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Abstract: Urban sprawl can negatively impact the archaeological record of an area. In order to study
the urbanisation process and its patterns, satellite images were used in the past to identify land-use
changes and detect individual buildings and constructions. However, this approach involves the
acquisition of high-resolution satellite images, the cost of which is increases according to the size
of the area under study, as well as the time interval of the analysis. In this paper, we implemented
a quick, automatic and low-cost exploration of large areas, for addressing this purpose, aiming to
provide at a medium resolution of an overview of the landscape changes. This study focuses on using
radar Sentinel-1 images to monitor and detect multi-temporal changes during the period 2015–2020
in Limassol, Cyprus. In addition, the big data cloud platform, Google Earth Engine, was used to
process the data. Three different change detection methods were implemented in this platform as
follow: (a) vertical transmit, vertical receive (VV) and vertical transmit, horizontal receive (VH)
polarisations pseudo-colour composites; (b) the Rapid and Easy Change Detection in Radar Time-
Series by Variation Coefficient (REACTIV) Google Earth Engine algorithm; and (c) a multi-temporal
Wishart-based change detection algorithm. The overall findings are presented for the wider area of
the Limassol city, with special focus on the archaeological site of “Amathus” and the city centre of
Limassol. For validation purposes, satellite images from the multi-temporal archive from the Google
Earth platform were used. The methods mentioned above were able to capture the urbanization
process of the city that has been initiated during this period due to recent large construction projects.

Keywords: change detection; multi-temporal analysis; heritage management; Sentinel-1; Google
Earth Engine; remote sensing archaeology; urban sprawl; vertical sprawl

1. Introduction

Cultural heritage monuments and landscapes are threatened by various anthropogenic
and natural hazards [1–3], including urbanization. Despite the urbanisation process being
considered a relatively slow process compared to earthquakes and other hazard events
that can have an immediate impact on cultural heritage sites, several studies indicated that
urban sprawl can similarly impact the archaeological record of an area in the long term [4,5].
In addition, as [6] argue, new global challenges are expected in terms of balancing cultural
heritage conservation and addressing the requirements of the urbanization process.

However, the difficulty to assess the impact of the urban sprawl is related on one hand
to the nature of the hazard, which is a result of a complex set of interrelated socioeconomic
and cultural forces, while on other hand, the urbanization process which can last for several
years. Based on the outcomes of the “Copernicus Services in Support to Cultural Heritage”
report [7], nine domains have been identified as high-level user needs. Among them, three
domains include the (a) monitoring of the evolution of the environment of the cultural
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heritage site; (b) the mapping of the cultural landscape of the site and the identification
of specific risk; and (c) the observation of changes of a cultural heritage site. Therefore, in
order that local stakeholders understand the impact of the urbanization, multi-temporal
analyses from available data sources are necessary. In this respect, earth observation sensors
and satellite images are considered fundamental to tackle this issue.

The technological improvements observed in recent years in the domain of earth
observation and big data image analysis have benefited a wide range of remote sensing
applications allowing time-series analysis. A scientific literature overview indicates the
continuous increase in studies dealing with new satellite sensors and big-data analysis
using cloud-based platforms [8–11].

During the last decade, the European Copernicus Programme [12] has been considered
a milestone of the Earth Observation’s history. During this decade (2010–2020) and under
the Copernicus Programme, the Sentinel-1A and -1B radar sensors have been launched
and set into orbit, providing medium spatial resolution radar images at a high-temporal
revisiting time [13]. In parallel, national-driven, and commercial big-data cloud platforms
have been released, ready to explore the available freely distributed amount of satellite
imageries [14,15]. For several research themes, the processing of multi-temporal Sentinel-1
datasets through cloud-based platforms has been well introduced in the recent past [16,17].
Nevertheless, in other themes, the benefit of this technological shift is still under-examined.

Specifically for heritage management, while earth observation has been well intro-
duced in the literature, the majority of these studies are focused on the exploitation of
a limited number of high-resolution optical sensors [18–21] with some noticeable excep-
tions [22,23]. Even fewer studies are found in the literature to be dealing with the use of
radar sensors at a medium resolution [24,25]. Indeed, the use of the Copernicus Sentinel-1
radar sensor [26] is still limited for heritage management applications, with exceptions in
the application of interferometric synthetic-aperture radar (In-SAR) analysis [27,28]. This
is well reported in [29] where the coarse spatial resolution of the radar data and the signal
interference limits the potential use of the Sentinel-1 sensor.

