
*For correspondence:

Carol.Yang@mpi-bn.mpg.de

(YHCY);

Didier.Stainier@mpi-bn.mpg.de

(DYRS)

Competing interest: See

page 15

Funding: See page 15

Received: 21 December 2017

Accepted: 18 June 2018

Published: 19 June 2018

Reviewing editor: Judith Eisen,

University of Oregon, United

States

Copyright Yang et al. This

article is distributed under the

terms of the Creative Commons

Attribution License, which

permits unrestricted use and

redistribution provided that the

original author and source are

credited.

A new mode of pancreatic islet
innervation revealed by live imaging in
zebrafish
Yu Hsuan Carol Yang1*, Koichi Kawakami2,3, Didier YR Stainier1*

1Department of Developmental Genetics, Max Planck Institute for Heart and Lung
Research, Bad Nauheim, Germany; 2Division of Molecular and Developmental
Biology, National Institute of Genetics, Mishima, Japan; 3Department of Genetics,
SOKENDAI (The Graduate University for Advanced Studies), Mishima, Japan

Abstract Pancreatic islets are innervated by autonomic and sensory nerves that influence their

function. Analyzing the innervation process should provide insight into the nerve-endocrine

interactions and their roles in development and disease. Here, using in vivo time-lapse imaging and

genetic analyses in zebrafish, we determined the events leading to islet innervation. Comparable

neural density in the absence of vasculature indicates that it is dispensable for early pancreatic

innervation. Neural crest cells are in close contact with endocrine cells early in development. We

find these cells give rise to neurons that extend axons toward the islet as they surprisingly migrate

away. Specific ablation of these neurons partly prevents other neurons from migrating away from

the islet resulting in diminished innervation. Thus, our studies establish the zebrafish as a model to

interrogate mechanisms of organ innervation, and reveal a novel mode of innervation whereby

neurons establish connections with their targets before migrating away.

DOI: https://doi.org/10.7554/eLife.34519.001

Introduction
Pancreatic islets are innervated by sympathetic, parasympathetic and sensory nerves

(Taborsky et al., 1998; Havel and Ahren, 1997; Ahrén, 2000; Gilliam et al., 2007). Studies have

highlighted the role of autonomic innervation on pancreas development and endocrine hormone

secretion (Ahrén, 2000; Borden et al., 2013). Whether innervation directly modulates glucose

homeostasis and contributes to diabetes progression remains controversial, despite effects of sym-

pathetic and parasympathetic nerves on pancreatic islet hormone secretion (Ahrén, 2000;

Gautam et al., 2006) and the role of sensory fibers on autoimmunity (Tsui et al., 2007). The debate

stems in part from a lack of detailed understanding of several processes including the innervation

process during development, the maintenance of innervation in adult stages, and the communication

between nerves and islet cells. Although differences in autonomic innervation pattern in the endo-

crine pancreas have been observed between rodents and humans (Rodriguez-Diaz et al., 2011,

2012), the influence of the autonomic nervous system on pancreatic hormone secretion is conserved

across species (Havel and Ahren, 1997; Ahrén, 2000; Gilliam et al., 2007; Borden et al., 2013;

Gautam et al., 2006). More recently, this difference in pattern has been challenged by immunostain-

ing of thick tissue sections and whole mounts (Hsueh et al., 2017; Tang et al., 2018, 2014). Given

the age-related disparity between rodent and human samples in studies comparing innervation

architecture, the dynamic regulation of pancreatic innervation in response to age and environmental

influences could be contributing to the observed species differences. Indeed, higher innervation

density is observed in human fetal pancreas in comparison to adult (Proshchina et al., 2014), and

loss of innervation is observed in humans with Type one diabetes (Mundinger et al., 2016), as it is
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in several rodent models of autoimmune diabetes (Mundinger and Taborsky, 2016). Studying the

dynamic regulation and maintenance of pancreatic innervation could provide a better understanding

of diabetes etiology and progression.

