Thus, to approximate the Lyapunov Exponent for a whole dynamic system, it has to
be averaged for all j = 1, 2, . . . , M, where M = N − (m− 1)× τ. Negative Lyapunov Exponent values
indicate convergence, while positive demonstrate divergence and chaos. The parameters m and τ are
calculated with the usage of the False Nearest Neighbours (FNN) [35] and Mutual Information Factor [36],
respectively. The above-described methods were used in the current research to define the third MM.

2.6. Detection of Eye Movement Events

Following the studies presented in [22], the elements of three MMs were used to define feature vectors
for the classification process. Various vector types were defined. They consisted of differently combined
MM segments, belonging either to one or several selected levels, as well as included values either of one
or all the analysed measures (Figure 3). However, before the creation of the vector, data from all MMs
levels were rescaled using min-max normalization:

xnew =
x− xmin

xmax − xmin
(16)

Finally, the following sets were prepared (see Figure 3 for examples):

1. features based on one level (X={64, 128, 256, 512})

– setX_ApEn, setX_FuzEn, setX_LLE, including one feature
– setX_ApEn_FuzEn_LLE, including three features

2. features based on two levels (X_Y={64_128, 128_256, 256_512})

– setX_Y_ApEn, setX_Y_FuzEn, setX_Y_LLE, including two features
– setX_Y_ApEn_FuzEn_LLE, including six features

3. features based on three levels (X_Y_Z={64_128_256, 128_256_512})

– setX_Y_Z_ApEn, setX_Y_Z_FuzEn, setX_Y_Z_LLE, including three features
– setX_Y_Z_ApEn_FuzEn_LLE, including nine features

Figure 3. Sample one-, two-, and three-dimensional feature vectors embedded in the MM structure [22].

The number of classes (Ncl)—the number of segments at the lowest level in the given feature vector
—differed in particular feature vectors, depending on the segment used ([22]):
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Ncl
(
setX_Y_Z

)
=

NEMr

Nss × 2lX−1 (17)

where lX is the map level and X = min(X, Y, Z). For example, if the set64_128_256 is considered: X = 64
and lX = 1. This means that for lX equal to:

– 1 – 16 classes were defined,
– 2 – 8,
– 3 – 4,
– 4 – 2.

These sets were separately used for feeding the kNN classifier, run with several values for the k
parameter: k = {3, 7, 15, 31, 63, 127, 255}. Each feature vector set was divided into training and test sets,
with the usage of the leave-one-out cross-validation approach: in each classifier run, Npp maps—calculated
for one participant and for one session—were always left for defining a test set.

3. Results

The multilevel maps were estimated for each EM series and each analysed measure separately.
Subsequently, they were averaged over all NEMs series, and finally, three resulting maps were created,
as shown in Figure 4.

Figure 4. The multilevel maps obtained for the three measures: ApEN, FuzEn, the LLE, with values
averaged for all EM series. The table at the bottom presents the maps’ structure.

The maps cells were coloured according to their contents. Green indicates the lowest values, while
red the highest ones. A repeating pattern can be noticed in each MM, in the 3rd and the 4th segments at
the first level and the 2nd segment at the second one. These cells contain the lowest values calculated for
each measure and relate to 128 ms of eye movement signal commencing with 128 ms. This dependency
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is easily noticeable in Figure 5, where the results obtained for the first two MMs levels are juxtaposed in
the charts. However, to make this comparison feasible, the results had to be rescaled with the min-max
normalization (Equation (16)).

Figure 5. The charts presenting values from the two levels of the ApEn, FuzEn and LLE maps.The first
level at the top and the second at the bottom.

Statistical significance of the outcomes was checked by means of ANOVA and Tukey’s Honest
Significance Difference tests. The two result sets—for ApEn and the LLE measures—verified by the
Shapiro–Wilk test, turned out to be normally distributed, yet for the third one—FuzEn—the null hypothesis
was rejected. In this case, the Kruskal-Wallis test was additionally run. All differences in the results
obtained for the 3rd and the 4th times scopes at the first MM level, compared to the remaining set of
segments turned out to be significant. However, there was one exception for the LLE—the difference
between the 3rd and 5th segments—and a few for FuzEn—the differences between the 3rd, 4th, and 5th
time scopes—which occurred not to be significant. While analysing the results for the second level of the
maps, it was revealed that all measures provided significant differences for the 2nd segment when collated
with all other time scopes. On the contrary, the outcomes from the second part of the EM series—starting
from the 6th (ApEn) and the 8th (FuzEn and the LLE) segments at the first MM level, as well as from the
5th segment at the second level—disclosed the lack of significant differences.