Consequently, in contrast to the optical processing chain, radar sensor big data multi-
temporal applications are still rare for heritage management. Therefore, there is a need
to evaluate the utility of the freely distributed radar images provided by the Sentinel-1
sensors, in the context of heritage management over extensive areas.

Here, we present a multi-series analysis of radar images, through big data cloud
platform to map landscape changes in a quick and automatic procedure, thus allowing
local stakeholders to visualize the impact and the changes related to the urban sprawl.
While, due to the resolution of the images, individual buildings cannot be detected, it is
important to have such low-cost exploration tools for a quick assessment of the landscape
changes. For this study’s aims, available Sentinel-1 images from Google Earth Engine were
processed, covering a period of five-years (2015–2020) and selecting the city of Limassol, in
Cyprus, as a case study area. The overall results were then compared with high-resolution
Google Earth historical images.

2. Case Study

In Cyprus, the urbanisation process has been documented in the past though remote
sensing sensors. For instance, in the Paphos District, an increase of 300% of the urban
footprint was mapped after analysing Landsat images through supervised classification
analysis over 30 years (1980–2010) [30]. This urban expansion was mainly observed in
the western part of the Paphos city; however, the rest of the island cities have shown a
similar trend. During this period, archaeological rescue excavations revealed significant
archaeological records, like the Hellenistic and Roman tombs in Paphos [31,32], underlining
the numerous subsurface wealth of archaeological findings of the island.

In recent years, urbanisation and development patterns have changed on the island.
After the economic crisis that hit Cyprus in 2012, the construction industry was considered
a central pillar for its future economic growth. Since 2015 and based on the statistics [33],
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land development was supported through large constructions, the so-called high towers,
and other development projects beyond the human scale. This is a phenomenon known in
the literature as vertical sprawl.

While these developments were a phenomenon that has been reported during the
period 2015–2020 all over the island, Limassol city was by far the most affected. More than
30 high towers have been constructed or are currently under construction within the city,
and near the Amathus archaeological site.

Despite the fact that this new type of construction project (i.e., high towers) can be
considered as a sustainable solution, since it can open up the surrounding rural space [34],
in cities like Limassol, the new constructions are built on the few empty plots of the city
remaining. Sometimes, smaller older buildings were demolished to secure free space.
Other areas in the suburbs of the city near archaeological sites have been selected for these
construction projects.

During this new construction wave, archaeologists have been struggling against
time, to perform rescue excavations over large areas. Archaeological findings are used to
support local authorities’ arguments, in modifications and adjustments of the architectural
designs of the high towers. Indeed, non-systematic archaeological excavations have been
performed by the local stakeholders (Department of Antiquity of Cyprus) to rescue and
record the archaeological findings. In this attempt, the geophysical prospection and
archaeological investigations have been performed to support local stakeholders and
record the archaeological landscape (Figure 1).

Figure 1. (a) New constructions at the eastern part of the Amathus archaeological site indicated with
an arrow. (b) New areas developed, in the eastern part of the Amathus site, whereas geophysical
prospection surveys have been carried out by the Laboratory of Geophysics—Satellite Remote Sensing
and Archaeoenvironment, Institute for Mediterranean Studies (IMS), Foundation for Research and
Technology Hellas (FORTH) (photos taken in 2015).

A historical overview of the urban expansion of the Limassol city is shown in Figure 2.
Available aerial images (orthophotos) distributed by the Department of Land and Survey-
ors, Cyprus [35], have been imported as a Web Map Service (WMS) in a Geographical
Information System (GIS) environment (ArcGIS v.10.6). Figure 2a shows the orthophoto of
1963 over the Amathus archaeological site (with a yellow rectangle) and its surrounding
area; Figure 2b shows the same area from the aerial photo of 1993; Figure 2c the area
as depicted from the orthophoto of 2014 and Figure 2d a recent satellite image from the
ArcGIS online database. As shown in Figure 2, urban areas are observed in the western
and eastern parts of the archaeological site, while new construction developments have
also been mapped in the northern part of the site.
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Figure 2. A diachronic overview of Limassol city, Cyprus, using archive aerial and satellite images.
The archaeological site of Amathus is shown with a yellow rectangle: (a) orthophoto image of 1963;
(b) orthophoto image of 1993; (c) orthophoto image of 2014; and (d) a recent satellite image from
ArcGIS online database (source of aerial orthophotos: Department of Land and Surveyors).

