
Recovery of immunocompetence after periods of hae-
matopoietic stress or injury is crucial not only for effi-
cient responses against pathogens and tumour antigens 
but also for optimal responses to immunotherapy for 
cancer. In contrast to the early recovery of innate cells, 
including neutrophils, natural killer (NK) cells and 
monocytes, adaptive immune cells, in particular T cells, 
recover at a much slower pace and are particularly sen-
sitive to negative insults caused by infections or cytore-
ductive chemotherapy and radiotherapy. Constrictions 
in the diversity of the T cell pool have been associated 
with impaired immune responses to several antigens1–3 
and adverse clinical outcomes in patients receiving 
haematopoietic cell transplantation (HCT)4,5.

The capacity of T cells to mount and maintain effec-
tive responses to a wide variety of antigens depends 
on a large repertoire of unique T cell receptors (TCRs) 
generated in the thymus during the process of T cell 
development. This process is dependent on crosstalk 
between bone marrow (BM)-derived T cell progeni-
tors and the supportive thymic stromal microenviron-
ment, which primarily consists of thymic epithelial cells 
(TECs), endothelial cells, mesenchymal stromal cells, 
dendritic cells and macrophages6. Although, for exam-
ple, T cell proliferation, driven by interleukin-7 (IL-7) 
and IL-15, in response to lymphopenic conditions can 
contribute to numerical reconstitution of T cells, com-
plete long-term recovery of a diverse and functional 
T cell pool requires reactivation of thymic function and 
de novo T cell generation (Fig. 1). However, the thymus 
is sensitive to various injuries, such as those caused 
by cytoreductive treatments, infection, septic shock 
and graft-versus-host disease (GVHD). Furthermore, 

progressive involution of thymic tissue during ageing 
leads to a decline in T cell output and T cell senescence 
with restricted TCR repertoire diversity and impaired 
immune responses.

Thymic damage and impaired T cell reconstitu-
tion are particularly detrimental in HCT recipients7. 
Defective quantitative and functional recovery of T cells, 
in particular of CD4+ T cells8–11, has been directly linked 
to increased risks of opportunistic infections9,12, malig-
nant relapse13 and overall adverse clinical outcomes14,15. 
Defective T cell responses are a clinical hurdle not only 
for patients receiving HCT but also for patients receiving 
other modalities of cancer immunotherapy, including 
immune checkpoint inhibitors, that exert their antitu-
mour effects primarily through the activation of T cell 
effector function. Although the prognostic significance 
of this association has still to be further characterized 
in larger studies, a highly diverse pool of T cells before 
therapy correlates with improved outcome after immune 
checkpoint blockade therapy16–19. Thus, there is consid-
erable interest in developing approaches to evaluate the 
quantity and quality of T cells before and during differ-
ent forms of immunotherapy to guide treatment direc-
tions, monitor immune responses and ultimately identify 
functional biomarkers to predict clinical outcomes20.

In this Review, we highlight the primary causes of 
impaired immune function, with special emphasis on 
HCT recipients, and discuss regenerative approaches that 
have been clinically translated to facilitate the recovery of 
adaptive immune function. We also provide an update on 
emerging new immune-boosting approaches that have 
demonstrated promising regenerative properties in pre-
clinical models. We focus on approaches that can broaden 

Thymic epithelial cells
(TECs). The major component 
of thymic stroma that supports 
all stages of thymocyte 
development. They are  
further divided into cortical 
and medullary TECs on the 
basis of their localization  
within the thymus and are 
crucial for the positive and 
negative selection of 
thymocytes, respectively.
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the diversity of the T cell pool through the restoration of 
de novo T cell formation in the thymus and discuss the 
implications for other cancer immunotherapies. While 
this Review primarily concentrates on T cell immunity, 
a brief summary of the B cell defects associated with 
immunological insults is provided in Box 1.

Conditions leading to immune dysfunction
Infection. In the healthy state, homeostasis of the immune 
system relies on a fine balance between cell production 
and cell death. During an infection, this dynamic equi-
librium is altered to ensure pathogen clearance without 
unrestrained immune responses. Haematopoietic stem 
and progenitor cells (HSPCs) replenish immune cells by 
responding to infections either indirectly through sens-
ing a depletion of downstream cells (a process termed 
‘emergency haematopoiesis’) or directly through sensing 
pathogen-specific systemic inflammatory signals (such 
as cytokines or Toll-like receptor ligands)21. During acute 
inflammation, lineage commitment of HSPCs favours 
granulopoiesis over lymphopoiesis22. During sepsis, 
migration of thymic precursors from the BM to the thy-
mus is decreased, leading to a depletion of early thymic 
progenitors and contributing to lymphopenia23.

In addition, the thymus itself is a target organ of 
various pathogens, leading to thymic atrophy and lym-
phocyte depletion, which are both common features 
of infectious diseases24. Thymic haematopoietic and 

stromal compartments can both be directly targeted in 
viral and parasitic infections. CD4+CD8+ double-positive 
(DP) thymocytes and their immediate precursors 
CD24hiCD3lowCD8+ single-positive thymocytes are par-
ticularly vulnerable, whereas mature CD24mid/lowCD8+ 
SP cells are the most resistant thymic subsets during 
infection25,26. Although the precise mechanisms for 
infection-induced acute thymic involution remain to be 
further elucidated, stress-responsive hormones (such as  
glucocorticoids), pro-inflammatory mediators (such  
as interferon-γ (IFNγ) and tumour necrosis factor 
(TNF)) and apoptosis pathways (such as those medi-
ated by BAX, BCL-2, JUN amino-terminal kinase, p53, 
caspase 8 and caspase 9) have all been implicated27. DP 
thymocytes are particularly sensitive to the increased 
level of glucocorticoids occurring in infection, provid-
ing a potential mechanism by which infections induce 
depletion of this particular cell subset28.

Functional changes in the thymic microenviron-
ment are also observed following infection24. The 
thymic epithelium undergoes substantial phenotypic 
and functional changes after infection with the parasite 
Trypanosoma cruzi29 and viruses such as HIV30, measles 
virus31 and Zika virus32. For instance, localization of the 
TR5 and CK18 antigens restricted to medullary TECs 
(mTECs) and cortical TECs (cTECs), respectively, was 
altered in T. cruzi-infected mice along with increased 
extracellular matrix production by in vitro cultured 
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Fig. 1 | Overview of the dynamics and determinants of T cell reconstitution after haematopoietic cell transplantation. 
In the first period following haematopoietic cell transplantation (HCT), immune cells follow a predictable course of 
reconstitution. In contrast to the relatively early recovery of innate immune cells, recipients of HCT experience prolonged 
deficiencies in T cells and B cells, which can take more than 2 years to fully recover. This is particularly evident in adult 
patients, whose thymic function is lessened owing to age-related thymic involution. The ‘first wave’ of T cells after HCT 
comprises donor T cells that undergo lymphopenia-induced homeostatic proliferation and alloactivation. This results in 
polyclonal T cells with a restricted T cell receptor (TCR) repertoire and limited antigen specificity, or with alloreactivity 
causing graft-versus-host disease (GVHD). Overall, the incomplete recovery of the T cell pool has been directly linked to 
increased risks of infection, malignancy relapse and adverse clinical outcomes. Optimal and complete T cell reconstitution 
requires the regeneration of thymic function and the reactivation of endogenous T cell development. This allows the 
generation of a new T cell pool with broad TCR diversity. Multiple pretransplant and post-transplant factors influence  
the overall process of T cell reconstitution. HSC, haematopoietic stem cell; IL, interleukin; NK, natural killer.

