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The main epithelial component is hepatocytes, which 
account for more than 60% of the total liver cells, which 
are mainly responsible for the metabolic activities, detox-
ification, protein secretion and bile production of the 
liver. Another major epithelial component is the bile duct 
epithelial cells (cholangiocytes), which line the intrahe-
patic and extrahepatic bile ducts and are involved in the 
transport and modification of primary bile produced by 
hepatocytes [1, 2].

So far, the lack of suitable models to accurately simu-
late physiological conditions have been major obstacles 
hindering progress in chronic liver disease research [3]. 
Animal models cannot accurately reflect the metabolic 
reactions of drugs in the human body, and high costs and 
ethical issues also limit the application of animal models 
[4]. Immortalized cell lines are the most common mod-
els in the laboratory, but they are limited by many genetic 
and functional changes that can impair the authenticity 
of liver disease models [5]. Primary human hepatocytes 
(PHH) are considered the gold standard for evaluating 
liver metabolism, but are limited due to their loss of in 

Introduction
The liver is a complex organ with heterogeneous struc-
ture and function, including different cell types, includ-
ing epithelial cells (i.e., hepatocytes and cholangiocytes), 
kupffer cells, circulating monocytes, mesenchymal cells 
(i.e., hepatic stellate cells), and sinus endothelial cells [1]. 
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Abstract
The liver is the most important metabolic organ in the body. While mouse models and cell lines have further 
deepened our understanding of liver biology and related diseases, they are flawed in replicating key aspects of 
human liver tissue, particularly its complex structure and metabolic functions. The organoid model represents 
a major breakthrough in cell biology that revolutionized biomedical research. Organoids are in vitro three-
dimensional (3D) physiological structures that recapitulate the morphological and functional characteristics of 
tissues in vivo, and have significant advantages over traditional cell culture methods. In this review, we discuss the 
generation strategies and current advances in the field focusing on their application in regenerative medicine, drug 
discovery and modeling diseases.
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vitro proliferation ability [6, 7]. Organoids represent a 
promising model system that can bridge the gap between 
2D culture and in vivo mice/human models. Here, we 
endorse the definition of organoids by the hepatic, pan-
creatic, and biliary (HPB) Organoid Consortium com-
posed of more than 60 experts from 16 countries around 
the world, defining organoids as a three-dimensional 
structure derived from (pluripotent) stem cells, progeni-
tor, and/or differentiated cells that self-organize through 
cell-cell and cell-matrix interactions to recapitulate 
aspects of the native tissue architecture and function in 
vitro [8]. Although early reports on the establishment of 
organoid systems indicated that organoids are exclusively 
derived from stem cells [9], it is now clear that organoids 
can also be initiated from differentiated cells, such as 
cholangiocytes [10]. Organoids were named “Method of 
the Year 2017” by Nature Methods, reflecting the excite-
ment and promise of this rapidly evolving field that pro-
vides new experimental ease of handling, physiologically 
relevant organ development, models of human pathol-
ogy, and paves the way for therapeutic applications.

Organoids from (pluripotent) stem cells and progeni-
tor cells have been used to mimic many organs from the 
endoderm, mesoderm, and ectoderm [5]. Briefly, we pro-
vide a non-exhaustive list of organoid systems with dates: 
endoderm-derived organoids: thyroid [11, 12], lung [13–
16], stomach [17–19], liver [20–23], pancreas [24–27], 
small intestine [28, 29] and colon [30, 31]; mesoderm-
derived organoids: kidney [32–37], bone [38], fallopian 
tubes [39], and endometrium [40, 41]; and ectoderm-
derived organoids: breast [42, 43], retina [44–46], brain 
[47–49], inner ear [50] and salivary glands [51].

In this review, we provide a detailed overview of the 
recent progress in the culture and applications of organ-
oids derived from the liver tissue, as well as pluripotent 
stem cells (PSC)-derived organoids.

Generation of liver organoids
We divide organoids into distinct groups based on defin-
ing characteristics. These include epithelial organoids, 
multi-tissue organoids and bioengineered liver organoids 
(Fig. 1) (Table 1).

Tissue-derived liver epithelial organoids
Primary liver cells have now become one of the main 
sources of liver organoids. As we all know, the discovery 
and in vitro culture of Lgr5+ stem cell of the intestinal 
crypts marked the beginning of the organoid research 
field [28, 52]. In the liver, the existence of a specialised 
population of stem cells has been controversial. The 
source of regenerating hepatocytes in the liver has been 
attributed to different cell populations. By using culture 
conditions similar to those for intestinal organoids, Huch 
et al. reported the first cholangiocyte organoids system 

[20]. Lgr5+ cells can be isolated from both damaged and 
healthy liver tissue, which can be clonally expanded as 
organoids in R-spondin 1-based culture medium over 
multiple months. Such clonal organoids can be induced 
to differentiate in vitro and to generate functional hepa-
tocytes upon transplantation into FAH−/− mice [20]. 
Two years later, the first 3D culture of human cholan-
giocyte organoids was obtained by slightly adjusting 
the conditions used for murine organoids [21]. Specific 
inhibition of TGF-β receptors Alk4/5/7 by the small 
molecule inhibitor A83-01 extended the time in cul-
ture, and enhanced colony-forming efficiency. Forskolin 
addition upregulated Lgr5 and the ductal marker CK19. 
Thus, Wnt signals, cAMP activation, and TGF-β inhibi-
tion were essential for long-term expansion. The cells can 
readily be converted into functional hepatocytes in vitro 
and upon transplantation in vivo. Moreover, for the first 
time, organoids from alpha 1-antitrypsin (A1AT) defi-
ciency and Alagille syndrome patients mirror the in vivo 
pathology [21].