Whether innervation is a result of vasculature- (Reinert et al., 2014; Cabrera-Vásquez et al.,

2009) or neural crest- (Plank et al., 2011; Nekrep et al., 2008; Muñoz-Bravo et al., 2013;

Kozlova and Jansson, 2009; Jiang et al., 2003; Young and Newgreen, 2001; Arntfield and van

der Kooy, 2013) derived guidance cues remains controversial. And although lineage tracing and

knockout studies have suggested a neural crest origin for pancreatic nerves (Plank et al., 2011),

interpretations can be limited by the Cre driver line specificity (Chen et al., 2017; Lewis et al.,

2013). Additionally, it remains difficult to differentiate between the local effects of autonomic fibers

on islet cell physiology from the simultaneous influence on other organs that can indirectly modulate

hormone secretion (Taborsky, 2011). The zebrafish, with organs homologous to mammalian ones

and conserved signaling and metabolic pathways (Schlegel and Stainier, 2007; Seth et al., 2013;

Ober et al., 2003), is ideal to study the role of neuronal innervation during endocrine pancreas

development. The transparency and rapid embryogenesis of zebrafish, together with fluorescent

reporters, allow for the study of developmental processes with single-cell resolution using in vivo

time-lapse imaging (Beis and Stainier, 2006). Insights into the innervation process could provide

clues on the mechanisms utilized by autonomic innervation to regulate islet cell function, growth and

survival.

Results

Pancreatic innervation in zebrafish is established early in development
Unlike most other vertebrate models, the zebrafish develops externally, and its transparency during

embryonic and early larval stages makes it highly attractive to study tissue organogenesis using in

vivo time-lapse imaging. To understand pancreatic innervation in zebrafish, we first determined an

approximate timeframe of innervation by conducting whole mount immunostaining starting at 50 hr

post fertilization (hpf). We found that the onset of pancreatic innervation arises early in development

(Figure 1A–D), preceding the fusion of the dorsal and ventral pancreatic buds (Field et al., 2003),

and that prior to 120 hpf, the majority of this innervation is derived from the vagus nerve

(Figure 1A). Looking more closely, we first observed the migration of the vagus nerve near the pan-

creatic islet at 50 hpf (Figure 1B), parasympathetic extensions from the vagus nerve towards the

pancreatic islet by 75 hpf (Figure 1C), and an extensive network of nerve fibers within the islet by

100 hpf (Figure 1D). Both juvenile (25 days post fertilization; dpf) and adult (1 year old) zebrafish dis-

play dense innervation networks within the endocrine pancreas (Figure 1E–F). By 25 dpf, the celiac

ganglion provides sympathetic innervation (Figure 1E), as previously described (Podlasz et al.,

2016), and at this stage intra-pancreatic innervation between the primary and secondary islets is

also present (Figure 1E).

In vivo time-lapse imaging reveals new cellular events preceding
pancreatic innervation
The upregulation of elavl3 expression is a hallmark of post-mitotic neuron differentiation

(Dyer et al., 2014), and the elavl3 promoter activity can be used as a pan-neuronal reporter

(Stevenson et al., 2012). The triple transgenic line Tg(elavl3:GAL4-VP16); Tg(UAS:EGFP-CAAX); Tg

(sst2:RFP) enables in vivo visualization of the innervation process in conjunction with endocrine pan-

creas development, where delta cells are expressing the RFP reporter. Single cell resolution imaging

allowed us to define the key cellular events leading to the establishment of parasympathetic innerva-

tion (Figure 2A–F). Post-mitotic neurons, with elavl3 promoter activity, were closely associated with

the endocrine islet very early in development (Figure 2A). Starting around this time, neurons began

to migrate toward the periphery of the endocrine cluster, and from 28 hpf a subset of neurons

detached from its anterior portion (Figure 2A, Figure 2—videos 1–2). Whole mount immunostain-

ing showed that the cells detaching from the endocrine cluster were not alpha, beta, or delta cells

(Figure 2B). This neuronal detachment was a sequential process, whereby the first observed detach-

ment event occurred at 28–31 hpf and additional neurons detached from 31 to 50 hpf (Figure 2A,

C). Subsequently, these neurons migrated rostrally, away from the endocrine cluster (Figure 2C,
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Figure 2—video 3). Next, the vagus nerve extending from the nodose ganglion migrated caudally

past the endocrine islet, and the vagus reporter signal overlapped with enteric nerves at 59–65 hpf

(Figure 2D, Figure 2—video 4). As the detached neurons continued to migrate away from the

endocrine cells, we could observe neurites extending toward the endocrine cluster (Figure 2E, Fig-

ure 2—video 5). This process was followed by interaction of the detached neurons with the vagus

nerve (Figure 2—video 6). At 80 hpf, immunostaining revealed the extension of neurites derived
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Figure 1. Pancreatic islet innervation in zebrafish is established early in development and maintained in juvenile and adult stages. (A-D) Whole mount

immunostaining of wild-type zebrafish at 50, 75, 100, 120 hr post fertilization (hpf) for acetylated Tubulin (nerves), Insulin (beta cells), Somatostatin (delta

cells), and DAPI (DNA). (E–F) Whole mount immunostaining of 25 days post fertilization (dpf) zebrafish and 1 year zebrafish pancreas and intestine

following tissue clearing with the CLARITY protocol. Maximum intensity projections are presented; A, anterior; D, dorsal; V, vagus nerve; ND, nodose

ganglion; P, pancreas; S, sympathetic innervation; Pi, intra-pancreatic innervation.