In the second stage of the tests, the usefulness of the three MMs in recognizing eye movement
segments was verified with the usage of the kNN method. During the first classification runs, feature
vectors consisting of one, two, or three elements calculated only for one measure, were used. Because
the attention was focused on the highest possible signal resolution, only features based on segments 64
and 128, and their combinations with values from other levels were taken into account. As can be seen
in Figure 6, the performance of the segment recognition is rather low, independently of k− value used,
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especially when time scopes later than 256 ms are considered. Thus, in further analysis, only the first four
segments were addressed.

Figure 6. The classification accuracy based on the first level of the ApEn, FuzEn and LLE multilevel maps,
and for different the k–parameter values: k = 15 (top), k = 63 (middle), k = 255 (bottom).

The exploration of the presented charts revealed that a higher k parameter did not always provide
better results. For this reason, the attention was focused on k− value equal to 63, for which the classification
accuracy was similar to that, disclosed for k=255, and which ensures better performance of the execution.

The effect of the classification with the usage of feature vectors defined based on one measure, yet
using several levels of the MMs is presented in Table 1. There are nine sets taken into account: three
consisting of one feature: set64_[ApEN, FuzEN, LLE], three with two elements: set64_128_[ApEN, FuzEN,
LLE], and three including three components: set64_128_256_[ApEN, FuzEN, LLE].
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Table 1. The percentage of the correctly classified samples for various feature vectors defined with the
usage of one measure. The smallest segment size = 64 ms.

Vectors set64_ set64_128_ set64_128_256_

Segment ApEn FuzEn LLE ApEn FuzEn LLE ApEn FuzEn LLE

1–64 0.05 0.12 0.76 0.07 0.13 0.63 0.25 0.34 0.71
64–128 0.08 0.04 0.09 0.07 0.05 0.53 0.34 0.29 0.60

128–192 0.14 0.29 0.13 0.39 0.29 0.26 0.38 0.30 0.40
192–256 0.07 0.21 0.25 0.42 0.25 0.27 0.42 0.28 0.40

The table content shows that the best results were obtained for the LLE measure in the first segment
of eye movement signal, yet less than that got for k=255 (86% see Figure 6). However, its classification
accuracy decreases significantly when other time scopes are considered. The opposite situation takes place
for the two remaining groups of sets. As can be observed, both entropy measures at the beginning of the
EM series revealed a low accuracy for vectors defined with only one element. The performance increases
for later eye movement scopes when features are merged into two- or three-elements vectors (set64_128_,
set64_128_256_).

The individual measure outcomes can be further collated with those presented in Table 2, obtained
for the mixed feature vectors.

Table 2. The percentage of the correctly classified samples for the feature vectors defined with the usage of
three measures: ApEN_FuzEn_LLE. The smallest segment size = 64 ms.

Segment set64_ set64_128_ set64_128_256_

1–64 0.74 0.61 0.66
64–128 0.27 0.38 0.57

128–192 0.10 0.52 0.60
192–256 0.23 0.38 0.51

Similarly, the best performance, slightly worse than previously, was achieved for the first 64 ms of
the signals, classified with samples coming from the first level of the MMs. Subsequently, the accuracy
decreases, especially for the set64_ApEN_FuzEn_LLE. Thus, set64_128_256_ApEN_FuzEn_LLE seems to be
the proper choice for the classification purpose, despite lower than the best accuracy produced for the first
segment. It provides the best or close to the best efficiency for all analysed segments.

In the next two Tables 3 and 4, outcomes for the subsequent segment size (128 ms) were shown. They,
in terms of the result pattern, are similar to those discussed above. The best detection was delivered by the
LLE measure in the first 128 ms. In the further time scope, the efficiency of this measure dropped, and ApEn
and FuzEn disclosed better performance; the best for vectors with three features (set64_128_256_ApEn,
set64_128_256_FuzEn). While comparing the classification accuracy to the previous results (for 64ms
segment), it turned out to be generally higher. However, it should not be surprising, because of the less by
half the number of classes in a feature set, which facilitates the sample recognition. Additionally, once
again, the set128_256_512_ApEn_FuzEn_LLE despite worse efficiency in the first time scope, provides,
on average, the best results.
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Table 3. The results–the percentage of the correctly classified samples for various feature vectors defined
with the usage of one measure. The smallest segment size = 128 ms.

Vectors set128_ set128_256_ set128_256_512_

Segment ApEn FuzEn LLE ApEn FuzEn LLE ApEn FuzEn LLE

1–128 0.08 0.05 0.84 0.52 0.48 0.80 0.60 0.49 0.82
128–256 0.72 0.64 0.48 0.67 0.61 0.57 0.80 0.71 0.59
256–384 0.07 0.16 0.23 0.30 0.32 0.45 0.60 0.42 0.49
384–512 0.17 0.08 0.14 0.32 0.41 0.47 0.42 0.45 0.54

Table 4. The results–the percentage of the correctly classified samples for the feature vectors defined with
the usage of three measures: ApEn_FuzEn_LLE. The smallest segment size = 128 ms.