While the cholangiocyte organoids could potentially 
generate large quantities of hepatocytes in culture, these 
organoids of biliary origin appear to be recalcitrant in 
differentiating to hepatocytes in vitro or when engrafted 
into mice [22]. Over 80% of the mass of the liver is com-
prised of hepatocytes. When liver is damaged, quiescent 
hepatocytes re-enter the cell cycle and proliferate to 
achieve liver regeneration [53]. A study on murine liver 
regeneration reports that only hepatocytes are involved 
in liver regeneration after liver damage [54]. Hu et al. 
further supplemented cytokines that promote hepato-
cyte cell fate into the cholangiocyte organoid culture 
media to formulate new culture condition that enabled 
the expansion of mouse and human hepatocytes in simi-
lar 3D culture approach. Analysis showed that hepato-
cyte organoids had a ‘‘bunch-of-grapes’’ appearance and 
ALB secretion was only two-four folds lower compared 
with that of PHHs. Hepatocyte organoids had compact 
structure and retained key functions and gene expres-
sion profiles of hepatocytes compared with cholangio-
cyte organoids [22]. In 2018, Peng et al. reported that 
TNFa, an injury-induced inflammatory cytokine, may 
be implicated in expansion of hepatocyte organoids. Iso-
lated mice hepatocytes were embedded in growth-factor 
reduced Matrigel with expansion medium containing 
EGF, HGF and TNFa. At 2 weeks after seeding, organoids 
were formed. The organoids exhibited stable character-
istics, and could serially be passaged for over 6 months 
[23]. Recently, Liu et al. reported the development of 
novel culture conditions containing optimized levels of 
triiodothyronine (T3) and removal of growth factors 
that enable the successful generation of mature hepato-
cyte organoids with metabolic features characteristic of 
adult liver of mouse and human origin [55]. Compared to 
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previous hepatic organoids, transcriptome analysis and 
a range of different functional assays demonstrated that 
MHOs exhibited improved metabolic functional features 
of adult mouse or human liver, including bile acid pro-
duction, urea production, detoxification, and lipid and 
glucose metabolism.

PSC-derived liver epithelial organoids
PSCs have infinite proliferation potential and can differ-
entiate into all three embryonic germ layers (endoderm, 
mesoderm, and ectoderm), which allows them to form 
well-functioning liver organoids. The ability to produce 
differentiated functional hepatocytes from hiPSCs pres-
ents a major opportunity to directly study mechanisms 
of human liver disease, to perform high-throughput drug 

screening for new therapies, and to facilitate hepatocyte 
transplantation. Currently, a three-step strategy reca-
pitulating ontogenetic liver development is shared by the 
most commonly employed protocols for hepatocyte dif-
ferentiation: definitive endoderm (DE) induction, hepatic 
endoderm (HE), and hepatocyte-like cells (HLCs) [56, 
57]. (Fig. 1).

The common liver organoids produced in most stud-
ies can be divided into liver epithelial organoids and 
multi-tissue liver organoids according to their cell ori-
gin [8]. Typically, liver epithelial organoids are produced 
by the expansion of liver intermediate progenitor cells 
seeded in a medium rich in Matrigel. EpCAM has been 
identified as a surface marker on human hepatic stem/
progenitor cells [58–60]. Akbari et al. generated and 

Fig. 1 Schematic representation of the generation of liver organoids. Epithelial progenitor derived from resected normal liver tissue can be stimulated 
to form liver organoids. iPSCs/ESCs require a 3-stage differentiation protocol to generate HLCs. Small molecules and cytokines were added to enhance 
the generation of organoids
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characterized the hepatic organoids culture system using 
hiPSC-derived EpCAM+ endodermal cells as an interme-
diate. The organoids could be produced within 14 days 
and expanded for more than 1 year without any loss in 
culture efficiency [61]. Notably, modification of the endo-
derm induction medium by adding R-spondin1, a well-
known Wnt signal potentiator, caused a 15–20% increase 
in the number of EpCAM+ cells. Moreover, there were 
no morphological changes among these EpCAM+ cell 
populations [61]. Thus, the protocol allows for efficient 
generation of endodermal progenitor populations. hiP-
SCs can be generated from various tissue sources, includ-
ing fibroblasts from skin [62, 63] and hematopoietic cells 
[64–66] or lymphocytes [67] from peripheral blood, and 
have been used in disease modeling. Human iPSC lines 
derived from peripheral blood T lymphocytes report-
edly differentiate into hepatocytes more efficiently than 
derived from adult dermal fibroblasts [68]. Kulkeaw et al. 
developed a simple and fast protocol to generate a func-
tioning human liver organoid from PSCs derived from 
peripheral blood CD34+ cells [69]. The level of ALB syn-
thesis in hepatic endoderm-derived organoids is higher 
than that in 2D culture, indicating a higher maturity of 
hepatocytes in liver organoids.