Graft-versus-host disease
(GVHD). Following allogeneic 
bone marrow transplantation, 
donor-derived T cells can  
be activated by residual 
host-derived antigen-presenting 
cells. The resulting T cell 
reactivity can escalate into  
the life-threatening condition 
known as GVHD, which targets 
mainly the skin, liver and 
intestines. Acute GVHD  
is a rapid response against 
recipient tissues that usually 
manifests itself within 100 days 
following haematopoietic cell 
transplantation, whereas 
chronic GVHD is reactions that 
occur after 100 days.

Sepsis
A severe, life-threatening  
form of infection characterized 
by systemic inflammatory 
response with resultant 
multi-organ failure followed  
by immunosuppression.

Glucocorticoids
A group of compounds that 
belong to the corticosteroid 
family. These compounds can 
be either naturally produced 
(hormones) or synthetic.  
They affect metabolism and 
have anti-inflammatory  
and immunosuppressive 
effects. Many synthetic 
glucocorticoids (for example, 
dexamethasone) are used  
in clinical medicine as 
anti-inflammatory drugs.
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TECs33,34. Other functional changes in the thymic epi-
thelium, including cell cycle arrest, terminal cell differ-
entiation and abnormal expression of cell adhesion and 
migration genes, were observed in experimental models 
of measles virus31 and Zika virus32.

The increases in the levels of pro-inflammatory 
cytokines, including IL-6, TNF and IFNγ35 (which was 
previously shown to cause BM and thymic aplasia36–38), 
together with other putative mechanisms, including 
direct damage of lymphoid tissues and apoptosis of 
lymphocytes, are presumably the primary causes of the 
profound lymphopenia observed in patients infected 
with severe acute respiratory syndrome coronavirus 2 
(SARS-CoV-2)39,40.

Thymic atrophy during acute infection is usu-
ally a rapid yet transient response, with thymic 
rebound occurring within 2 weeks after infection41,42. 
Nonetheless, delayed or incomplete thymic recovery 
has been reported and is particularly associated with 
pathogens that cause chronic infections such as HIV43,44. 
Sustained immune activation and alteration in T cell 
homeostasis during chronic infections have been asso-
ciated with progressive and possibly irreversible loss of 
thymic function as seen in advanced age. Thymopoiesis, 

as reflected by the levels of TCR excision circles (TRECs) 
and naive CD4+ T cells in the periphery (Box 2), is sig-
nificantly impaired in HIV-infected patients43,44. In 
addition, the reductions in the ratios of CD4+ T cells 
to CD8+ T cells and naive T cells to memory T cells, 
the expansion in CD57+CD8+ and CD28–CD8+ senes-
cent T cell populations, and the overall reduction in 
vaccine responsiveness have all been correlated with 
HIV-related disease progression and ageing45. This sug-
gests that HIV-associated immunological abnormali-
ties can induce early onset of immunosenescence and 
correlate with the higher risk of age-associated diseases 
typically observed in these patients46.

Cytoreductive therapy. Cytoablative treatments, such as 
radiotherapy, cell-depleting antibodies and chemother-
apy, are designed to target malignant cells as well as the 
host haematopoietic system to allow successful HCT and 
markedly deplete all haematopoietic lineages, especially 
T and B cells47. Whereas many cytoablative therapies 
target highly proliferative cells while sparing the quies-
cent haematopoietic stem cells (HSCs) numerically, the 
resultant immunodepletion impairs haematopoietic cell 
function by selectively inducing premature senescence 
of HSCs through upregulation of the cyclin-dependent 
kinase inhibitors p19ARF and p16INK4a (refs48,49). Recent 
studies demonstrate that chemotherapy induces funda-
mental changes in the expression of prohaematopoietic 
factors by the BM stromal niche, including downregula-
tion of the Notch ligands Delta-like 4 (DLL4) and DLL1 
by the vascular endothelium50. Consistent with the key 
role of DLL4 in sustaining common lymphoid progenitors 
and providing T-lineage specification before thymic 
entry51, reduced Notch signalling induces a premature 
myeloid skewing of HSPCs and can contribute to delayed 
recovery of lymphoid cells following chemotherapy.

In addition to depleting haematopoietic and lymphoid 
precursors, cytoablative therapies induce prolonged 
deficiency in adaptive immunity by damaging the nor-
mal process of T cell development in the thymus and 
impairing B cell lymphopoiesis in the BM (Box 1). The 
reduction in BM progenitors and T cell development can 
lead to long-term suppression of thymic function even 
after a single sublethal irradiation dose and can accel-
erate age-associated thymic involution52,53. In one study, 
chemotherapy induced transient thymic atrophy in as 
many as 90% of patients54. Both alkylating agents, such as 
cyclophosphamide, and irradiation reduce the numbers 
of all thymocyte subsets in mice, with DP thymocytes and 
their immediate progenitors CD4–CD8– double-negative 
thymocytes being particularly sensitive to such insults55,56.

Further contributing to impaired thymopoiesis, 
cytoablative agents damage TECs57. Irradiation and 
cyclophosphamide both deplete cTECs and mTECs which 
are important for, respectively, positive and negative  
selection of developing T cells, and this interferes with the  
generation of a broadly reactive TCR repertoire58,59. Acti
vation of signal transducer and activator of transcription 
3 (STAT3) signalling has been linked to the induction 
of apoptosis in TECs after irradiation60. However, more 
recent studies show that STAT3-mediated signalling is 
essential for growth and architectural organization of 

Box 1 | Mechanisms regulating B cell recovery after immunological injury

Compared with our understanding of T cell reconstitution, less information is available 
regarding the kinetics of B cell recovery after immunological insults and the factors 
regulating this process258. Optimal B cell function is important not only for the generation 
of protective antibodies and efficient antigen presentation but also for proper immune 
tolerance. This is particularly crucial for recipients of haematopoietic cell transplantation 
(HCT) as delays in B cell reconstitution are associated with increased risk of infection259 
and development of chronic graft-versus-host disease (GVHD)260. B cell numbers 
generally return to normal levels within 12 months after HCT, but it can take up to  
2 years for complete recovery of the B cell compartment259,261. Several factors such as 
conditioning regimens, total body irradiation, corticosteroid treatment and GVHD 
negatively impact B cell reconstitution77,258,262. B cell-targeting therapies such as the 
monoclonal anti-CD20 agent rituximab also significantly delay B cell recovery263.

In allogeneic HCT recipients, immunoglobulins can be derived from recipient plasma 
cells that survive conditioning regimens and donor-derived mature B cells261. However, 
restoration of the B cell compartment is primarily mediated by de novo regeneration 
from bone marrow progenitors. B cell recovery following HCT is reminiscent of B cell 
ontogeny264,265. Transitional CD19+CD21lowCD38hi B cells are the first B cells to emerge 
following HCT. Their percentage decreases in the first 12 months as the proportion of 
mature CD19+CD21hiCD27− naive B cells increases262. However, even when the total 
number of B cells recovers, their functionality can remain compromised for 1–2 years. 
Indeed, in addition to environmental or vaccine-based antigen exposure, insufficient 
recovery and signalling from donor CD4+ T cells can result in B cell maturation arrest 
and decreased responses to vaccines259,266. Thus, the degree of CD4+ T cell recovery 
impairs B cell differentiation and functional reconstitution. In the first period following 
HCT, due to lack of T cell help, memory B cells display a limited diversity of the IgH 
complementarity-determining region 3 repertoire compared with naive B cells267. 
However, B cell autonomous defects are also evident in HCT recipients as the capacity 
to accumulate somatic mutations is decreased in mature B cells even in the presence  
of an adequate pool of CD4+ T cells268. Limited information is available regarding the 
dynamics of B cell receptor repertoire evolution following HCT. Similarly to the T cell 
receptor repertoire, the sequencing of the VH1 repertoire of class-switched B cells 
revealed lower repertoire diversity after HCT than the pretransplantation status269. 
However, a more comprehensive study of B cell receptor reconstitution and repertoires 
after allogeneic HCT is needed.