3. Materials and Methods

In this study, the Google Earth Engine cloud platform was used [14]. The platform
allows researchers to access various satellite-based products and satellite images, sup-
porting large-scale remote sensing applications. As the specific platform enables the free
programmatic access to a list of satellite data, with continual updates, several researchers
have released in the recent past new algorithms exploiting the benefits of this platform [36].

The latest can assist other researchers with limited background programming skills
to take into advantage of the Google Earth Engine platform and satellite data availability
by either implementing or modifying existing algorithms. In this study, we focused on
three different change detection methods using the free and open distributing Copernicus
Sentinel-1 images. Sentinel-1 sensors provide dual-polarisation C-band Synthetic Aperture
Radar (SAR) images. Sentinel-1 collection at Google Earth Engine includes Ground Range
Detected (GRD) scenes that are processed using the Sentinel-1 Toolbox to generate a
calibrated, ortho-corrected products [37].

Figure 3 shows the overall methodology implemented here. At first, Sentinel-1 GRD
data were selected and then filtered to cover 2015–2020 over the Limassol city. It should
be mentioned that during this period, Sentinel-1 has become available and the large
constructions have been populated over the Limassol city.

In the beginning, a red–green–blue (RGB) pseudo colour visualisation was produced
using the VV (vertical transmit, vertical receive) and the VH (vertical transmit, horizontal
receive) polarisation images based on the multi-temporal Sentinel-1 dataset. All images
are radiometrically corrected, as shown in Figure 3 (left). The visualisation products were
used as a first proxy to detect new areas of changes.
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Figure 3. The overall methodology implemented in the current study, where: REACTIV corresponds to the “Rapid and Easy
Change Detection in Radar Time-Series by Variation Coefficient” algorithm, VV to the “vertical transmit, vertical receive
polarisation, VH to the “vertical transmit, horizontal receive polarisation”, GRD to the “Ground Range Detected” and CV to
the “coefficient variation”.

At a second step, the so-called Rapid and Easy Change Detection in Radar Time-Series
by Variation Coefficient (REACTIV) algorithm [38,39] was implemented at the Google Earth
Engine. The REACTIV script can be found in [40]. The specific algorithm visualises a stack
of multi-temporal Sentinel-1 SAR images based on the hue–saturation–value (HSV) colour
transformation [see more on 41]. The VV and VH Sentinel-1 were used for this purpose in
both ascending and descending orbits. The hue component encodes the dating information
of the event (change). For this purpose, the time index of maximum signal value for the
pixel across all polarisations is estimated. The time difference between the maximal time
index and the time index (event) is calculated divided by the maximal and minimal time
index difference. Then, the results are rescaled between 0 and 1. The saturation component
indicates the changing intensity. Significant changes are highlighted with saturated colour,
while low saturation indicates areas with no or minimum observation period changes. Last,
the value component represents the input signal’s maximum value over both Sentinel-1
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polarisations (VV and VH). As argued by [41], the value component does not provide
sufficient details for change; however, it is used to improve the overall visualisation.

Finally, at the third step, a change detection statistical analysis of the multi-temporal
Sentinel-1 series was implemented. Measuring the bitemporal changes between the all-
possible pairs of the Sentinel-1 images would eventually provide a high false positive rate.
For instance, for the year 2018 (2018-01-01 until 2018-12-31), 56 Sentinel-1 images were
accessible through the Google Earth Engine. The false positive error can be up to 42%,
for a given a = 0.01, considering that these individual pairs are statistically independent
(false positive error = 1 − (1 − 0.01)56 − 1). For this reason, Ref. [42] have proposed a
multi-temporal Wishart-based change detection algorithm. Three new change detection
indicators can be estimated after the application of this algorithm: the so-called “cmap”
that indicates the interval (time) of the most recent change, the “smap” that implies for the
interval of the first change, and the “fmap” that shows the number of changes during the
observation period. In addition, changes for each interval can be generated (“bmap”).