DOI: https://doi.org/10.7554/eLife.34519.002
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Figure 2. The sequence of cellular events preceding pancreatic islet parasympathetic innervation is revealed with single-cell resolution time-lapse

confocal imaging. (A) Tg(elavl3:Gal4-VP16); Tg(UAS:EGFP-CAAX); Tg(sst2:RFP) zebrafish mounted in 0.5% agarose containing 0.017% tricaine were

imaged with laser scanning confocal microscopy at 20 min time intervals. Maximum intensity projections of selected timeframes are presented (A,

anterior; D, dorsal). Yellow arrows point to the detachment of neurons from the pancreatic islet. (B) Whole mount immunostaining at 34 hpf for GFP

(neurons), RFP (delta cells), Insulin (beta cells), and Glucagon (alpha cells) after 10 hr time-lapse imaging. The detached neurons are not positive for

endocrine cell markers. (C-E) Confocal imaging of Tg(elavl3:Gal4-VP16); Tg(UAS:EGFP-CAAX); Tg(sst2:RFP) zebrafish at 20–30 min time intervals.

Maximum intensity projections of selected timeframes are presented. Yellow arrows point to the cellular events of interest. (F) Quantification of the time

when the indicated cellular events were observed for individual fish (mean ± SEM). (G) Schematic of the sequence of cellular events preceding

parasympathetic innervation of the pancreatic islet. V, vagus nerve; E, enteric nerve.

DOI: https://doi.org/10.7554/eLife.34519.003

The following video and figure supplement are available for figure 2:

Figure 2 continued on next page
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from elavl3-positive cells toward the islet (Figure 2—figure supplement 1). Interestingly, neurons

also detached from the posterior end of the endocrine cluster and migrated caudally toward the

developing secondary islets (Figure 2—video 7), while the other neurons stayed on the periphery of

the primary islet. These latter two neuronal populations could respectively be important for the for-

mation of intra-pancreatic innervation (Figure 1E) and contribute to the peri-endocrine nerve plexus

that has been reported in rodents (Ushiki and Watanabe, 1997). Due to the high degree of varia-

tion in vagus innervation, which was also observed for enteric innervation (Olsson et al., 2008), and

the slight developmental delay that occurs during the time-lapse imaging of anesthetized zebrafish,

we observed variability in the exact developmental timing of individual cellular events in different

embryos (Figure 2F). Nonetheless, the order of the cellular events was always the same and in com-

bination with the immunostaining data, it allows us to propose a model for the initial establishment

of parasympathetic innervation (Figure 2G).

A neural crest origin for pancreatic nerves has been suggested from lineage tracing and knockout

studies in mouse (Plank et al., 2011). Using lineage tracing with Tg(sox10:CreERT2, myl7:GFP); Tg

(ubb:loxP-CFP-loxP-nuc-mCherry) zebrafish upon tamoxifen treatment from 16 to 24 hpf (when the

neural crest population reaches its peak) (Mongera et al., 2013), we found a population of neural-

crest-derived cells expressing the elavl3 promoter in association with the endocrine islet at 35 hpf

(Figure 3A,B). Live imaging of Tg(sox10:GAL4); Tg(UAS:GFP); Tg(sst2:RFP) zebrafish revealed the

migration of neural-crest-derived cells toward the islet before 27 hpf, their contact with the islet, and

subsequently their migrating away from the islet (Figure 3C). Immunostaining showed that the cells

migrating away from the islet were not beta or delta cells (Figure 3D). Although elavl3 promoter

activity was observed in a subpopulation of endocrine cells (Figure 2B), our data suggest that they

do not contribute to the subset of cells migrating away from the islet. Interestingly, we also did not

observe immunostaining for HuC/HuD in this subpopulation of neural-crest-derived cells (Figure 3E),

suggesting that these cells are not yet fully mature neurons.