EpCAM+ HE cells can also produce expandable organ-
oids. Wang et al. developed a new method that relies 
on uniquely defined culture media to make a success-
ful shift from 2D to 3D cultures for generating human 
embryonic stem cell (hESC)-derived expandable hepatic 
organoids. The organoids exhibit bipotential traits for 
lineage restriction into functional hepatocytes and chol-
angiocytes and also show significant expansion potential 
for 20 passages [70]. A stepwise differentiation of hESCs 
into hepatocytes was induced through mimicking embry-
onic liver development. After 3 days of exposing cells to 
Activin A with Wnt3a for DE formation, the cells were 
further treated with BMP4 and FGF2 for another 5 days 
for their restriction into a hepatic specification lineage 
under conditions of monolayer cultures. At the end of the 
induction stage for hepatic stem cells, it was confirmed 
that most of the cells were positive for the well-known 
hepatic stem/progenitor cell markers including HNF4A, 
CK19, EpCAM, SOX9, AFP. After screening the culture 
conditions for formation of hepatic organoids, they were 
subjected to treatments with the combination of N2, B27, 
Nicotinamide, Gastrin, N-Acetylcysteine, EGF, Wnt3a, 
R-spondin 1, A83-01 and Forskolin. This resulted in the 
generation of organoids. Because of the Lgr5 indepen-
dence of HE, R-spondin 1 may be dispensable. EGF and 
Noggin may interfere with HE during organoid genera-
tion by promoting cholangiocyte specification during the 
fate determination of adult hepatic progenitor cells [71] 
and exert an inhibitory effect on hepatic specification 
during hPSC differentiation in vitro [72, 73]. Kim et al. 

showed that hPSC-derived HE organoid can be efficiently 
produced without EGF, Noggin, R-spondin 1 and prolif-
erated in the absence of R-spondin 1 and EGF. In differ-
entiated hPSC-derived hepatic organoids, discontinuing 
these factors can significantly improve liver function, 
especially the expression and activity of CYP450 [74]. 
Mun et al. developed a novel hPSC-derived HLCs organ-
oid that is critically advanced in terms of its generation 
method, functional performance, and applications [75]. 
In brief, fully characterized and integration-free hiPSCs 
or hESCs were differentiated in a stepwise fashion into 
DE-, HE-differentiated cells, immature hepatocytes, and 
mature hepatocytes. In genomic and functional analyses, 
the HLCs organoids manifested more mature phenotypes 
compared with those of 2D differentiated hepatocytes 
and tissue-derived liver epithelial organoids.

The following studies are concerned with the formation 
of hepatobiliary organoids (hHBOs). Guan et al. devel-
oped an in vitro model system where iPSCs differentiate 
into 3D hHBOs through stages that resemble human liver 
during its embryonic development. The organoids consist 
of hepatocytes, and cholangiocytes, which are organized 
into epithelia that surround the lumina of bile duct–like 
structures [76]. In brief, iPSCs were first dissociated into 
single cells and induced to form endoderm spheres in 
response to growth factors and chemicals added to the 
culture according to a modified protocol. The endoder-
mal spheres then formed posterior foregut-like structures 
when cultured in the presence of a low concentration 
(1–2%) of a Matrigel scaffold that supports the formation 
of 3D structures from stem cells, and by addition of vari-
ous concentrations of FGF10, which is known to promote 
the differentiation of foregut endoderm into hepatic and 
gallbladder cells during organogenesis. Organoids were 
self-renewing and could be matured to perform some 
hepatic functions, including glycogen storage, liver-spe-
cific drug metabolism, as well as albumin and bile secre-
tion. Wu et al. reported a method to generate functional 
hHBOs from hiPSCs. To achieve this goal, they learned 
from early hepatogenesis and simultaneously induced 
endoderm and a small part of mesoderm by the inclu-
sion of 25% mTeSR into hepatic differentiation medium 
[77]. Ramli et al. developed a protocol for generating 
hHBOs from hESCs by using developmental cues for gut 
and hepatoblasts formation [78]. The Organoids contain 
a functional biliary system that is disrupted by cholesta-
sis inducing drugs such as troglitazone. Shinozawa et al. 
developed a reproducible liver organoid protocol using 
stably expandable foregut cells from hPSCs [79]. They 
reported the high-throughput system to measure bile 
transport activity by live fluorescent imaging in the pres-
ence of testing compounds. And they found the informed 
sensitivity and specificity of the compounds was compa-
rable to previous studies [80–83]. Recently, Wang et al. 
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generated hiPSC-derived hHBOs composed of hepato-
cytes and bile ducts. They demonstrate that hHBOs reca-
pitulate the flow of bile containing fluorescent bile acid 
analogs or drugs from hepatocytes into bile ducts via bile 
canaliculi [84]. In addition, hHBOs exhibit pathophysi-
ological responses to troglitazone, such as cholestasis and 
cytotoxicity. Because hHBOs can recapitulate the func-
tion of bile ducts in hepatic bile duct clearance, they are 
suitable as liver disease models and will be novel in vitro 
platform systems for drug research use.