The overall results from these three different techniques are then compared with multi-
temporal high-resolution RGB satellite data from the Google Earth platform. Significant
changes are mapped in the ArcGIS (v.10.6) Geographical Information System (GIS) software.
Further cross-evaluation of the above products was also carried out, including masking
non-urban areas from classified Sentinel-2 image.

4. Results

This section presents the results from the overall analysis of the Sentinel-1 datasets
using the three change detection techniques as described above and shown in Figure 2.

4.1. Visual Interpretation of VV and VH Polarisations

Initially, a visual interpretation of VV and the VH polarisation of the Sentinel-1 images
over the area of Limassol was performed. Both ascending and descending orbits were used
to create a pseudo-colour composite that can enhance the urban footprint as described
in [43]. An RGB pseudo colour composite for the years 2015–2020 was created as follows:
red for the VV polarisation, green for the VH polarisation, and blue for the ration of the
VV/VH polarisations. In addition, the difference between the annual datasets of 2020 and
2015 were estimated. The finals results are shown in Figure 4.

Areas indicated in bright colour, in Figure 4, suggest a significant change in the
polarisation signal during the period 2015–2020. Changes are observed within the Limassol
city and its surrounding area. While on the western outskirts of Limassol these changes
are fewer, a significant number of changes can be observed both in the centre of the city
(Figure 4) and at the Amathus archaeological site (see yellow squares no. 7 and no. 8,
Figure 4). Most of the land-use changes are also recorded along the seafront of the city,
starting from the so-called “Old-Port” of the city (Figure 4) until the eastern part of the city,
and near to the Amathus site (Figure 4).

A closer look at selected areas located in the broader area of Limassol city indicated in
Figure 4 with yellow squares (no. 1–no. 8), is provided in Table 1. Screenshots from the
Google Earth digital globe were exported, using: (a) the most recent satellite RGB image
of the area (date of acquisition: 12 September 2020) and (b) the satellite image during the
observation time (date of acquisition: 24 January 2015). The eight examples provided in
Table 1, are located along the coastline of the Limassol city, starting from the “Old Port”
(see Figure 4) towards the eastern part of the Amathus archaeological site (see Figure 4).

The first example (no. 1, Table 1) refers to new constructions that have been developed
in the “Marina of Limassol” area, a multi-million development project that still runs. New
sky-towers and very high buildings can be seen in the rest of the selected areas (no. 2 to no.
8, Table 1). The developers have taken advantage of large empty plots for their construction
and development plans. After the rescue excavations carried out by the Department of
Antiquities of Cyprus, archaeological findings have been revealed in the cases of no. 7 and
no. 8, which are in the western and the eastern parts of the Amathus archaeological site.
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Table 1. Examples of land-use changes (construction areas) thought the Google Earth satellite images, during the period
2015–2020 for the selected areas, as shown in Figure 3.

No Before—2015
(24 January 2015)

After—2020
(12 September 2020) No Before—2015

(24 January 2015)
After—2020

(12 September 2020)

1 5

2 6

3 7

4 8

4.2. HSV Colour Transformation

To further investigate the multi-temporal changes, over the area of interest, the REAC-
TIV algorithm was implemented in the Google Earth Engine platform for each calendar
year starting from the year 2015 until the year 2020. The overall results are depicted in
Figure 5. A high-resolution optical satellite image over the broader area of Limassol, and
closer looks over the centre of the city and the Amathus archaeological site are shown in
Figure 5a. Figure 5 shows the change detection analysis for the year 2015; Figure 5c shows
the results for the year 2016; Figure 5d shows the changes observed in the year after, while
Figure 5e shows the changes for the year 2018. Finally, Figure 5f,g show the results for the
years 2019 and 2020, respectively. Multi-temporal changes are highlighted with red colour
over the city centre of Limassol (Figure 5 middle column) and the Amathus archaeological
site (Figure 5 right column). The cumulative changes for all years between 2015 and 2020
are shown in Figure 5h.