To further test whether the pancreatic nerve density was indeed neural crest derived, we lineage-

traced neural crest cells with Tg(sox10:CreERT2, myl7:GFP); Tg(ubb:loxP-CFP-loxP-nuc-mCherry)

zebrafish upon tamoxifen treatment from 16 to 24 hpf (Figure 4A–E). The neural-crest-derived cells

were not positive for Insulin, Glucagon, or Somatostatin staining at 90 hpf (Figure 4B). We found

that nerve extensions toward the primary islet at 90 and 120 hpf were indeed derived from cells that

were once positive for sox10 promoter activity (Figure 4C–E). We also observed sox10-derived cells

that remained on the periphery of the primary islet (Figure 4C–E). The decrease in the number of

sox10-derived cells in between the vagus nerve and pancreatic islet when comparing 90 to 120 hpf

suggests that these cells are migrating toward the vagus nerve (Figure 4C–E). Additionally, immu-

nostaining of sox10 mutants, which exhibit a severe depletion in neural crest cells (Dutton et al.,

2001), revealed a complete absence of pancreatic innervation even though the vagus nerve exten-

sion was present (Figure 4—figure supplement 1). Overall, these data agree with the neural crest

Figure 2 continued

Figure supplement 1. A subset of pancreatic nerve extensions derives from neurons that were once in close contact with endocrine cells.

DOI: https://doi.org/10.7554/eLife.34519.004

Figure 2—video 1. Time-lapse imaging shows detachment of neurons from the pancreatic islet.

DOI: https://doi.org/10.7554/eLife.34519.005

Figure 2—video 2. Time-lapse imaging shows detachment of neurons from the pancreatic islet.

DOI: https://doi.org/10.7554/eLife.34519.006

Figure 2—video 3. Time-lapse imaging shows neurons migrating away from the pancreatic islet.

DOI: https://doi.org/10.7554/eLife.34519.007

Figure 2—video 4. Time-lapse imaging shows vagus nerve extending past the pancreatic islet.

DOI: https://doi.org/10.7554/eLife.34519.008

Figure 2—video 5. Time-lapse imaging shows neurite extending toward the pancreatic islet.

DOI: https://doi.org/10.7554/eLife.34519.009

Figure 2—video 6. Time-lapse imaging shows interaction of detached neurons with the vagus nerve.

DOI: https://doi.org/10.7554/eLife.34519.010

Figure 2—video 7. Time-lapse imaging shows detachment and caudal migration of neurons from the pancreatic islet.

DOI: https://doi.org/10.7554/eLife.34519.011
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Figure 3. Neural crest cells are in close contact with pancreatic endocrine cells early in development. (A) Lineage tracing of neural crest cells in Tg

(sox10:CreERT2, myl7:GFP); Tg(ubb:loxP-CFP-loxP-nuc-mCherry); Tg(elavl3:GAL4-VP16); Tg(UAS:EGFP-CAAX) zebrafish following 5 mM tamoxifen

treatment from 16 to 24 hpf and staining at 35 hpf. (B) Whole mount immunostaining at 35 hpf for mCherry (neural-crest-derived cells), GFP (elavl3-

positive cells), Insulin (beta cells), and DAPI (DNA). (C) Confocal imaging of Tg(sox10:GAL4); Tg(UAS:GFP); Tg(sst2:RFP) zebrafish mounted in 0.5%

agarose from 23 to 33 hpf. Yellow arrow points to a neural crest cell in close proximity to endocrine pancreatic cells and briefly contacting islet cells

before migrating away. (D) Whole mount immunostaining at 34 hpf for GFP (sox10-positive cells), Insulin (beta cells), RFP (delta cells), and DAPI (DNA).

Yellow arrows point to neural-crest-derived cells that were once in contact with the pancreatic islet. (E) Whole mount immunostaining at 34 hpf for GFP

(sox10-positive cells), HuC/HuD (mature neurons), RFP (delta cells), and DAPI (DNA). Yellow arrows point to neural-crest-derived cells that were once in

contact with the pancreatic islet.

DOI: https://doi.org/10.7554/eLife.34519.012
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Figure 4. Pancreatic islet parasympathetic innervation is derived from the neural crest. (A) Lineage tracing of neural crest cells in Tg(sox10:CreERT2,

myl7:GFP); Tg(ubb:loxP-CFP-loxP-nuc-mCherry) zebrafish following 5 mM tamoxifen treatment from 16 to 24 hpf and staining at 90 and 120 hpf. (B)

Whole mount immunostaining at 90 hpf for GFP (elavl3-positive cells), mCherry (neural-crest-derived cells), Somatostatin (delta cells), Insulin (beta cells),

and Glucagon (alpha cells). (C–E) Whole mount immunostaining at 90 (C, D) and 120 (E) hpf for acetylated Tubulin (nerves), Insulin (beta cells), mCherry

(neural-crest-derived cells), and DAPI (DNA). Yellow arrows point to neural-crest-derived cells on the periphery of the pancreatic islet; blue arrowheads

point to neural-crest-derived cells projecting neural extensions toward the pancreatic islet, and some of these cells are adjacent to the vagus nerve (V).