Segment Set128_ Set128_256_ Set128_256_512_

1–128 0.78 0.81 0.81
128–256 0.69 0.75 0.79
256–384 0.20 0.52 0.61
384–512 0.20 0.53 0.66

The last step in the data exploration was the juxtaposition (Table 5) of the best results obtained in [22],
using only ApEn (the third column), with the corresponding to them, achieved in these studies with the
usage of three measures (the fourth column). The first column in the table represents the feature vector
type, while in the second one, the eye movement segments were included. The last column in this table
shows the best classification accuracy received in these studies for a feature set displayed in the first
column and for the segment from the second one. All values presented in this column were estimated for
the LLE measure in the first EM series scope.

In almost all cases, Current accuracy exposes better or similar performance; however, in one case
(set64_128), the worse accuracy was achieved.

Table 5. The best accuracy obtained in [22] and in the current research for the same feature vector types
and the same EM series segment.

Set Segment Accuracy Current Current
[22] accuracy the best

(ApEn) (ApEn_FuzEn_LLE) (LLE)

set64 128–192 0.19 0.27 0.76
set64_128 192–256 0.46 0.38 0.63

set64_128_256 128–192 0.43 0.57 0.71
set128 128–256 0.72 0.69 0.84

set128_256 128–256 0.71 0.75 0.80
set128_256_512 128–256 0.83 0.80 0.82

4. Discussion

Eye movement analysis has been conducted over many years, but research in this domain intensified
over the last ten years. It resulted from the fact that acquiring knowledge concerning visual patterns has
proved useful in many areas, because they provide essential data regarding people’s behaviour, intentions,
and interests. Proper reasoning in these fields requires an appropriate interpretation of collected recordings,
which corresponds to correctly recognised eye movement events. Elements that constitute visual patterns
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are fixations and saccades, and extracting them adequately from the eye movement signal is crucial.
For many years, approaches based on spatial recordings dispersion and velocity have been used. However,
as mentioned, they rely on user-defined thresholds, which is their disadvantage as most of the biological
patterns vary between individuals (Figure 7). Therefore, some steps were taken to search for other
algorithms, ensuring more adjusted event detection.

Figure 7. Example signal courses for eye movement velocity. For two more, refer to [22].

The studies presented here base their research on the dynamical aspects of eye movement signal. The
main purpose of these investigations was to find characteristics of the particular signal parts, short enough
to enable searching for the smallest eye movement events, saccades.

4.1. Multilevel Maps Analysis

The results presented in Figure 4 showed that measures calculated for one EM series, including
three eye movement events—saccadic latency, saccade and fixation—have different values in various time
scopes of the EM series. The previous studies [18,19,21,22] already provided some evidence in this regard
for ApEn, SampEn, and the LLE; however, only during independent analyses. One of the advantages of
the current studies is a comparison of these measures and introducing the additional signal description
through the FuzEn usage.

When analysing the three multilevel maps from Figure 4, it may be noticed that two segments at
the first level (128–192 ms and 192–256 ms) and one segment at the second level (128–256 ms) include
the lowest values among all those calculated for the particular map. This means that all three measures
detected, within the same period, an activity different than in the remaining EM series parts. This period
is characterized by lower entropy values and a lack of chaotic behaviour. Collating MMs segments with
signal recordings, for example, in Figure 7 shows that this period corresponds to the saccade. Further
exploration of this figure unveils another distinction visible in the LLE map, in its first two segments at the
first two levels. The positive values in this period show that neighboring points of EM series, which start
close to one another, diverge with time approximately at a rate given by the LLE, as shown in Figure 8.
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Figure 8. Example of divergent paths.

Such behaviour characterises chaotic dynamics, which, as it was revealed in [18,19], is related to
saccadic latency. Fixations provide more homogeneous results than the saccadic latency and saccade,
which is visible in the second part of the time series (512–1024 ms). The segments representing this
component contain comparable values in the case of each of the studied metrics.

The above analysis demonstrate that given the presented MMs, it is feasible to indicate time series
scopes within which three eye movement events take place.