Pixels that are highlighted with a red colour from Figure 5b to Figure 5g indicate
changes observed at the beginning of each year (i.e., 2015, 2016 etc.), while pixels with
purple colour indicate areas that have changed at the end of each observation year. Similarly,
red colour pixels in Figure 5h indicate changes at the beginning of the observation period
(2015) and purple colour changes at the end of this period (2020).
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Figure 4. Top: VV and VH polarisation visualisation change detection during the period 2015–2020 over Limassol city.
Bright colours indicate areas of changes during this period. Bottom: The same are using as a background a high-resolution
satellite image (source: ArcGIS Basemap). Examples from these changes are provided in Table 1 for the selected areas
indicated with a yellow square (no. 1–no. 9).

This time-span analysis provides supplementary information concerning the temporal
changes in the broader area of the Limassol city, and visualises the spatial pattern of the
changes. Changes are observed near the Old Port of Limassol (ships), in the urban fabric,
as well as in the agricultural fields. In addition, changes in the urban fabric are detected
along the coastline of the city (see also Section 4.1). A closer look at the land-use changes
near the Amathus archaeological site can be seen in the right part of Figure 5 during the
years 2015–2020 (with red colour).

Obviously, changes in the case of the Amathus archaeological site (right column of
Figure 5) can be due to the phenological cycle of the agricultural fields (see also Section 5).
These are mostly found in the north part of the site and indicated with a different colour
in Figure 5b–e. This colour indicator is only related to observation time, and not with the
type of change (see the colour ramp on the bottom of Figure 5).

For this study, we can assume that detection failures are those detections that are
not linked with the urban expansion phenomenon. As already mentioned in [41], false
positives can be driven due to two main reasons. Firstly, the high sensitivity of the
response of agricultural areas can be seen in the case of the western part of the Limassol
city (see changes in Figure 4h) and the previous example of the Amathus archaeological
site, secondly during the so-called “point” events, which appear only on one date, as is
the case of the ships located near the Old Port area. These detections could be further
masked-out to minimise potential error. This analysis is also presented in the discussion
section (Section 5).

4.3. Change Detection through Statistical Analysis

At the next step, a change detection statistical analysis was implemented based on
the work of [42]. Here, the Google Earth Engine platform was used to apply a multi-
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temporal Wishart-based change detection during the period 2015–2020, using the Sentinel-1
radar images.

Figure 5. (a) High-resolution optical satellite image over the broader area of Limassol (left), city
centre of Limassol (middle) and the Amathus archaeological site (right); (b) change detection analysis
for the year 2015; (c) change detection analysis for the year 2016; (d) change detection analysis for
the year 2017; (e) change detection analysis for the year 2018; (f) change detection analysis for the
year 2019; and (g) change detection analysis for the year 2020. The cumulative changes for all years
between 2015 and 2020 are shown in (h). At the bottom of the figure, a colour ramp indicates the
relation of the colour according to the observation period for each sub-figure.

The outcomes for each year (i.e., 2015–2020) generate a new RGB image whereas the
first component is referred as “cmap” which indicates the interval (time) of the most recent
change. The second component is the so-called “smap” which indicates the interval of the
first change, while the third component (“fmap”) shows the number of changes.
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An example from this change detection technique can be seen in Table 2. This area is
located approximately 700 m east of the Amathus archaeological site, on the seaside. In this
area, a new large luxury hotel was successfully identified using the method mentioned ear-
lier. Images from Google Earth (24 January 2015 and 5 April 2015) shows some preliminary
earthworks in the specific parcel. The next available high-resolution image from Google
Earth was on 24 April 2016, which indicates the construction phases of this hotel, while a
more recent image taken on 12 September 2020, shows the final construction project. The
last row of Table 2 shows on the left the results of the change detection method, using the
Sentinel-1 datasets for the period 2015, while on the right part, the digitised results from
this analysis are shown. Similar findings were retrieved for the same parcel for all other
years of this study’s observation period (2015–2020). This time-stamp approach can help
local stakeholders better understand the spatial–temporal urbanisation of the city.

Table 2. Change detection results from just 700 m on the eastern part of the Amathus hill, using the 2015 Sentinel-1 images.
A large construction was erected in the area.