Figure 4 continued on next page
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origin of pancreatic innervation that has been reported in rodents (Plank et al., 2011;

Nekrep et al., 2008; Muñoz-Bravo et al., 2013; Kozlova and Jansson, 2009; Jiang et al., 2003;

Young and Newgreen, 2001).

The vasculature is not essential for the establishment of innervation
Several mechanisms of pancreatic innervation have been proposed, including axons following along

blood vessels to eventually innervate the endocrine pancreas (Reinert et al., 2014; Cabrera-

Vásquez et al., 2009), and neural crest cells found closely associated with endocrine cells eventually

differentiating into neural and glial cells (Plank et al., 2011; Nekrep et al., 2008). We carefully

examined the cellular events preceding the onset of endocrine pancreas innervation using the zebra-

fish model. By utilizing cloche mutants, which lack most endothelial cells (Stainier et al., 1995;

Liao et al., 1997; Reischauer et al., 2016) including those endothelial cells that give rise to the pan-

creatic vasculature (Field et al., 2003), we wanted to examine whether blood vessels were crucial

for islet innervation (Figure 5A). Even though cloche mutants display fairly severe defects

(Figure 5B–D) and the vasculature was completely absent throughout the gastrointestinal system, as

visualized by Tg(kdrl:GFP) expression, by 80 hpf both the right and left vagus nerve extensions could

be observed in wild-type and mutant fish (Figure 5E–F). Interestingly, extensive innervation of the

pancreatic islet, comparable to that in wild-type, was also observed in cloche mutants (Figure 5G–I).

A dense network of nerves could still be observed in the pancreatic islet at 4 dpf (Figure 5—figure

supplement 1), suggesting that this initial stage of islet innervation and its expansion does not

require signaling from endothelial cells. Thus, although it is likely that maintenance of nerve density

requires vascular supply (Reinert et al., 2014), our studies indicate that the presence of a vascular

network is not crucial for the establishment of innervation.

Targeted ablation of specific peri-endocrine neurons results in reduced
pancreatic innervation
Our in vivo time-lapse imaging revealed the detachment of neurons from the endocrine islet and

their migration toward the vagus nerve. To determine whether this subpopulation of detached neu-

rons plays a crucial role in the innervation density observed at 75 hpf (Figure 1C), we conducted tar-

geted cell ablation studies (Figure 6A). We utilized a two-photon laser to specifically ablate at 31–

33 hpf neurons that have detached from the developing islet (Figure 6C mock ablation as control;

Figure 6D two-photon ablation) and conducted immunostaining at 80 hpf, when extensive parasym-

pathetic innervation is already observed in controls (Figure 6E). In comparison to the mock ablated

controls, where cells immediately adjacent to the leading front of the detached neurons were tar-

geted with the same laser intensity (Figure 6C), there was a significant reduction in innervation den-

sity upon ablation of the detached cluster of neurons (Figure 6F–G), while extension of the vagus

nerve and enteric innervation appeared unaffected (Figure 6F). The absence of differences in size

and gross morphology of the fish suggests that this decline in innervation density was not due to

developmental delay (Figure 6B). Given that targeted ablation did not disrupt development of the

enteric nervous system, we next wanted to determine whether endocrine cell development was per-

turbed upon disruption of islet nerve density. Immunostaining at 80 hpf for Insulin and Somatostatin

revealed no significant differences in islet mass or beta cell numbers between the ablated fish and

mock ablated controls; however, a significant decrease in delta cell numbers was observed

(Figure 6H–J), suggesting that early innervation is involved in establishing or maintaining the delta

cell pool.

In order to determine whether synaptic transmission was required for parasympathetic innerva-

tion, we overexpressed botulinum toxin light chain B in post-mitotic neurons using Tg(elavl3:GAL4-

VP16); Tg(UAS:BoTxBLC-GFP) fish (Figure 7A). Inhibition of neural activity did not result in

Figure 4 continued

DOI: https://doi.org/10.7554/eLife.34519.013

The following figure supplement is available for figure 4:

Figure supplement 1. Neural crest cells are essential for the establishment of islet parasympathetic innervation.