4.2. Classification Performance

Promising visual inspection of the MMs found also a partial confirmation in the classification results,
although overall accuracy was rather low. This outcome is a consequence of the fact that at least half of
the samples—corresponding to a fixation—have very similar characteristics. It is especially visible in the
charts presented in Figure 6. However, this is not the only reason, as for saccadic latency and fixation the
similar entropy values were estimated (see Figure 4). Therefore, entropy metrics, at the lowest level of the
MMs, do not introduce the distinction among these two events. The situation changes at the second level,
where the fixation parts differ more noticeably from the first signal scopes.

Analysis of the results presented in Tables 1 and 3 shows that if saccadic latency is being searched for,
the best approach is the usage of the LLE measure, for which accuracy at levels 76% and 84%, respectively,
were achieved. Taking this event duration into account (approximately 120-200 ms), the segment of size
equal to 128 ms appears to be sufficient. The advantage of the LLE over ApEn and FuzEn results from
the fact that, while all three metrics quantifies irregularity in a time series, the first one is also able to
describe how a system evolves in a particular period of its evolution. For saccadic latency segments,
it indicates divergence, whereas during saccade, convergence. In the case of fixation, behaviour changes
from convergent to chaotic and conversely. Therefore, this quantity is less efficient in fixation scopes,
in which both entropy types yielded interchangeably better results. Yet, changing the measure during the
classification process, depending on the segment under consideration seems not to be a proper solution.
Thus, it is more reasonable to apply a feature vector consisting of all measures. Confirmation for such
an approach provides the analysis of the third columns in Tables 2 and 4. The accuracy achieved for
the combination of ApEn, FuzEn and the LLE was better than for any quantity except for the LLE. The
decrease in its efficiency was approximately 3% for the longer segment (128 ms) and 10% for the shorter
one (64 ms).

Generally, more satisfying classification outcomes were obtained for feature vectors with samples
based on 128 ms-segments (Tables 3 and 4). As was previously noted, one of the reasons is the lower
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number of classes in the training and testing sets. However, it may also stem from the fact that for longer
segments, entropy values for different eye movement events are more distinguishable.

Finally, the comparison between findings presented in [22] and provided here indicates that the usage
of more than one measure may advance the events detection efficiency (Table 5). It especially refers to the
shorter segments at the beginning of the eye movement signal. Thus, by applying the presented approach,
better classification has become possible for the higher resolution of signal segments, even when using
fewer than ten features. The high efficacy of the saccadic latency detection facilitates recognizing the
following saccade, while finding saccade period opens the possibilities for more detailed exploration in
this scope.

However, the results of this method still need further improvement, which can be achieved by,
for example, extending the feature vector and usage of other classifiers. Additionally, decreasing the
number of fixation segments is worth considering. In this research, the studied fixation period was
approximately 700 ms and could be shortened by 200–300 ms. Furthermore, within the explored eye
movement data, there was a lack of movement called smooth pursuit, when the eyes follow a moving object.
The dynamics of such a motion should also be explored.

The suggestions mentioned above are plans for future work. Moreover, because the proposed method
was verified only for one dataset gathered with the usage of a particular eye tracker type, other signal
recordings are intended to be analysed.

5. Conclusions

The methods for nonlinear time series analysis were used in the presented research in order to reveal
eye movement signal characteristics. The primary motivation for these investigations was to find patterns,
which can characterise the main components of eye movements: fixation, saccade and saccadic latency.
Their proper recognition in registered eye movement signals supports studies in many areas using eye
tracking technology. Fixations uncover the gazed areas of observed scenes, while saccades reveal changes
in gaze positions. Sometimes, an eye movement is caused by the motion of an object belonging to the scene.
Such a situation introduces an additional period in the signal called saccadic latency: the time needed
for the brain to react to the motion of the observed stimulus. Discovering this period is the indication
that the subsequent signal segment will represent a saccade in the direction of a new stimulus position.
Recognizing this element is, in turn, equivalent to revealing the subsequent fixation. Although there are
some commonly used methods for eye movement events detection, new solutions, which will provide
more accurate event detection, are still being sought.

In the presented approach, three measures were used: approximate entropy, fuzzy entropy and
the Largest Lyapunov Exponent, for which multilevel maps, being their time-scale decomposition,
were defined. To check if the estimated characteristics may be useful in distinguishing eye movement
components, these structures were applied in the classification process. It produced an improvement in
the accuracy, for saccadic latency and saccade, when compared to previously conducted studies using
eye movement dynamics. Nonetheless, further investigations towards more precise results are planned in
the future.
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Abbreviations

The following abbreviations are used in this manuscript:

Abbreviation Description Value
Npp Number of point positions 29
Np Number of participants 24
Nspp Number of sessions per participant 2
Nps Number of participant sessions 44
NEMs Number of eye movement series 1276
NEMr Number of eye movement recordings 1024
Nss Number of samples in the smallest segment of eye movement recordings 64
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