Image (Google Earth)/Date Image (Google Earth)/Date

24 January 2015. 5 April 2015.

24 April 2016. 12 September 2020.

Change detection analysis using the Sentinel-1 2015 images.
Digitized change detection results (red polygon) of the

Sentinel-1 2015 images, overlaid above the recent image of
12 September 2020.
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The “fmap” results for each year of observation (2015–2020) as mentioned earlier,
indicate the number of changes. As this number might vary according to the number of
the available Sentinel-1 images, a direct comparison of the changes between the different
years is not possible. For this purpose, the “fmap” results were rescaled between 0 and 1.
In contrast, the value 0 indicates areas with no changes and value 1 indicates areas with
change for all images taken into consideration for the observation period. The overall
results from this analysis are shown in Figure 6 below. Figure 6a indicates the cumulative
rescale changes for the whole observation period (2015–2020) over Limassol. A mask was
also applied for water bodies as these areas were susceptible to false alarms. Several areas,
as shown in Figure 5a were highlighted as areas of changes. However, these changes are
not directly linked with the urban sprawl phenomenon, but mostly to seasonal changes
like agricultural fields and other non-built up areas (see Section 5, with a discussion on this
false true).

Figure 6. (a) Cumulative changes during the period 2015–2020 over the Limassol city, rescaled
to 0–1, whereas zero (0) indicates areas with no changes and values close to one (1) area that
have been changed in all Sentinel-1 images available in the Google Earth Engine; (b) a closer look
at the cumulative changes during the period 2015–2020 around the Amathus archaeological site;
and (c) the differences in relative changes between the year 2020 and 2015 around the Amathus
archaeological site.
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An example of this is shown in Figure 6b, over the archaeological site of Amathus.
Changes are observed in the northern part and on top of the hill of the archaeological site
(acropolis). However, these changes are triggered due to the seasonal variations of the soil
to vegetation and vice versa.

In contrast, land-use changes observed in the eastern and western parts of the site, are
linked with construction projects during the period 2015–2020. Finally, Figure 6c indicates
the differences between the reference years 2020 and 2015. The pattern is like those of
Figure 5b.

5. Discussion

The previous results have highlighted various land-use changes in Limassol near the
Amathus archaeological site. Of course, these changes might be a result of phenological
changes in the agricultural fields of the city. In this study, we aimed to implement a quick,
automatic, and low-cost exploration of large areas using medium-resolution free satellite
datasets. To improve the overall results and overcome this critical point of false positives, a
mask can be applied to overcome this.

Here, we generated a mask using a recent optical Sentinel-2 image (BOA, bottom of
atmosphere-corrected images) through the Sentinel Toolboxes (SNAP). Using this recent
multispectral Sentinel-2 image, a random forest classification was applied to detect urban
areas. The supervised classification was carried out using training samples from the image,
using various thematic classes (soil; vegetation; urban and water). The accuracy of the
supervised classification was estimated to be more than 90%.

From this classification, the urban areas were isolated and used to mask out the results
from Section 3. This allowed us to exclude areas that were not characterized as urban and
therefore might be false positives results.

A direct comparison of all the three methods mentioned above is difficult to be
performed as they provide different outcomes. To overcome this problem and to carry out
a cross-evaluation comparison between these methods, specific areas of interest have been
selected, masked and presented in Figure 7. Figure 7a shows the VV and VH polarisations
result over an area in the Limassol city centre. As already mentioned earlier, bright tones
indicate areas of changes. Figure 7b shows for the same area the results from the HSV
colour transformation after the implementation of the REACTIV algorithm, while Figure 7c
shows the cumulative changes of the statistical change detection method as proposed
by [42]. Non-urban areas, as classified from the random forest classification of the Sentinel-
2 image, are shown with white colour. Screenshots from the Google Earth platform taken
at the beginning of the observation period (2015) and by the end of this period (2020) are
shown in the bottom of Figure 7. These screenshots correspond to the two areas (area 1 and
area 2), indicated with a yellow circle in Figure 7a. For these two areas, all three methods
tend to give similar results: high bright tones can be observed in both areas 1 and 2 in the
VV and VH polarisations (Figure 7a). REACTIV results and the cumulative changes tend
to give a similar pattern as well (Figure 7b,c), respectively.