Analogously to the T cell compartment, the naive B cell pool also declines with 
ageing. In old individuals, B cells are replaced by antigen-experienced memory cells 
carrying substantial functional changes, including impaired affinity maturation and 
isotope switching88.

Conditioning regimens
Also known as preparative 
regimens. A combination of 
chemotherapy, radiotherapy 
and/or immunosuppressive 
medications that is designed 
not only to destroy residual 
malignant cells but also to 
provide space for donor stem 
cell engraftment and to provide 
immunosuppression to prevent 
host rejection of the donor 
stem cells.

TCR excision circles
(TRECs). Non-replicative DNA 
episomes that are normally 
produced as by-products 
during T cell receptor (TCR) 
rearrangement in thymocytes. 
They are therefore expressed 
only in T cells of thymic origin 
and provide a useful tool to 
assess thymic function and 
recovery of the T cell pool.
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mTECs but is dispensable for the biology of cTECs61,62. 
Coinciding with their higher rate of proliferation57, 
the greatest numerical reduction occurs in the subset 
of TECs expressing the highest levels of MHC class II, 
particularly the tolerance-inducing AIRE+MHC-IIhi 
mTECs63. This imbalance in TEC subsets persists even 
after thymic cellularity is restored and may promote the 
development of autoimmunity58. Importantly, certain 
stromal subsets, such as innate lymphoid cells (ILCs) and 
endothelial cells, are relatively resistant to cytoreductive 
therapies and play an important role in thymic regen-
eration by secreting factors, such as IL-22 and bone 
morphogenetic protein 4 (BMP4), which promote the 
survival, proliferation and maintenance of TECs64,65. Full, 
albeit delayed, recovery of thymic function is possible up 
until middle age, but the peripheral naive repertoire is 
never fully restored in older patients66.

Peripheral T  cell depletion, especially of CD4+ 
T cells, is the main cause of clinical immunodeficiency 
observed in patients with cancer67. T cell recovery fol-
lowing cytoablative therapy is predominantly achieved 
through two mechanisms: de novo production in the 
thymus, particularly for CD4+ T cells, or homeostatic 
expansion of peripheral T cells, preferentially for CD8+ 
T cells68,69 (Fig. 1). The relatively rapid CD8+ T cell recov-
ery through extrathymic clonal expansion70,71 is typically 
associated with limited breadth of the TCR repertoire 
and diminished immune responses72.

Graft-versus-host disease. Although allogeneic HCT offers 
a potential cure for various malignant and non-malignant 
disorders, its wider application is limited by the signifi-
cant morbidity and mortality associated with GVHD and 
prolonged post-transplantation immunodeficiency73.  
In GVHD, donor alloreactive T cells in addition to tar-
geting the host gastrointestinal tract, liver and skin also 
directly destroy primary lymphoid organs (BM and 
thymus) and delay immune reconstitution after alloge
neic HCT. Both mouse models and clinical studies 
have demonstrated that GVHD targets the BM74, and 
the resultant medullary aplasia delays donor-derived 
haematopoiesis, especially of the lymphoid lineage75. 
IFNγ and TNF disrupt donor haematopoiesis both 
directly and indirectly through their effects on host 
BM stromal cells, including osteoblasts and mesen
chymal stem cells. As a result, acute GVHD is associated  
with a significant reduction in the numbers of residual 
and de novo B cell precursors, in the numbers of mature  
B cells and in antibody production76,77 (Box 1).

During acute GVHD, the thymus is exquisitely sen-
sitive to damage by alloreactive T cells, and its acute 
atrophy reflects the precipitous contractions of the lym-
phocytic and stromal compartments78,79. Mouse models 
of acute GVHD have demonstrated that, in addition to 
the reduced number of early thymic progenitors migrat-
ing from the BM to the thymus, reduction in thymic cel-
lularity is primarily due to loss of the large DP thymocyte 
population via glucocorticoid-independent apoptotic 
cell death78.

Within the stromal cell subset, TECs are targets of 
GVHD-mediated apoptosis. TECs also act as antigen- 
presenting cells and prime alloreactive T cells directly 
through their intrinsic expression of MHC class I and 
class II molecules, such that depletion of host-derived 
professional antigen-presenting cells does not pre-
vent activation of alloreactive donor T  cells and 
thymic injury79. This raises the possibility that GVHD 
is restricted to the thymus and remains subclinical 
despite detrimental consequences for T cell recon-
stitution. In addition, alloreactive T cells eliminate 
IL-22-producing thymic group 3 ILCs (ILC3s), resulting 
in impaired thymic recovery80. Moreover, donor alloreac-
tive CD8+ T cells preferentially target tolerance-inducing 
mature mTECs, thereby impairing negative selection and 
allowing de novo generation of autoreactive CD4+ T cells, 
linking alloimmunity during acute GVHD to the devel-
opment of autoimmunity during chronic GVHD81,82. 
These studies underline the importance of functional 
preservation of TECs as well as numerical restoration 

Box 2 | Methods to estimate the dynamics of T cell reconstitution

The close association between T cell function and clinical response to cancer 
immunotherapy highlights the need for comprehensive methods to monitor a  
patient’s immune function and T cell receptor (TCR) repertoire changes and develop 
potential biomarkers predictive of clinical responses.

Characterization of the main lymphocyte populations in peripheral blood is 
performed classically by flow cytometry and, more recently, by mass cytometry270 using 
a combination of cell surface markers such as CD4, CD8, CD45RA, CD45RO, CCR7, 
CD62L and CD27 (ref.271). Nonetheless, there are significant disparities among centres 
regarding the combination of markers to use and the tests to characterize reactivation 
of thymic function, TCR diversity and T cell function.

Analysis of thymic output
Analysis of recent thymic emigrants (RTEs) is performed in most immune monitoring 
studies. Several markers can be used to phenotypically characterize RTEs, when 
combined with CD45RA and CD45RO, including CD31, CCR7, PTK7 for CD4+ RTEs272 
and CD103 for CD8+ RTEs273, which can be used to enrich for RTEs carrying TCR 
excision circles (TRECs). However, not all CD31+ naive CD4+ T cells are RTEs, as T cells 
can undergo interleukin-7-driven homeostatic proliferation without downregulating 
their CD31 expression146. In addition, CD31 can be re-expressed by activated CD4+ 
T cells274. As an alternative, recent studies suggest that complement receptor 1 (CR1) 
and CR2 are novel markers enriched in RTEs and allow identification of this population 
with high purity275.

Other approaches to monitor T cell output include molecular quantification of TRECs. 
Detectable by standard or real-time PCR, these non-replicating circles of DNA are 
enriched in RTEs276. However, division of T cells in response to cytokine stimulation in 
the periphery can complicate the assessment of RTEs and thymic output141,217.

Imaging thymic mass by computed tomography scanning or magnetic resonance 
imaging has also been used to evaluate thymic regeneration in patients following 
antineoplastic therapy66,70 and after haematopoietic cell transplantation69. A major 
limitation of this approach is its semiquantitative estimation of thymic output based on 
the size of the thymus, as these two parameters often do not follow a linear correlation.