DOI: https://doi.org/10.7554/eLife.34519.014
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Figure 5. The vasculature is not essential for the initial establishment of pancreatic islet parasympathetic innervation. (A) Immunostaining analysis of

innervation density in Tg(kdrl:GFP) wild-type and cloche mutants at 80 hpf. (B) Wild-type and cloche-/- larvae were imaged at 80 hpf. (C) Body length

measurements at 80 hpf, mean ± SEM, n = 21–27 animals. (D) Whole larva free glucose level measurements at 80 hpf, mean ± SEM, n = 12 batches of

five larvae per replicate. (E–I) Whole mount immunostaining at 80 hpf for GFP (blood vessels), acetylated Tubulin (nerves), Somatostatin (delta cells),

and DAPI (DNA). Maximum intensity projections are presented; A, anterior; D, dorsal. Quantification of islet nerve density (G), mean ± SEM, n = 9–10

Figure 5 continued on next page
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developmental delay at 80 hpf (Figure 7B–C); however, a significant decrease in islet nerve density

was observed even though the vagus nerve developed normally (Figure 7E–I). Similar to the tar-

geted cell ablation approach, analysis of immunostained fish revealed no differences in beta cell

numbers but a significant decrease in delta cell numbers (Figure 7K–L). Interestingly, delta cell

hypertrophy was observed (Figure 7—figure supplement 1), which could account for the significant

increase in primary islet mass (Figure 7J). Elevated free glucose levels were also observed upon inhi-

bition of neural transmission at 80 hpf (Figure 7D), and they remained elevated at 5 dpf, similar to

what we observed in sox10 mutants which lack neural crest cells (Figure 7—figure supplement 2).

Whether the increase we observed in whole larva free glucose levels is directly related to pancreatic

islet development or perturbed functional modulation by parasympathetic innervation on the islet or

other peripheral organs remains to be examined. To further analyze the changes in endocrine cell

mass, we used a genetic ablation method (Curado et al., 2007; Pisharath and Parsons, 2009)

whereby Nitroreductase (NTR) was specifically expressed in post-mitotic neurons in Tg(elavl3:GAL4-

VP16); Tg(UAS:NTR-mCherry) fish (Figure 7—figure supplement 3). Upon treatment with metroni-

dazole (MTZ, a pro-drug that is converted to a cytotoxic form in the presence of NTR) from 24 to 80

hpf to induce global neuronal ablation, we detected significant decreases in beta and delta cell num-

bers (Figure 7—figure supplement 3C–D). Overall, our data suggest that the early establishment of

parasympathetic innervation requires the presence of neurons that are initially associated with the

endocrine pancreas as well as active neural transmission. Notably, significant changes in pancreatic

delta cell mass were observed upon decreased islet nerve density.

Discussion
Autonomic innervation can regulate the function of the endocrine pancreas (Ahrén, 2000). The brain

centers linked to pancreatic innervation have been mapped with retrograde neuronal tracing

(Rosario et al., 2016; Kreier et al., 2006). More recently, studies have demonstrated that modula-

tion of nerve activity in the brain can influence pancreas function (Kume et al., 2016; Croizier et al.,

2016). However, our knowledge of the local effects of nerves is limited due to the effects of nerve

transmission on other target organs. Through our studies of neuronal development in zebrafish, we

identified a subpopulation of neurons that are involved in pancreas-specific parasympathetic innerva-

tion, and ablation of these neurons significantly diminished local nerve density. Further lineage-trac-

ing studies would be useful to distinguish nerves coming from the detached neurons to those

entirely from the vagus. Nonetheless, this targeted ablation method provided us with a model

whereby nerve density remains unaltered in other tissues and allowed us to interrogate the local

effects of nerves on endocrine pancreas development. Interestingly, a specific effect on delta cell

mass was observed upon diminished nerve density. Likewise, global neural inhibition and global neu-

ron ablation also led to a decline in delta cell mass. However, in the case of global neuron ablation,

we also observed a decline in beta cell mass likely due to secondary effects from the extensive levels

of neuronal cell death. Given the potential role of Somatostatin signaling in mediating migration of

developing neurons (Yacubova and Komuro, 2002), it is possible that delta cell loss could worsen

the decline in innervation density.

Similar to what has been reported in rodents (Hsueh et al., 2017; Tang et al., 2018), a dense

supply of nerve fibers could be observed within the endocrine pancreas of developing and adult

zebrafish. Parasympathetic innervation predominates prior to 5 dpf, but by 25 dpf, sympathetic

innervation extending from the celiac ganglia was also detected. Galaninergic nerves have been pre-

viously identified in the zebrafish pancreas (Podlasz et al., 2016), and as in non-human primates

these nerves are parasympathetic (Verchere et al., 1996). The neurons present on the periphery of

Figure 5 continued

animals, p-values from t tests are presented. No significant difference in vagus nerve extension and islet innervation was observed between wild-type

and cloche-/- larvae. VR, right vagus nerve; VL, left vagus nerve; P, pancreas; I, intestine.