Multi-tissue liver organoids
Multi-tissue organoids are established through the co-
culture of cells derived from at least two germ layers or 
the co-differentiation of PSCs. During early liver organo-
genesis, newly specified hepatic cells delaminate from 
the foregut endodermal sheet and form a liver bud, a 
condensed tissue mass that is soon vascularized [85]. 
Such large-scale morphogenetic changes depend on the 
exquisite orchestration of signals between endodermal 
epithelial, mesenchymal and endothelial progenitors 
before blood perfusion [86]. Based on the above theory, 
Takebe et al. proposed that three-dimensional liver-
bud formation can be recapitulated in vitro by culturing 
hepatic endoderm cells with endothelial and mesenchy-
mal lineages [87]. They were able to obtain vascularized 
liver bud organoids that, after transplantation in mice, 
gave rise to mature hepatocytes. It suggested that the 
endothelial populations, have important roles in the 
successful maturation of the derived hepatocytes [88]. 
Among the paracrine soluble factors known to induce 
hepatic differentiation is HGF, which is produced by 
mesenchymal stem cells (MSCs) and human umbilical 
vein endothelial cells (HUVECs) [89–91]. Notably, when 
MSCs and HUVECs are cultured together, they specifi-
cally expressed a protein signature of hypoxic responses, 
including TGF-β-related factors. TGF-β stimulation of 
human hepatocytes has been reported to reduce albumin 
production and to interfere with hepatocyte maturation 
[92–94]. But the above study ignored that Kupffer cells 
and other non-parenchymal cells also could play a role in 
liver-bud formation.

Other approaches attempted the generation of liver 
organoids entirely from iPSCs-derived cells. Ouchi et al. 
developed a new organoid culture method by co-differen-
tiating epithelial and stromal lineages from PSCs. These 
multi-cellular human liver organoids coupled with free 
fatty acid (FFA) treatment recapitulate the progressive, 
step-wise nature of steatohepatitis-like pathology includ-
ing steatosis, inflammation and fibrosis, and could poten-
tially be used for drug screening by analysis of organoid 
stiffness [95]. Kim et al. reported that multilineage liver 
organoids with luminal blood vessels and bile ducts were 
generated by assembling hepatic endoderm, hepatic 

stellate cell-like cells, and endothelial cells derived 
entirely from hPSCs [96]. Previous studies reported that 
the presence of mesodermal progenitor [97–99] or peri-
cytes [100, 101] is critical for vasculature formation in 
various organoids. In particular, recent organoid stud-
ies have begun to use assembloids that are produced by 
combining multiple organoids, each resembling different 
tissues, to obtain a better understanding of the cross-
talk between different tissues in pathological conditions 
[102–107]. Therefore, in vitro generation of luminal 
vascular structures is crucial for producing usable liver 
organoids from both biological and technical aspects.

Bioengineered liver organoids
Liver bioengineering stands as a prominent alternative 
to conventional hepatic transplantation. At present, the 
main methods used are employing different sources of 
liver cell types (primary cells, immortalized cell lines and 
liver cells-derived stem cell) to create different bioengi-
neered 3D liver culture system.

Liver-on-a-Chip
The basic materials of liver-on-chips include synthetic 
polymers and hydrogels. usually require an appropriate 
flow rate, pH, and temperature. These parameters depend 
on many auxiliary controls for regulation. Auxiliary con-
trols include biosensors, micropumps, scaffolds, bionic 
membranes, and electrodes [108]. Liver-on-a-Chip 
has been successfully applied in liver toxicity research, 
disease modeling. Liver-related drug metabolism is a 
key aspect of pharmacokinetics and possible toxicity. 
Fanizza et al. developed a liver chip based on hiPSCs 
[109]. It interconnects iPSC-derived liver cells (iHep) 
and endothelial cells (iEndo) for cultivation to simulate 
the structure of liver sinuses. It is used for the evaluation 
of donepezil as a drug for Alzheimer’s disease and liver 
toxicity screening. Wang et al. proposed a new strategy 
to establish a human non-alcoholic fatty liver disease 
(NAFLD) model based on a hiPSC-derived liver organ-
oids-on-a-chip system [110]. The chip can characterize 
the pathological features of NAFLD in liver organoids by 
exposure to FFA. After FFA induction, liver lipid drop-
lets and triglycerides form, and the expression of genes 
related to lipid metabolism is upregulated. Furthermore, 
other studies showed that microfluidic devices and tis-
sue-derived ECM promoted structural and functional 
maturation of organoids that recapitulate key features of 
the liver [111–116]. They show that the potential of liver-
on-chips as an advanced in vitro model that holds prom-
ise for accurately studying in vivo biological processes.