Analysis of TCR diversity
A diverse TCR repertoire is generally associated with a favourable clinical outcome of 
immunotherapy for cancer. TCR diversity can be assessed by flow cytometry, which 
allows measurement of use of different TCR variable (V) genes at the protein level277, 
and spectratyping, which reveals clonal length polymorphism in the complementarity- 
determining region 3 of each TCR V gene family at a molecular level278. However,  
these methods estimate total TCR diversity of the whole αβ T cell population and do  
not measure the frequency of individual TCRs. The rapid advances in next-generation 
sequencing-based high-throughput TCR analysis have offered the opportunity to 
measure TCR diversity with increased resolution. As TCR sequencing is an indirect 
measurement of thymic function, other approaches should be used to gain more  
direct insights into the endogenous process of T cell development. In addition, 
measurement of total TCR diversity also comes with significant challenges due to  
the high heterogeneity and dynamism of naive T cells.

Common lymphoid 
progenitors
Progenitors of lymphoid cell 
lineages, which include B cells, 
T cells, natural killer cells and 
innate lymphoid cells. Bone 
marrow common lymphoid 
progenitors are defined by 
their expression of the 
interleukin-7 receptor, 
FMS-related tyrosine  
kinase 3 (FLT3) and KIT, and 
the absence of all conventional 
lineage markers.
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of lymphocytes as the goals for immune-regenerative 
strategies following allogeneic HCT.

Clinically, GVHD-induced immunosuppression 
has been linked to decreased thymic output of naive 
T cells, as measured by TRECs, and a distorted TCR 
repertoire83–86. Paradoxically, pharmacological immuno-
suppressants, including corticosteroids and cyclosporine 
A, used in allogeneic HCT to prevent allograft rejection, 
as well as GVHD prophylaxis and/or treatment, can 
induce thymic involution, deplete thymocytes and ablate 
AIRE+MHC-IIhi mTEC subsets, further contributing to 
thymic damage58,87. These findings highlight the multi-
factorial nature of post-transplantation immune disor-
ders and represent the clinical challenges in preventing 
and treating GVHD after allogeneic HCT.

Immunosenescence. The functionality of the immune 
system progressively declines with age88, contributing 
to increased incidence of infections, inadequate vac-
cine responses and decreased immunosurveillance of 
malignant cells observed in the elderly population89,90. 
It is estimated that only ~30–40% of elderly people are 
capable of mounting sufficient immune responses to the 
influenza vaccine91,92.

Ageing impairs the normal process of thymic and 
BM lymphopoiesis at multiple levels. With age, there 
is an accumulation of HSCs with reduced homing and 
engraftment capacity93–95. In patients receiving allo-
geneic HCT, younger donor age has been associated 
with faster immune reconstitution96. Although several 
intrinsic changes in HSCs and lymphoid progenitors 
have been identified (including myeloid skewing97,98, 
defects in DNA repair99,100, epigenetic alterations101 and 
loss of cell polarity102), substantial changes in the BM 
stromal microenvironment also contribute to defec-
tive lymphopoiesis103. Transplantation of old HSCs into 
a young microenvironment is sufficient to partially 
reverse myeloid skewing104,105.

As T cell development depends on the constant out-
put of T cell progenitors from the BM, defective lympho-
poiesis, along with impaired developmental potential of 
intrathymic progenitors106, results in a significant reduc-
tion in the number of intrathymic lymphoid progenitors 
contributing to the reduced T cell output observed in 
older individuals97,106.

The progressive decline of thymus function during 
ageing represents one of the most important causes 
of immune degeneration in the elderly population107. 
However, the precise kinetics of this chronic physio-
logical process is still under debate. Compared with the 
mouse thymus, which undergoes a progressive reduc-
tion in its volume with age, the human thymus remains 
almost unchanged in size under normal circumstances 
and, instead, it is characterized by profound perturbation 
of the thymic stromal cell microenvironment, including 
loss of epithelial cells, increased volume of the perivas-
cular space and progressive replacement of healthy tissue 
with adipose tissue108.

The thymic stroma is one of the main targets of the 
effects of ageing, as demonstrated by HCT and parabio-
sis experiments in mice with different age-mismatched 
donors109,110. For example, intrathymic injection of 

early thymic progenitors derived from young mice 
into old mice is not sufficient to restore normal thymic 
lymphopoiesis111. At a molecular level, several stud-
ies have revealed extensive transcriptional changes 
in mouse thymic stromal cells as early as 3 months of 
age, particularly in genes associated with cell cycling 
and inflammatory responses112–114. Although ageing 
significantly erodes its functionality, the thymus main-
tains a proportion of functional cortical and medullary 
regions and active thymopoiesis. Indeed, T cell output, 
as measured by TREC level in the peripheral blood, is 
maintained in older individuals, albeit substantially 
reduced115,116. In addition, recent studies demonstrate 
that the involution of thymic tissue is not as dramatic 
as previously reported and that residual thymic tissue 
can be detected by computed tomography scanning in 
individuals up to 70 years of age117.

As the thymus involutes, the production of T cells 
is progressively impaired, and with age the naive 
T cell pool is increasingly maintained by homeostatic 
expansion3,118,119. Mathematical modelling suggested 
that thymic T cell export declines exponentially over 
time with a half-life of 15.7 years; therefore, by the age 
of 55 years only 5% of naive T cell production is derived 
from thymic export120. More recently, the average TREC 
content of the naive T cell population was used to esti-
mate thymic T cell output. This study demonstrated 
that up to 90% of naive T cells in healthy human adults 
are generated through proliferation118. By measur-
ing the average TREC content in naive T cells as well 
as the turnover of T cells, this work also showed that, 
unlike in humans, the naive T cell pool in mice is almost 
exclusively sustained throughout life by thymus output118.

The decline in naive T cell production results in a 
shift towards an oligoclonal pool of memory T cells 
and an almost linear decrease of T cell diversity with 
age119,121. These effects are particularly pronounced after 
the age of 60 years3,122. Some long-lived individuals 
(average age of 82 years) display a significantly higher 
percentage of naive CD4+ T cells, decreased abundance 
of expanded clones and increased TCR diversity com-
pared with a younger cohort, suggesting that these 
key immune parameters may represent hallmarks of 
longevity122. Mathematical modelling studies demon-
strate a significant inverse correlation between thymic 
export and the incidence of both infectious diseases 
and cancer123. During the coronavirus disease 2019 
(COVID-19) pandemic, being older than 65 years was 
identified as a risk factor for morbidity and death from 
COVID-19 (ref.124).

The age-associated decline of thymic function sig-
nificantly impairs and delays the endogenous process 
of thymic repair after immunological insults, resulting 
in a prolonged recovery time following common cancer 
cytoreductive therapies12,15. This is particularly problem-
atic in the HCT setting, which is increasingly used in 
older patients. An inverse relationship exists between 
the transplant recipient’s age and T cell recovery after 
transplantation9,125. Insufficient recovery of thymopoie-
sis has been directly correlated with an increased risk of 
opportunistic infections, leukaemia relapse and adverse 
clinical outcome126,127.

Innate lymphoid cells
(ILCs). A group of innate 
immune cells that are 
lymphoid in morphology and 
developmental origin but lack 
properties of adaptive B cells 
and T cells such as recombined 
antigen-specific receptors. 
They function in the  
regulation of immunity, tissue 
homeostasis and inflammation 
in response to cytokine 
stimulation.