DOI: https://doi.org/10.7554/eLife.34519.015

The following figure supplement is available for figure 5:

Figure supplement 1. The vasculature is not essential for the initial establishment of islet parasympathetic innervation.

DOI: https://doi.org/10.7554/eLife.34519.016
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Figure 6. Targeted ablation studies reveal the crucial role of peri-islet neurons for the initiation of pancreatic islet parasympathetic innervation. (A)

Schematic of the two-photon ablation experiment. (B) Gross morphology at 80 hpf was comparable between control and ablated fish. (C–D) Tg(elavl3:

Gal4-VP16); Tg(UAS:EGFP-CAAX); Tg(sst2:RFP) zebrafish mounted in 0.5% agarose with tricaine were subjected to two-photon laser ablation. The

Figure 6 continued on next page
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the islet as revealed in our studies could give rise to the peri-endocrine nerve plexus which has been

observed in rodents (Tang et al., 2014; Ushiki and Watanabe, 1997). Targeted ablation of these

neurons at later stages should help decipher their role.

To our knowledge, ours is the first report of the physical proximity of neurons and their targets

prior to the migration of these neurons away from the developing target organ and eventual organ

innervation. The power of in vivo time-lapse imaging and targeted cell ablation allowed us to charac-

terize the cellular events leading to parasympathetic innervation of the endocrine pancreas in zebra-

fish. The uncovered sequence of events is reminiscent of the pioneer neuron model first proposed

over a century ago and which has been observed in various model systems, including Drosophila

(Sánchez-Soriano and Prokop, 2005; Lin et al., 1995; Jacobs and Goodman, 1989), zebrafish

(Hoijman et al., 2017; Wanner and Prince, 2013), and mouse (Morante-Oria et al., 2003;

Stainier and Gilbert, 1990). However, a key difference between what we observed and the classical

model is that in the zebrafish pancreas these neurons are not migrating toward the target organ

where they provide instructional cues for neuronal specification (Hoijman et al., 2017) or lay down

axon tracks for the following neurons (Wanner and Prince, 2013). Instead, we observed the migra-

tion of these neurons away from the target organ while maintaining contact via neural extensions,

which may subsequently provide tracks for other neurons to migrate along to reach their targets.

Indeed, the diminished innervation density following their targeted ablation revealed the crucial role

of these neurons that initially associate with the endocrine cells. Future studies designed to identify

the guidance signals regulating the directional migration of these subpopulation of neurons and

investigate the effect of the lack of pancreas innervation on islet cell development and regeneration

should lead to further understanding of the innervation process and its importance in development

and disease. In addition, it will be interesting to examine in detail the innervation of other organs to

determine whether this model of early local neuronal differentiation followed by migration away

from the target is a more general phenomenon.

Materials and methods

Zebrafish transgenic lines and husbandry
All zebrafish husbandry was performed under standard conditions in accordance with institutional

(MPG) and national ethical and animal welfare guidelines. Adult zebrafish were fed a combination of

fry food (Special Diet Services) and brine shrimp five times daily and maintained under a light cycle

of 14 hr light: 10 hr dark at 28.5˚C. Transgenic and mutant lines used were as described (Table 1):

Tg(elavl3:GAL4-VP16)zf357 (Stevenson et al., 2012) (promoter activity in post-mitotic neurons), Tg

(UAS:EGFP-CAAX)m1230 (Fernandes et al., 2012), Tg(sst2:RFP)gz19 (Li et al., 2009) (promoter activity

in pancreatic delta cells), Tg(UAS:BoTxBLC-GFP)icm21 (Sternberg et al., 2016), cloches5 (Liao et al.,

1997), clochem39 (Stainier et al., 1995), Tg(kdrl:EGFP)s843 (Jin et al., 2005) (promoter activity in

endothelial cells), Tg(sox10:GAL4)sq9 (Lee et al., 2013) (promoter activity in neural crest cells), Tg

(sox10:CreERT2, myl7:GFP)t007 (Mongera et al., 2013), Tg(ubb:loxP-CFP-loxP-nuc-mCherry)jh63

(Wang et al., 2015) (ubiquitous promoter activity), sox10tw2 (Kelsh et al., 1996), Tg(UAS:NTR-

mCherry)c264 (Davison et al., 2007). Whole larva glucose levels were measured with Glucose Assay

Kit (Millipore) from five larvae per replicate.