3D bioprinting technology
3D bioprinting provides an effective strategy for replicat-
ing the native liver microenvironment at both structural 
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and functional levels, allowing for the recreation of liver 
lobule microstructures and enhancing the metabolism 
of HLCs [117]. At present, 3D printing technology is 
developing rapidly, making it convenient for the produc-
tion of 3D structures, especially for the research of liver 
diseases and drug screening [118–122]. Several authors 
reported the generation of hepatic spheroids and shown 
sustained and enhanced cellular phenotype, metabo-
lism and prolonged survival in culture in comparison 
with conventional bidimensional cultured hepatocytes 
[123–126]. Goulart et al. successfully bioprinted iPSC-
derived liver spheroids using bioink extrusion of an algi-
nate/pluronic blend [127]. This resulted in increased urea 
synthesis, extended albumin secretion, and elevated gene 
expression of phase one metabolism enzymes. Sphab-
mixay et al. reported the first long-term culture of pri-
mary hepatocytes at mesoscale in an 3D printed scaffold 
[128]. Koch et al. pioneered the laser printing of HLCs, 
underscoring the relevance of suitable hydrogels and sols 
for cell maintenance and function [129]. Recently, Shres-
tha et al. developed a unique microarray 3D bioprinting 
solutions, place the progenitor cells in the bionic hydro-
gels with sidewalls and plate slit, and is equipped with a 

transparent at the bottom of the 384 deep hole plate, in 
order to expand the human liver organoids production 
[130]. Microarray 3D bioprinting is a drop-based printing 
technique for generating large quantities of small organ-
oids on pillar plates for predictive hepatotoxicity analy-
sis. Despite great potential, bioprinting hiPSC-derived 
hepatocytes is still a major challenge due to difficulties in 
preserving parenchymal epithelial phenotype in the 3D 
neo-environment post-printing. Given the early stage of 
this technology in 3D bioprinting, addressing the chal-
lenges of vascularization, reproducibility, and scalability 
requires further model optimization.

Applications of liver organoids
The self-renewing properties of organoids and the pos-
sibility to expand iPSCs and cells differentiated from 
iPSCs make organoids a promising model for basic and 
translational research. They have been used for the study 
of regenerative medicine, drug screening, toxicology and 
disease modeling. Moreover, it is possible to generate 
biobanks of healthy or diseased human organoids mak-
ing this technology a significant source for future studies 
(Fig. 2).

Fig. 2 Liver organoids cover a broad range of biomedical applications including regeneration medicine, drug screening, toxicity test and disease 
modeling
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Regenerative medicine
Currently orthotopic liver transplantation (OLT) is the 
only effective treatment for end-stage hepatic failure 
[131]. However, organ shortage remains as the major 
shortcoming for transplantation globally. Because of graft 
shortages, alternative treatments for OLT have received 
significant research attention. The expansion and dif-
ferentiation potential of liver organoids makes these 
an alternative source of functionally mature and easily 
expandable cells for transplantation, overcoming the cur-
rent limitations (Table 2).

The first evidence of the applicability of liver organoids 
goes back to 2013, when Huch et al. reported that mice 
Lgr5+ liver stem cell-derived organoids can be trans-
planted into Fah−/− mutant mice (tyrosinemia type I 
liver disease models) to explore the therapeutic effect of 
organoids. The survival of mice has increased 2 months 
after transplantation [20]. Further, Huch et al. trans-
planted human EpCAM+ ductal cell-derived organoids 
into Balb/c nude mice treated with CCl4 to induce acute 
liver damage. Human ALB and A1AT were found in 
serum of recipient mice within 7–14 days at a level that 
remained stable for more than 120 days. Notably, the 
levels of ALB produced by PHHs transplantation were 
approximated compared with human organoids trans-
plantation within one month [21]. Hu et al. established 
PHH-derived organoids which were transplanted into 
immunodeficient Fah−/− NOD Rag1−/−Il2rg−/− mice by 
splenic injection. For the first 30 days after transplanta-
tion human ALB in mouse circulation remained stable. 
90 days after transplantation, serum ALB had risen 200-
fold to more than 200  µg/ml on average [22]. Peng et 
al. recently reported that mice PHH-derived organoids 
have high engraftment capacity. The mice were sacri-
ficed at 103 days after transplant. Immunohistochemis-
try and immunofluorescence for FAH showed significant 
engraftment (up to 80%) in the Fah−/− mutant mice [23]. 
Takebe et al. showed the generation of vascularized and 
functional human liver from hiPSCs by transplantation 
of liver buds created in vitro. Transplanted hiPSC- liver 
buds began producing albumin at approximately day 
10 and produced up to 1,983 ng/ ml by day 45. Notably, 
transplanted conventional hiPSC-derived organoids pro-
duced much less albumin, suggesting the importance 
of 3D and vascularized tissue formation for successful 
engraftment and maturation at ectopic sites [87]. These 
findings showed that liver organoids have potential uses 
in regenerative medicine (Table 2).

Toxicity test
Drugs or their intermediary metabolites can have a toxic 
effect on the liver, making drug induced liver injury the 
leading cause of acute liver failure in the United States 
alone and the major reason for drug withdrawal from the 