Allogeneic HCT
Transplantation approach 
involving transfer of 
haematopoietic cells from a 
healthy donor to a patient after 
conditioning with high-intensity 
chemotherapy or irradiation. 
This approach can be used  
to treat either malignant or 
non-malignant disorders. 
Mismatches between the 
histocompatibility antigens of 
the donor and the patient can 
lead to adverse events, such as 
rejection of the transplanted 
graft or pathological immune 
responses to normal tissues in 
the patient.
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Strategies to enhance immune recovery
Over the past few years, several approaches have been 
proposed to enhance immune function through recov-
ery of the T cell pool (Fig. 2; Table 1). These strategies 
include the stimulation of T cell development and 
expansion using cytokines, such as IL-7, IL-12 and IL-21;  
the administration of cytokines and growth factors, 
such as stem cell factor (SCF; also known as KITLG), 
keratinocyte growth factor (KGF; also known as FGF7), 
IL-22 and FMS-like tyrosine kinase 3 ligand (FLT3LG); 
the modulation of hormone levels by suppression of 
sex steroids or by administration of thymosin-α1, 
growth hormone (GH; also known as somatotro-
pin), insulin-like growth factor 1 (IGF1) and ghrelin; 
the adoptive transfer of lymphoid progenitors such 
as precursor T cells and ex vivo expanded thymus- 
derived endothelial cells; and the use of artificial BM or 
thymus-like grafts.

Here, we focus on immune-boosting strategies that 
have been translated into clinical studies and provide a 
brief update on novel approaches that have shown regen-
erative potential in preclinical models. We put particular 
emphasis on approaches that can promote de novo T cell 
formation through the regeneration of thymic function, 
which is the primary mechanism to generate a pool of 
naive T cells with a diverse TCR repertoire. We also 
provide a brief summary of the different methods used 
to estimate thymic function and the dynamics of T cell 
reconstitution in Box 2.

Interleukin-7. IL-7 is classified as a type 1 short-chain 
cytokine crucial for the development of innate and 
adaptive immune cells128. It is secreted mainly by 
non-haematopoietic cells, including epithelial cells 
and fibroblasts in the thymus, BM stromal cells, lym-
phatic endothelial cells, fibroblastic reticular cells and 
enterocytes129–131. IL-7 is particularly important for the 
differentiation of T and B cells from common lym-
phoid progenitors and for the maintenance and survival 
of mature T cells. IL-7 receptor (IL-7R) is a heterodi-
mer of two chains: IL-7Rα (also known as CD127) 
and cytokine receptor common subunit-γ (also known 
as CD132 or IL-2RG). The γ-chain is expressed by all 
haematopoietic cell types, whereas IL-7Rα is expressed 
mainly by developing B and T cells, naive and memory 
T cells, NKT cells, ILC2s and ILC3s.

The crucial role of IL-7 in lymphopoiesis is demon-
strated by the development of severe combined immu-
nodeficiency disease in patients carrying mutations 
affecting the α-chain132,133 or the γ-chain of IL-7R134. 
While studies in Il7–/– mice showed that IL-7 is a 
non-redundant cytokine for both T and B cell lympho-
poiesis, B cell development in humans does not appear 
to require IL-7, as B cells are maintained in patients 
with severe combined immunodeficiency disease with 
mutations in the gene encoding IL-7Rα132.

The important role of IL-7 in T cell biology is also 
supported by the inverse correlation between circu-
lating IL-7 levels and peripheral T cells observed in 
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Fig. 2 | Simplified overview of T cell generation with regenerative 
strategies after immune injury. T cell development begins when T cell 
progenitors, originating from common lymphoid progenitors (CLPs) in the 
bone marrow, migrate into the thymus and progress through a series of 
well-characterized developmental steps. Thymocytes go through the 
double-negative (DN; CD4–CD8–) and double-positive (DP; CD4+CD8+) 
stages to form single-positive (CD4+CD8– or CD4–CD8+) T cells. During this 
process, approximately 95% of developing thymocytes produced daily are 
deleted through β-selection, positive selection and negative selection, 
resulting in the formation of self-restricted and self-tolerant naive CD4+ and 
CD8+ single-positive cells that can exit the thymus and migrate to peripheral 
lymphoid organs. Approaches to enhance T cell recovery act at multiple 
levels. Factors and approaches such as interleukin-7 (IL-7), IL-12, IL-15, IL-21, 
FMS-like tyrosine kinase 3 ligand (FLT3LG), growth hormone (GH), insulin-like 

growth factor 1 (IGF1), sex steroid ablation (SSA), thymosin-α1, stem cell 
factor (SCF), administration of precursor T cells (pre-T cells) and delivery of 
ex vivo-generated thymic epithelial cells (exTECs) primarily promote 
recovery of the haematopoietic compartment. By contrast, keratinocyte 
growth factor (KGF), IL-22, receptor activator of nuclear factor-κB ligand 
(RANKL), IGF1, lymphotoxin-α (LTα) and bone morphogenetic protein 4 
(BMP4) produced by ex vivo-generated endothelial cells (exECs) enhance 
reconstitution of the thymic stromal compartment. Question marks denote 
approaches where the effects on specific targets are not fully understood. 
ETP, early thymic progenitor; CMP, common myeloid progenitor;  
cTEC, cortical thymic epithelial cell; DC, dendritic cell: ILC, innate lymphoid 
cell; HSC, haematopoietic stem cell; MPP, multipotent progenitor;  
MSC, mesenchymal stromal cell; mTEC, medullary thymic epithelial cell;  
RTE, recent thymic emigrant.

Cytokine receptor common 
subunit-γ
A chain common to type I 
cytokine receptors. It was  
first discovered as the γ-chain 
of the interleukin-2 (IL-2) 
receptor and was subsequently 
shown also to be present in  
the receptors for IL-4, IL-7, 
IL-9, IL-15 and IL-21. Gene 
mutations affecting this γ-chain 
in humans result in absence  
of T cells and natural killer 
cells, a condition termed 
X-linked severe combined 
immunodeficiency.
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patients with lymphopenia135. The degree of available 
IL-7 controls the size of the peripheral T cell pool and 
plays an important role in regulating overall T cell 
homeostasis.

The effects of exogenous administration of IL-7 on 
immune reconstitution have been widely investigated128. 
Several preclinical mouse models have demonstrated 
the beneficial effects of exogenous IL-7 in promoting 
immune reconstitution through thymus-dependent 
and thymus-independent mechanisms. In the setting of  
HCT, exogenous IL-7 accelerates the reconstitution  
of donor-derived thymocytes and the peripheral T cell 
pool, leading to enhanced T cell recovery after both 
syngeneic and allogeneic HCT135–139. A phase I/IIa  
dose-escalation study (NCT00477321) of repeated 
administration of a glycosylated recombinant human 
IL-7 (rhIL-7; CYT 107) in HIV-1-infected patients 
demonstrated that rhIL-7 treatment was safe, well tole
rated and transiently promoted the expansion of naive 
and memory CD4+ and CD8+ T cells, and decreased the 

proportion of exhausted PD1+ T cells140. Importantly, rhIL-7  
therapy also increased the numbers of CD4+ recent  
thymic emigrants (RTEs), the signal joint to β TREC 
ratio and TCR repertoire diversity in some participants, 
effects that imply enhanced thymic activity (Box 2). 
Subsequently, two other clinical trials (NCT01190111 
and NCT01241643) demonstrated that repeated doses of 
rhIL-7 were well tolerated and resulted in sustained CD4+ 
T cell numbers in the majority of HIV-infected parti
cipants140–143. Similarly, in a phase I/IIa dose-escalation 
trial (NCT00839436) in patients with idiopathic CD4+ 
lymphopenia at risk of disease progression, rhIL-7 led 
to an increase in the number of circulating CD4+ and 
CD8+ T cells and tissue-resident CD3+ T cells in the gut 
mucosa and BM. Importantly, enhanced thymopoiesis, 
measured by TRECs, was observed only in the youngest 
patients of the cohort (aged 23 and 34 years)144.