However, in addition to areas 1 and 2, other dissimilarities can be detected between
the three methods. For instance, another area with bright tones can be seen in the eastern
part of the VV and VH polarisation composite (Figure 7a, area 3). This is partially also
detected in Figure 7b and less in Figure 7c. This detection can be detected as a true false
result for the current study’s needs, as in this area, no new construction or building was
made during the observation period (2015–2020). The detected change should be linked
to the use of this area as a parking place. On the western part of areas 1 and 2, in area 4
the cumulative change detection (Figure 7c) has detected some changes, in contrast to the
rest of the methods. Based on the multi-temporal archives of the Google Earth platform,
in this area, and during the observation period, two new constructions have taken place.
Therefore, this detection was accurate for the cumulative change method, but this change
could not be detected from the other two methods.
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Figure 7. (a) VV and VH polarisations visualisation in Limassol city centre. The bright colour
indicates changes within the observation period; (b) changes highlighted with red colour were
recorded from the REACTIV algorithm for the same area as before; (c) cumulative changes using the
statistical analysis. Specific areas mentioned in the text are shown with numbers 1–4. Non-urban
areas, as classified from the optical Sentinel-2 image using the random forest classifier, are shown
with white colour. On the bottom of the figure, screenshots of areas 1 and 2 were obtained from the
Google Earth platform in 2015 and 2020.

As it was shown, all three detection methods were able to detect the area’s major
construction activities (areas 1 and 2). However, other smaller construction activities could
not be detected by the REACTIV and the VV and VH polarisations. The cumulative method
tends to provide the best results from these results, at least for this case study.

Similarly, an analysis at the centre of Limassol is shown in Figure 8. Figure 8a shows
the results from the VV and VH polarisations, Figure 8b shows the REACTIV results and
Figure 8c shows the results of the statistical analysis using the multi-temporal Sentinel-1
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datasets during the period 2015–2020. Although all methods detected several changes in
this area, only the one highlighted in Figure 8a (with the number 1) can be linked with the
change in land-use. This change was recognised from all three different methods applied
here. In the rest of the spotted areas, these are mostly linked with either true or false alarms
(e.g., parking places).

Figure 8. (a) VV and VH polarisations visualisation in Limassol centre. The bright colour indicates
changes within the observation period; (b) changes highlighted with red colour as recorded from the
REACTIV algorithm for the same area as before; (c) cumulative changes using the statistical analysis.
Non-urban areas as classified from the optical Sentinel-2 image, using the random forest classifier,
are shown with white colour. The specific area mentioned in the text is shown with numbering.

6. Conclusions

Monitoring changes in the vicinity of archaeological sites and city centres are important
information for local stakeholders. This study presented the results for the period 2015–
2020, over the Limassol city in Cyprus. During this period, large construction projects have
been initiated in various places within the city centre and the outskirts of the city.

This study presented the results from the analysis of radar Sentinel-1 images, using the
Google Earth Engine big data cloud platform. For the needs of the study, we implemented
quick, automatic and low-cost exploration algorithms over large areas, for addressing this
purpose. Three different methods have been implemented, starting from visualising the VV
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and the VH polarisations, then a colour space transformation (HSV) and finally, a statistical
analysis of the Sentinel-1 images.

While most of the detections from all methods were true, some were not linked with
the phenomenon of urban sprawl and the construction projects, but rather to seasonal
changes, agricultural practices, etc. This is considered as the main limitation of the afore-
mentioned approach. To overcome this limitation, a “non-urban” mask was created based
on a supervised classification analysis of a Sentinel-2 image. This mask can therefore mask
out agricultural areas and other non-urban regions. A second critical limitation of the
approach presented here refers to the spatial resolution of the Sentinel-1 radar images. The
medium resolution of these images makes the detection of small changes in the urban
fabric difficult.

These different methods should be further processed and integrated with other higher
resolution data. This integration can further minimise the false alarms and maximise
the accurate detections. The previous findings can be considered a first proxy indicator
map for monitoring land-use changes and urban sprawl phenomenon, especially in areas
with archaeological interest. Future work is expected to evaluate this quick approach for
monitoring specific areas of interest (smaller areas) to identify any changes in the landscape
and therefore support local stakeholders’ needs responsible for heritage management.
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