market [132]. The search of in vitro models that could 
predict liver primary toxicity has been so far a chal-
lenge. PHHS are considered the “gold standard” for drug 
metabolism and drug toxicity screening, but their avail-
ability still depends on the human donor and whether 
their phenotype and metabolic functions are unstable 
under long-term culture conditions, which varies from 
batch to batch. The emergence of liver organoids partially 
solves the above problems. Shinozawa et al. successfully 
developed an organoid based assay with multiplexed 
readouts measuring viability, cholestatic and/or mito-
chondrial toxicity with high predictive values for 238 
marketed drugs at 4 different concentrations (Sensi-
tivity: 88.7%, Specificity: 88.9%). Liver organoid-based 
toxicity screen positively predicts genomic predisposi-
tion (CYP2C9*2) for Bosentan-induced cholestasis [79]. 
Moreover, “liver-on-a-chip” can represent a platform 
for drug development and toxicology tests also allow-
ing for pharmacokinetic and pharmacodynamic studies. 
Wang et al. present a new strategy for engineering liver 
organoids derived from hiPSCs in a 3D perfusable chip 
system by combining stem cell biology with microengi-
neering technology. The liver organoids exhibited hepa-
totoxic response after exposure to acetaminophen in a 
dose- and time-dependent manner [133]. Recently, Kim 
et al. described a method of optimizing the cultivation of 
this method can significantly increase the expression and 
activity of CYP450s in hepatic organoids, especially the 
CYP3A4, CYP2C9 and CYP2C19 [134]. In addition, they 
proposed a simple protocol for the assessment of hepatic 
organoids cytotoxicity, one of the symbols of drug-
induced acute hepatotoxicity. Circadian clocks coordi-
nate the daily rhythmicity of biological processes, and 
their dysregulation has been implicated in various human 
diseases. Zhou et al. utilized microfluidics and 3D print-
ing to construct a “Chronotoxici-plate”: a 96-well plate 
filled with rhythmically synchronized droplet-engineered 
primary liver organoids [135]. This system enables the 
assessment of oxaliplatin chrono-therapy toxicity within 
a week.

Drug screening and personalized therapies
The tumor organoid culture preserves intratumor het-
erogeneity [136] and the tumor microenvironment [137]. 
Consequently, organoids may be better suited for drug 
screening than cancer cell lines; in addition, organoids 
are significantly cheaper and more efficient than murine 
tumor models. Organoids have also been applied as the 
platform to evaluate drug efficacy, opening the doors for 
precision oncology (Table 2).

Broutier et al. demonstrate primary liver cancer (PLC) 
-derived organoids are amenable for drug screening using 
29 drugs and lead to the identification of the ERK inhibi-
tor SCH772984 as a potential therapeutic agent for PLC, 
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which was validated in xenograft models [138]. Intratu-
mor genetic heterogeneity has been demonstrated in sev-
eral cancers [139–143]. Li et al. first report intratumor 
drug response heterogeneity in any solid human cancer. 
They evaluated the functional heterogeneity in a cohort 
of PLC organoids. For this purpose, a total of 27 liver 
cancer organoids were established and tested with 129 
cancer drugs, generating 3,483 cell survival data points 
[144]. Saito et al. successfully screened 22 compounds 
that were able to significantly suppress intrahepatic chol-
angiocarcinoma (IHCC) organoids from a group of 339 
medicines already in clinical use. Their results indicated 
that nutlin-3a, an inhibitor of MDM2, could be a poten-
tial therapeutic drug for refractory cancers harboring 
wild-type TP53. Their results also suggested that antifun-
gal drugs such as amorolfine and fenticonazole could be 
promising therapeutic drugs against IHCC [145]. Inter-
and intra-tumor heterogeneity is a major obstacle to the 
precision treatment of PLC. Recently, Yang et al. gener-
ated a PLC biobanking consisting of 399 tumor organoids 
from 144 patients that recapitalized the histopathology 
and genomic landscape of parental tumors and could be 
used for drug susceptibility screening, as demonstrated 
by both in vivo models and patient responses [146]. This 
study warrants future clinical studies to accelerate preci-
sion medicine for HCC.

Disease model
The possibility of obtaining liver organoids from adult 
tissues and cell reprogramming through patient-derived 
cells has led to their application in disease model. Patient-
derived organoids preserve an individual’s genetic back-
ground, including disease-causing mutations, allowing 
them to be applied in personalized medicine and drug 
efficiency studies. In addition, by using gene editing, 
it is possible to introduce pathological mutations in 
healthy samples to assess their role in pathogenesis and 
responsiveness to treatment. All of these disease mod-
els are ultimately compatible with the generation of liver 
organoids, paving the way for several further genetic dis-
ease applications. In any case, it is conceivable that cer-
tain disease gene mutations may interfere with organoid 
development. Below we will present advances in liver dis-
ease model with organoid culture systems (Table 3).

Monogenic diseases
While the prevalence of most diseases caused by single-
gene mutations is low and defined as rare, single-gene 
diseases account for about 10 per 1,000 births, according 
to the World Health Organization [147].

Cystic fibrosis (CF) is a genetic disease caused by muta-
tion in the gene encoding the Cystic Fibrosis Transmem-
brane Conductance Regulator (CFTR). Mutations in the 
CFTR gene impair cholangiocyte chloride transport, 

leading to a lack of alkalinisation and subsequent block-
age of biliary ducts in the liver [148]. Ogawa et al. showed 
that functionally impaired hPSC-derived cholangiocytes 
from cystic fibrosis patients are rescued by CFTR cor-
rectors [149]. In cholangiocytes, CFTR is expressed at 
the apical membrane and responds to hormone stimula-
tion by increasing cAMP intracellular levels resulting in 
chloride ions efflux in the bile duct lumen. Cholangio-
cyte organoids generated from iPSCs of patients with CF 
carrying the most common mutation in CFTR (ΔF508) 
could also be used to model CF in vitro. Sampaziotis et 
al. also showed that the experimental CF drug VX809 
rescues the disease phenotype of CF cholangiopathy in 
vitro [150].