In a phase I clinical trial (NCT00684008) that eval-
uated the immune-regenerative properties of rhIL-7 in 
patients receiving T cell-depleted allogeneic HCT138, 

Recent thymic emigrants
(RTEs). Semimature T cells that 
have left the thymus but have 
yet to undergo the final stages 
of maturation. Typically a 
window of around 2 weeks 
after thymic maturation is used 
to differentiate between RTEs 
and fully mature T cells.

Table 1 | Approaches to enhance T cell recovery, their targets and progress towards the clinic

Approach Target cells Clinical trials Refs

Cytokines

IL-7 HSPCs, thymocytes, peripheral 
T cells

NCT00477321, NCT01190111, 
NCT01241643, NCT00839436, NCT00684008

136–144,216,217

IL-12 Thymocytes, HSPCs? Not currently in clinical trials 185,186

IL-15 NK cells, NKT cells, CD8+ T cells Not currently in clinical trials 187–189

IL-21 Thymocytes, HSPCs Not currently in clinical trials 190–192

IL-22 TECs Not currently in clinical trials 64,80,193

RANKL TECs Not currently in clinical trials 197,218,219

Growth factors

KGF TECs NCT01233921, NCT03042585, NCT02356159, 
NCT00593554, NCT01712945

150–155,157, 

159,220–223

FLT3LG BM HSPCs, thymocytes Not currently in clinical trials 224–226

IGF1 TECs Not currently in clinical trials 227,228

SCF Thymocytes Not currently in clinical trials 229–231

Hormones and hormone-like mediators

Thymosin-α1 Thymocytes NCT00580450 164,232

GH and ghrelin TECs, thymocytes NCT00071240, NCT00287677 , 
NCT00119769, NCT00050921

180–182, 

184,233–235

Sex steroid ablation TECs, BM HSPCs, thymocytes NCT01746849, NCT01338987 55,58,167,169–173, 

175,176,236–240

Cell-based approaches

Precursor T cells TECs, thymocytes Not currently in clinical trials 241–246

Ex vivo expanded 
endothelial cells

TECs Not currently in clinical trials 65

Ex vivo expanded 
MSCs

HSPCs, TECs, T cells Not currently in clinical trials 247,248

Ex vivo generated 
TEC graft

TECs, thymocytes Not currently in clinical trials 249–254

Injectable 
thymus-like scaffolds

CLPs, peripheral T cells Not currently in clinical trials 253,255–257

BM, bone marrow; CLP, common lymphoid progenitor; FLT3LG, FMS-like tyrosine kinase 3 ligand; GH, growth hormone; HSPCs, 
haematopoietic stem and progenitor cells; IGF1, insulin-like growth factor 1; KGF, keratinocyte growth factor; IL, interleukin; MSC, 
mesenchymal stromal cell; NK, natural killer; NKT cells, natural killer T cells; RANKL, receptor activator of nuclear factor-κB ligand; 
SCF, stem cell factor; TEC, thymic epithelial cell.
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rhIL-7 induced a rapid increase in peripheral CD4+ and 
CD8+ T cell numbers. While the estimated half-life of 
rhIL-7 in this study was 9–35 hours, the biological effects 
on T cell numbers persisted for several weeks after 
the circulating levels of IL-7 returned to the baseline.  
In addition, although rhIL-7 administration resulted in 
increased numbers of RTEs only in some young patients, 
most participants had enhanced TCR repertoire diver-
sity that persisted several weeks after the end of rhIL-7 
therapy138. The limited effects on thymic output in this 
study, as represented by minimal changes not only in the 
numbers of RTEs but also in the levels of TRECs, could 
be explained by the age and lymphopenic condition of 
the patients at the time points analysed. It is also possi-
ble that extended duration of rhIL-7 administration is 
necessary to have a greater effect on thymic function. 
However, compared with mice, in which IL-7 has both 
thymic-dependent and thymic-independent regenera-
tive effects135, it is still unclear what the direct impact 
of exogenously administered IL-7 is on the thymus in 
humans and non-human primates. On the basis of clini
cal and preclinical observations, it appears that most of 
the effects on TCR diversity following rhIL-7 treatment 
are primarily driven by extrathymic sources, including 
the expansion of less frequent but highly diverse RTEs 
and naive T cells, which preferentially respond to IL-7 
stimulation145,146, as well as their recirculation from 
lymphoid organs141,147,148.

Lymphopenia, particularly with regard to CD4+ and 
CD8+ T cell subsets, in patients with COVID-19 on 
admission to hospital is emerging as one of the key clin-
ical signs of COVID-19 and is closely associated with 
disease progression39. Enhancing T cell immunity could 
be a worthwhile strategy for treating these patients. 
Thus, a clinical trial has recently begun to investigate 
the possibility that IL-7 can restore T cell immunity in 
patients with COVID-19.

Keratinocyte growth factor. KGF is a potent growth fac-
tor for TECs and is expressed under physiological con-
ditions in the thymus primarily by mesenchymal cells149. 
KGF binds to its receptor, fibroblast growth factor 2 var-
iant IIIb (FGFR2IIIb), on TECs and induces TEC pro-
liferation through activation of the PI3K–AKT–nuclear 
factor-κB and p53 pathways150–152.

Studies using knockout animals found that although 
KGF is redundant for thymopoiesis in steady-state 
conditions, it is crucial for thymic regeneration and 
peripheral T cell reconstitution after injury such as 
that caused by total body irradiation and syngeneic or 
allogeneic HCT153. The impact of exogenous adminis-
tration of KGF on TEC function and thymic regrowth 
has been extensively evaluated in several mouse studies. 
Administration of recombinant KGF transiently acceler-
ated thymic recovery after immune insults such as irra-
diation, cyclophosphamide therapy and dexamethasone 
therapy, and enhanced recovery of thymic and periph-
eral T cell numbers after HCT150,152,154,155. KGF reversed 
thymic involution and restored thymopoiesis in aged 
mice for up to 2 months after treatment156. A study per-
formed in rhesus macaques showed that KGF-treated 
animals displayed accelerated haematological recovery, 

improved thymopoiesis and enhanced naive T cell 
recovery following HCT157. Although the effects on 
thymic function were modest, as measured by minimal 
changes in thymus mass, KGF-treated animals showed 
increased numbers of TREC-positive T cells up to 
3 months following KGF treatment.

Human recombinant KGF (palifermin; trade name 
Kepivance, marketed by Biovitrum) is approved by the 
US Food and Drug Administration for the prevention 
of mucositis in patients receiving high-dose chemo-
therapy. Several trials (NCT01233921, NCT03042585, 
NCT02356159 and NCT00593554) are exploring its 
effects on T cell reconstitution, but no results have been 
reported yet. As demonstrated in previous preclinical 
work158, the benefits of palifermin on immune reconsti-
tution in transplant recipients may derive from its syn-
ergistic effects with other immune-boosting therapies 
rather than as a sole therapeutic agent. However, a recent 
study of the use of KGF to promote immune reconstitu-
tion in patients with relapsing–remitting multiple scle-
rosis treated with the anti-CD52 lymphocyte-depleting 
agent alemtuzumab showed reduced thymic output 
in KGF-treated patients as measured by evaluation of 
naive CD4+ T cells, RTEs and TRECs (NCT01712945)159. 
Given that human cTECs express CD52, one possible 
explanation for these clinical data is that palifermin exac-
erbates the negative effects of alemtuzumab on thymic 
function, perhaps through upregulation of CD52 expres-
sion on cTECs, rendering these cells more susceptible to 
antibody-mediated elimination. Thus, the combination 
of KGF with other drugs should be assessed cautiously 
as synergistic or deleterious effects on immune regen-
eration may occur depending on dosing, timing and 
mechanisms.

Thymic hormones. Thymosins are a group of low molec-
ular weight peptides originally isolated from bovine 
thymus160. Thymosin-α1, derived from prothymosin-α, 
is produced by TECs161 and can increase lymphocyte 
maturation, boost T cell function and promote recov-
ery following immune insults, although its mechanism 
of action is not completely understood. The receptor for 
thymosin-α1 is expressed by developing thymocytes, 
in which it regulates their survival and proliferation. 
Thymosin-α1 can antagonize dexamethasone-induced 
apoptosis of DP thymocytes in vitro, as well as the 
hydrocortisone-induced decrease in thymus and spleen 
mass162. Thymosin-α1 can also enhance the production 
of IL-7 by TECs163. Given promising preclinical results, 
multiple clinical trials have been initiated to evaluate the 
immunomodulatory effects of thymosin-α1 in the treat-
ment of patients experiencing viral infections, immuno-
deficiency or haematological malignancies. Safety and 
efficacy of thymosin-α1 administration were evaluated in 
recipients of allogeneic HCT in a phase I/II clinical study 
(NCT00580450). Treatment with thymosin-α1 increased 
T cell numbers and resulted in earlier appearance of 
pathogen-specific T cell responses against pathogens such 
as cytomegalovirus and Aspergillus species. Importantly, 
thymosin-α1 did not exacerbate acute or chronic GVHD 
and was associated with significant improvement in 
phagocytosis and dendritic cell function164.
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Recently, thymosin-α1 was given to patients with 
COVID-19 showing severe lymphopenia to enhance 
immunity. Thymosin-α1 treatment increased T cell 
numbers and recovery of thymic function, measured 
by TREC analysis165. Importantly, thymosin-α1 admin-
istration was also associated with increased survival of 
patients with severe COVID-19 (ref.165).

Sex steroid ablation. In addition to their fundamental 
role in regulating sex dimorphism, sex hormones can 
impact haematopoiesis at multiple levels. One of the 
first observations regarding a relationship between T cell 
development and sex hormones dates back to 1898, 
when it was reported that the thymus enlarged after 
castration of male rabbits166. Several studies confirmed 
the enlargement of thymic tissue after gonadectomy in 
both sexes in different experimental animal models. 
Conversely, androgens and oestrogens induce atrophy 
of the thymus167,168.

The increase in the levels of sex steroids, and in par-
ticular of androgens, during puberty has been directly 
linked to the age-associated deterioration of immune 
function and to the process of thymic involution. 
Although the connection between the increase in the 
levels of sex steroids after puberty and the initiation 
of thymic involution is still debated, the regenerative 
impact of the removal of sex steroids on both thymic 
and BM lymphopoiesis has been extensively character-
ized. Indeed, through the use of clinically relevant mouse 
models of immune reconstitution after haematopoietic 
injuries, such as chemotherapy and radiotherapy, it has 
been demonstrated that sex steroid ablation enhances 
HSC self-renewal and lymphoid differentiation capacity 
and increases the number of common lymphoid pro-
genitors in the BM169–171. Sex steroid ablation also has 
a direct effect on the BM microenvironment, restoring 
expression of key haematopoietic factors that are down-
regulated with age, such as FOXO1 (ref.169). Considerable 
rejuvenation effects in the thymus have been extensively 
characterized, demonstrating that sex steroid ablation 
reverses thymic atrophy, accelerates the recovery of all 
thymocyte subsets and elicits potent regenerative signals 
to the thymic stromal microenvironment55,172–174. At a 
molecular level, sex steroid ablation promotes the upreg-
ulation of the key thymopoietic factors CC-chemokine 
ligand 25 (CCL25)175 and DLL4 (ref.167) in mTECs and 
cTECs, respectively.

Several drugs have been developed to transiently 
and reversibly block sex steroids for the treatment of 
precocious puberty, endometriosis, hormone-sensitive 
prostate cancer and breast cancer. Some of these sex 
steroid blockers have been tested clinically to boost 
immune reconstitution after HCT. A non-randomized 
pilot study demonstrated that administration of the lute-
inizing hormone-releasing hormone (LHRH) agonist 
goserelin (Zoladex) before HCT significantly increased 
neutrophil engraftment, as well as total lymphocyte 
numbers, particularly those of naive CD4+ T cells, and 
levels of TRECs and improved recovery of TCR reper-
toire diversity176. Importantly, an increase in disease-free 
survival was observed in autologous HCT recipients 
treated with goserelin. Two trials (NCT01746849 and 

NCT01338987) are ongoing to evaluate the effects of the 
LHRH agonist leuprolide (Leuprorelin) and the LHRH 
antagonist degarelix (Firmagon) to promote immune 
reconstitution following allogeneic HCT. Notably, the 
latest androgen receptor inhibitors and LHRH antag-
onists have the advantage of immediately blocking sex 
steroids without an initial surge of sex steroids as seen 
with LHRH agonists167. These novel approaches may 
provide better therapeutic tools to suppress sex steroids 
and mediate immune reconstitution.

The regenerative effects of sex steroid ablation on 
T cell development might continue only as long as the 
levels of sex steroids are suppressed. However, the dura-
tion of such effect, particularly in the setting of surgical 
castration, remains a subject of debate in the field. After 
the initial regrowth following castration, the thymus of 
aged animals has been reported to decline and return 
approximately to its pretherapy condition 1 month after 
sex steroid ablation therapy177. While these results sup-
port a model in which the regenerative effects induced 
after surgical sex steroid ablation are transitory and 
dynamic, additional studies should be done to better 
characterize the nature of these ‘transient’ effects and 
the precise kinetics of thymic regeneration, in particu-
lar, at later time points. For example, it would be inter-
esting to evaluate whether removal of the gonads, in the 
long term, can induce additional hormonal changes that 
negatively impact the process of lymphopoiesis.

Growth hormone. GH is a small peptide hormone 
secreted primarily in the bloodstream by somatotropic 
cells in the anterior pituitary gland178. Apart from its ana-
bolic effects and impact on height, GH is also implicated 
in the regulation of haematopoietic function. Expression 
of GH receptor (GHR), by which GH mediates most of 
its effects, has been found on T cells, B cells, NK cells, 
monocytes, thymocytes and HSCs in humans and in 
other species179. While the impact of its signalling seems 
to be dispensable for HSC function, as suggested by the 
lack of phenotypic defects in HSCs of GHR-deficient 
mice, GH has important effects on immune function  
in mice and humans, either directly or through its prin-
cipal mediator, IGF1. In vivo administration of GH can 
reverse thymic involution180–182. Transgenic mice that 
overexpress GH have an enlarged thymus. Similarly, the 
administration of a recombinant form of GH or IGF1 
promotes thymic regeneration, increases TCR diversity 
and enhances recovery of haematopoietic compartments 
in immunocompromised and aged animals183.

GH administration to immunocompromised patients 
has been studied in several clinical trials. Daily admin-
istration of human recombinant GH (somatropin) 
enhances thymic function and peripheral immune 
function in HIV-infected patients (NCT00071240)180,181. 
The effects on thymic output appear to be transient, as 
discontinuation of GH treatment is associated with the 
recurrence of thymic atrophy181. Results from the recently 
completed studies (NCT00287677, NCT00119769 
and NCT00050921) are still pending. The use of GH 
to reverse chronological ageing of the immune system 
was assessed in a recent pre‐phase-I study performed 
in volunteers aged between 51 and 65 years. Magnetic 
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resonance imaging of thymic density showed that the 
accumulated fat tissue in the thymus was replaced with 
regenerated tissue in seven of the nine participants 
receiving the treatment184. In the periphery, GH treat-
ment was associated with a significant increase in both 
naive CD4+ T cells and naive CD8+ T cells, with a con-
comitant decrease in PD1+CD8+ T cells184. However, there 
are several concerns about the side effects associated with 
GH treatment, such as increased risk of heart disease, 
diabetes, elevated cholesterol levels and, more impor-
tantly, tumour progression. Thus, additional studies are 
needed to evaluate its potential use in humans.