A1AT deficiency is caused by mutation in SERPINE1 
which lead to the accumulation of misfolded A1AT in 
hepatocytes, endoplasmic reticulum stress, low circulat-
ing levels of A1AT and liver disease. A1AT is mainly pro-
duced by the liver and has a crucial role in protecting the 
lungs from proteolytic damage by regulating the elastase 
activity of macrophages. Its deficiency results in pulmo-
nary and liver diseases [151]. Functional tests revealed 
that the differentiated cells from A1AT patients secreted 
high levels of Albumin and take up LDL similar to that of 
healthy donor-derived organoid cultures and A1AT pro-
tein aggregates were readily observed within the cells of 
the differentiated organoids, similar to what was found in 
the original biopsy [21].

Alagille syndrome is caused by mutations in human 
Jagged1, which encodes a ligand for Notch1 [152]. Ander-
sson et al. demonstrated that expression of a missense 
mutant of Jag1 disrupts bile duct development and reca-
pitulates Alagille syndrome phenotypes in heart, eye, and 
craniofacial dysmorphology in mice [153]. Guan et al. 
demonstrated that the mutations (Cys829X and ALGS2) 
found in subjects with severe liver disease impaired 
organoid development, when different JAG1 mutations 
were engineered onto the same genetic background 
[76]. The results indicate how this organoid system and 
genome editing can be jointly used to determine how 
human disease–causing mutations affect organ develop-
ment and the pathogenesis of human genetic diseases.

Wilson’s disease (WD) is an inherited, autosomal reces-
sive disorder of copper metabolism, originating from 
a genetic defect in the copper-transporting ATPase 
ATP7B, that is required for biliary copper excretion 
and loading of ceruloplasmin and other cupro-enzymes 
with copper [154]. The worldwide most common muta-
tion, found in the majority of WD carriers in Europe and 
USA, is H1069Q. Nantasanti et al. demonstrated that 
successful gene supplementation in hepatic organoids of 
COMMD1-deficient dogs restores function and can be 
an effective means to cure copper storage disease [155]. 
Kruitwagen et al. provided preclinical proof of concept 
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of the potential of cell transplantation in a large animal 
model of inherited copper toxicosis, such as Wilson’s 
disease. This preclinical study confirms the survival of 
genetically corrected autologous organoid-derived HLCs 
in vivo and warrants further optimization of organoid 
engraftment and functional recovery in a large animal 
model of human liver disease [156].

Citrullinemia type 1 (CTLN1), also known as Argino-
succinate Synthetase Deficiency, is a genetic disease 
caused by mutations in the enzyme Arginosuccinate syn-
thetase (ASS1) [157]. In patients, ASS1 mutation causes 
accumulation of ammonia and decreases ureagenesis. 
The healthy donor-derived organoids had significantly 
less ammonia compared with CTLN patient organoids 
while re-expression of wild-type ASS1 in CTLN organ-
oids rescued this defect. These data indicate that hepatic 
organoids can faithfully recapitulate the urea cycle-
related disease phenotype, and restoration of gene func-
tion can be carried out in the organoids model [61].

Steatohepatitis
NAFLD has emerged as the most common cause of 
chronic liver disease [158, 159]. NAFLD encompasses 
a spectrum of disease ranging from simple steatosis, to 
NASH, through to the development of cirrhosis and HCC 
[160–162]. Recently, Wang et al. developed a derivative 
model by incorporating human fetal liver mesenchymal 
cells into the expandable hepatic organoids, which can 
model alcoholic liver disease-associated pathophysiologic 
changes, including oxidative stress generation, steatosis, 
inflammatory mediators release and fibrosis, under etha-
nol treatment [70].

Typically, in the literature, the most common FFA used 
to induce steatosis in vitro are either oleate (18:1) and/or 
palmitate (16:0) which are used alone or in combination 
[163–166]. In vitro models offer the ability to perform 
investigations at a cellular level, aiding in elucidating the 
molecular mechanisms of NAFLD. However, a number of 
current models do not closely resemble the human con-
dition [167]. Ouchi et al. used 11 different healthy and 
diseased PSC lines to develop a reproducible method to 
derive multi-cellular human liver organoids composed of 
hepatocyte-, stellate- and Kupffer-like cells that exhibit 
transcriptomic resemblance to in vivo derived tissues. 
Under FFA treatment, organoids, but not reaggregated 
cocultured spheroids, recapitulated key features of ste-
atohepatitis including steatosis, inflammation and fibro-
sis phenotypes in a successive manner [95].

Liver infections
Therapies against viral hepatitis have improved in recent 
decades; however, the development of individualized 
treatments has been limited by the lack of individual-
ized infection models. Nie et al. demonstrated that HBV 

infection in hiPSC-liver organoid could recapitulate virus 
life cycle and virus induced hepatic dysfunction, sug-
gesting that hiPSC-liver organoid may provide a promis-
ing individualized infection model for the development 
of individualized treatment for hepatitis [168]. Baktash 
et al. have showed differentiated liver organoids retain 
the innate immune responses and maintain cell polarity 
of hepatocytes, recapitulating the natural entry of HCV 
and allowing their cell-to-cell transmission [169]. Fur-
thermore, hPSC-derived cells/organoids provide valu-
able models for understanding the cellular responses of 
human tissues to SARS-CoV-2 infection and for disease 
model of COVID-19 [170].