Emerging approaches for T cell regeneration
Over the past decade, intensive work has been done 
to further optimize the efficacy of already identified 
approaches and to identify alternative regenerative 
mechanisms (Fig. 2). In addition to IL-7, other cytokines 
have demonstrated efficacy in preclinical mouse mod-
els to restore thymic function and/or expand immune 
cells in the periphery following immune insults. 
Administration of IL-12 not only induces thymocyte 
proliferation through increased IL-7 and IL-2 signal-
ling but also enhances engraftment and haematopoietic 
reconstitution after transplantation185,186. IL-15 can also 
boost immunity primarily by promoting NK cell, NKT 
cell and CD8+ T cell proliferation and function. Overall, 
these effects enhance reconstitution of these cell subsets 
and graft-versus-tumour responses in mouse models of 
allogeneic HCT187–189.

IL-21 can enhance thymic function in young and aged 
mice. These effects are primarily mediated by the impact 
of IL-21 on DP thymocytes, which express high levels of 
IL-21 receptor after glucocorticoid-induced thymic 
atrophy, and by activation of the IL-21 downstream tar-
get BCL-6 (ref.190). Administration of recombinant IL-21 
improved thymic regeneration and reconstitution of the 
peripheral naive T cell compartment in different models 
of immune damage, including glucocorticoid-induced 
thymic atrophy, ageing and allogeneic HCT190–192.

IL-22 can also mediate thymic regeneration64,193. 
Following thymic damage, the loss of DP thymocytes 
can trigger the production of IL-22 by thymic ILCs in 
an IL-23-dependent manner (Fig. 2). IL-22 then acts on 
TECs to promote their survival and proliferation through 
activation of STAT3 and STAT5 and expression of the 
downstream antiapoptotic molecule MCL1 (refs64,193). 
Administration of recombinant IL-22 to sublethally irra-
diated mice or allogeneic HCT recipients can promote 
the recovery of thymic function and the development of 
new thymic-derived peripheral T cells64,80,193.

ILCs play a fundamental role in thymic reconsti-
tution not only via IL-22 production but also through 
production of receptor activator of nuclear factor-κΒ 
ligand (RANKL), a potent factor known for its funda-
mental role in TEC maintenance and maturation194–196. 
Recent studies have characterized the role of RANKL 
in the regeneration of the thymic microenvironment 
and T cell recovery in mouse models of allogeneic 
HCT. RANKL is expressed early after thymic dam-
age by CD4+ thymocytes and, to a great extent, by 
lymphoid tissue inducer (LTi) cells64,197. RANKL acts on its 

cognate receptor, RANK, expressed on LTi cells, and 
induces upregulation of lymphotoxin-α (LTα). Following 
thymic damage, LTα can bind to LTβ receptor on thymic 
epithelial progenitor cells and TECs and promote their 
regeneration. Exogenous administration of recombinant 
RANKL boosts regeneration of thymic epithelial pro-
genitor cells and TECs and improves T cell progenitor 
homing and de novo thymopoiesis. Overall, these effects 
lead to enhanced peripheral T cell reconstitution197. LTα 
can activate LTβ receptor on intestinal dendritic cells to 
induce IL-23 production, which in turn acts on intestinal 
ILCs to promote IL-22 production198.

As cells producing RANKL, IL-22, LTα or LTβ are 
responsive to IL-7R signalling, which can promote their 
expansion and function199,200, it is possible that these 
molecules contribute to the regenerative effects medi-
ated by IL-7 in the thymus. Although IL-7 has not been 
shown to directly regulate IL-22, it can regulate LTα1β2 
expression by LTi cells201, thus providing a mechanism 
by which IL-7R signalling integrates regenerative path-
ways. In addition, IL-7 can directly induce RANKL 
expression by T cells and aid in thymic regeneration202.

In addition to its well-described role during thymus 
organogenesis203,204, BMP4 can promote thymic regene
ration after thymic damage. Indeed, BMP4 produced  
by thymic endothelial cells drives thymic regeneration by 
binding to its receptor expressed on TECs and stimulat-
ing the upregulation of FOXN1 and its target genes65,205. 
Importantly, adoptive transfer of ex vivo expanded 
thymic endothelial cells improves thymic reconstitution 
after a sublethal dose of total body irradiation through 
the delivery of BMP4.

Concluding remarks
At present, there are no approved therapies to enhance 
T cell function in patients with lymphopenia. The deve
lopment of such approaches would not only benefit 
patients whose immune system has been decimated by  
multiple cycles of chemotherapy and radiotherapy or  
by viral infections but could also improve T  cell 
responses in other clinical settings.

Cancer immunotherapy with immune checkpoint 
inhibitors is emerging as one of the most promising 
new treatments for a variety of solid and liquid malig-
nancies. To be effective, these treatments rely on the 
presence of an adequate pool of T cells capable of rec-
ognizing specific tumour antigens206. Previous studies 
demonstrated that the limited response rate to check-
point inhibitor therapy may be linked to a restricted 
TCR repertoire observed in the periphery of patients 
with cancer before therapy. Non-synonymous mutations 
and neoantigens are associated with clinical efficacy of 
immune checkpoint blockade207–209. Thus, treatments 
capable of improving immune functions and enhanc-
ing TCR repertoire diversity may have the potential 
to significantly extend the clinical benefit of immune 
checkpoint blockade.

Therapeutic approaches that can rejuvenate the 
peripheral T cell pool will also be relevant for the treat-
ment of elderly patients not only to enhance responses 
to pathogens but also to increase the efficacy of vaccines. 
The progressive expansion of peripheral TCR clonality 

Lymphoid tissue inducer 
(LTi) cells
Cells that are present in 
developing lymph nodes, 
Peyer’s patches and 
nasopharynx-associated 
lymphoid tissue. They are 
required for the development 
of these lymphoid organs  
and are characterized by 
expression of the transcription 
factor RORγt, interleukin-7 
receptor-α and 
lymphotoxin-α1β2.
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and loss of specific T cell clones observed during ageing 
contribute to the moderate success rate of vaccination 
in elderly patients.

However, important aspects should be taken in con-
sideration when one is designing approaches to restore 
immunocompetence in aged individuals. Recent work 
performed in old mice and non-human primates 
demonstrated that additional barriers limit the impact 
of immune regeneration in the periphery even when 
thymic regeneration is achieved210. Although the thy-
muses of old mice treated with sex steroid ablation 
or KGF can be rejuvenated, this did not translate into 
increased frequencies of naive CD8+ T cells and naive 
CD4+ T cells in peripheral blood. Age-related intrin-
sic defects of RTEs210,211 and a defective thymic stro-
mal microenvironment113,114,177, together with reduced 

responses to homeostatic cytokines212, could explain the 
defective maintenance and function of naive T cells in 
old recipients.

One promising, recently identified strategy to expe-
dite immune reconstitution following HCT is the use  
of non-genotoxic conditioning approaches. The use of  
depleting antibodies, such as anti-CD117 and anti- 
CD45, which can recognize and eliminate HSCs and 
other haematopoietic cells in a targeted manner, allows 
remarkably efficient HSC engraftment while sparing 
non-haematopoietic cells, with minimal off-target toxic-
ity213–215. This novel approach has the potential to reduce 
HCT-related toxicity, promote faster immune recovery 
and significantly improve patient clinical outcome.
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