Liver cancer organoids
PLC is the sixth most commonly diagnosed cancer and 
the third leading cause of cancer death worldwide in 
2020, with approximately 906,000 new cases and 830,000 
deaths. PLC includes HCC (comprising 75-85% of cases) 
and intrahepatic cholangiocarcinoma (10-15%), as well 
as other rare types [171]. For decades, research into 
PLCs depended on 2D cell culture systems and trans-
genic mouse models. While these have proven use-
ful to advance our understanding of the disease, both 
approaches are markedly limited. Despite their broad 
utility, they suffer from significant shortcomings such 
as the lack of 3D growth and the absence of genetic 
heterogeneity. A better representation of human HCC 
features could be achieved with the generation of patient-
derived xenograft (PDX) models following transplanta-
tion of HCC tissue into immunodeficient mice [172]. 
These models offer great advantages as they preserve the 
genetic and histologic features of the primary tumor as 
well as tumor-stroma interactions, making them prom-
ising tools for preclinical drug development and evalua-
tion [173]. However, while PDXs show great translational 
potential to direct treatment in a patient-tailored man-
ner, this strategy has several drawbacks: PDXs are not 
amenable to large-scale drug screens, are costly and can 
take a considerable amount of time to establish. The 
organoid technology could overcome limitations of can-
cer cell lines and PDX models because it combines the 
advantages of both systems. Indeed, the generation of 
patient-derived cancer organoids has been a major break-
through in cancer biology.

Tumor organoids can be grown with high efficiency 
from patient-derived tumor tissues, potentially enabling 
patient-specific drug testing and the development of indi-
vidualized treatment regimens [174]. Broutier et al. dem-
onstrated that PLC-derived organoids are amenable for 
biomarker identification and drug screening testing and 
lead to the identification of the ERK inhibitor SCH772984 
as a potential therapeutic agent for PLC [138]. In a paral-
lel study, Nuciforo et al. showed that organoid models can 
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be derived from needle biopsies of liver cancers and pro-
vide a tool for developing tailored therapies [175]. Simi-
larly, Cao et al. successfully used the generated organoids 
to assess anticancer drug responses, showing again that 
liver cancer organoids recapitulate the heterogeneous 
therapeutic responses that are observed in patients [176]. 
PDO liver tumoroids are also widely used to characterize 
the molecular mechanisms leading to tumor progression. 
For instance, Chan et al. demonstrated that silencing of 
protein methyltransferase 6 (PRMT6) induced cancer 
stemness in HCC-derived PDOs. Further analysis sug-
gested that PRMT6 functions via CRAF-ERK signaling 
[177]. In a follow-up study, Wong et al. indicated that 
the PRMT6-ERK-PKM2 regulatory axis is an impor-
tant determinant of the Warburg effect in tumor cells, 
and provide a mechanistic link among tumorigenicity, 
sorafenib resistance, and glucose metabolism [178]. Zhao 
et al. generated seven hepatobiliary tumor organoids to 
explore heterogeneity and evolution via single-cell RNA 
sequencing. The delineates heterogeneity of hepatobiliary 
tumor organoids and proposes that the collaboration of 
intratumoral heterogenic subpopulations renders malig-
nant phenotypes and drug resistance [179].

To model cancer, organoids derived from healthy iPSCs 
or normal tissues can be used, and cancer gene mutations 
can be induced by CRISPR/Cas9 system. In particular, a 
recent study has demonstrated that the combination of 
BAP1 loss-of-function mutation and cholangiocarcinoma 
mutations (TP53, PTEN, SMAD4, and NF1), induced by 
CRISPR/Cas9 in normal liver organoids, can affect epi-
thelial tissue organization and cell-to-cell junctions, 
resulting in the acquisition of malignant features [180]. 
Therefore, organoid technology combined with CRISPR/
Cas9 provides an experimental platform for mechanistic 
studies of cancer gene function in a human context.

Conclusions
Liver organoid models are increasingly being incorpo-
rated into biomedical research due to their many advan-
tages. While significant progress has been made in this 
area, some limitations remain. First, the differentiation 
protocol needs to be improved to achieve higher cell 
maturity and correct representation of hepatocyte types, 
thus increasing the complexity level to more accurately 
mimic pathophysiological processes. Second, develop 
new bioengineering methods to ensure the reproduc-
ibility of liver organoid composition and function. This 
goal is fundamental to advancing the liver organoid drug 
discovery and preclinical testing pipeline. Finally develop 
improved synthetic biomaterials to obtain animal-free 
culture systems that can be safely applied in regenera-
tive medicine in the future. One limitation is that classi-
cal organoids are produced by primary tissue biopsies, so 
the main proliferating cell type is tissue-derived epithelial 

cells. Tissue-derived organoids are simpler in structure 
and consist primarily of epithelial cells. However, these 
organoids rely heavily on access to target tissues, which 
are often scarce and therefore an unreliable source of 
large-scale organoid research. Although hepatocytes are 
the main building blocks of the liver, it is important not 
to forget the other cells that contribute to the complex 
structure of the liver.
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