In vivo confocal microscopy
Live zebrafish between 1 and 5 dpf were anesthetized with 0.017% Tricaine and mounted in 0.5%

low melting agarose in egg water containing 0.017% Tricaine for confocal imaging. Zeiss LSM780

Figure 6 continued

detached neuron clusters were ablated between 31 and 33 hpf. The control was mock ablation of cells adjacent to the leading edge of the migrating

neurons using the same laser intensity. Pre-ablation, short time-lapse immediately following ablation, and post-ablation images are displayed. Orange

and pink boxes outline the regions of ablation; arrowheads point to ablated cells. (E–J) Whole mount immunostaining at 80 hpf for acetylated Tubulin

(nerves), Insulin (beta cells), RFP (delta cells), and DAPI (DNA). Quantification of islet nerve density (G), primary islet mass (H), beta cell number (I), and

delta cell number (J), mean ± SEM, n = 18–25 animals, p-values from t tests are presented.

DOI: https://doi.org/10.7554/eLife.34519.017
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Figure 7. Inhibition of neural synaptic transmission diminishes islet parasympathetic innervation. (A) Botulinum toxin (BoTx) was expressed in post-

mitotic neurons to inhibit neurotransmitter release in Tg(elavl3:Gal4-VP16); Tg(UAS:BoTxBLC-GFP) zebrafish. (B) Control and BoTx-positive fish were

imaged at 80 hpf. (C) Body length measurements at 80 hpf, mean ± SEM, n = 17–20 animals. (D) Whole larva free glucose level measurements at 80 hpf,

mean ± SEM, n = 30 batches of five larvae per replicate. (E–L) Whole mount immunostaining at 80 hpf for acetylated Tubulin (nerves), Insulin (beta

cells), Somatostatin (delta cells), and DAPI (DNA). Maximum intensity projections are presented; A, anterior; D, dorsal; V, vagus nerve; P, pancreas; I,

intestine. Quantification of islet nerve density (I), primary islet mass (J), beta cell number (K), and delta cell number (L), mean ± SEM, n = 14–16 animals,

p-values from t tests are presented.

DOI: https://doi.org/10.7554/eLife.34519.018

The following figure supplements are available for figure 7:

Figure supplement 1. Inhibition of synaptic transmission results in delta cell hypertrophy.

DOI: https://doi.org/10.7554/eLife.34519.019

Figure supplement 2. Diminished nerve density and impaired neural output result in hyperglycemia.

DOI: https://doi.org/10.7554/eLife.34519.020

Figure supplement 3. Genetic ablation of neurons decreases pancreatic endocrine cell numbers.

DOI: https://doi.org/10.7554/eLife.34519.021
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and LSM880 upright laser scanning confocal microscopes equipped with a Plan-Apochromat 20x/

NA1.0 dipping lens were used for imaging. Time-lapse experiments were conducted in 28.5˚C condi-

tions and z-stacks were taken at 20–45 min intervals for overall timeframes of 15–20 hr. Images were

analyzed using Imaris software (Bitplane).

Two-photon laser ablations
Embryos were anesthetized with 0.017% tricaine and mounted in 0.5% agarose. A Chameleon Vision

II Ti:Sapphire Laser (Coherent) mounted on a Zeiss LSM880 microscope was used for two-photon

single-cell laser ablations. The tunable laser was set at 800 nm to scan an ablation area of 4 mm2 at a

scan speed of 1 with 10 iterations. Following ablation, embryos were removed from the agarose,

raised to 80 hpf, and fixed with 4% paraformaldehyde for subsequent immunostaining.

Wholemount immunostaining
Zebrafish were euthanized with tricaine overdose prior to overnight fixation in 4% paraformaldehyde

dissolved in PBS containing 120 mM CaCl2 and 4% sucrose, pH7.4. The skin was manually removed

with forceps, without disturbing the internal organs and the zebrafish were permeabilized with 0.5%

TritonX-100 for 3 hr at room temperature. Following blocking with 5% donkey serum (Jackson Immu-

noresearch) in blocking buffer (Dako), samples were incubated in primary antibodies overnight at

4˚C, washed 4x with 0.025% TritonX-100 containing PBS, incubated in secondary antibodies over-

night at 4˚C, washed 4x, incubated in an increasing glycerol gradient of 25, 50, and 75%, and

mounted in VectorShield mounting medium. The following antibodies and dilutions were used:

guinea pig anti-Insulin polyclonal (1:100, Thermo), rabbit anti-Somatostatin (1:100, BioRad), chicken

anti-GFP (1:200, Aves), mouse anti-acetylated Tubulin (1:200, Sigma), mouse monoclonal anti-HuC/D

(1:100, Cell Signaling). Secondary antibodies (Jackson ImmunoResearch) used in this study include

donkey anti-guinea pig AlexaFluor647 and 405, donkey anti-rabbit Cy3 and AlexaFluor488, donkey

anti-mouse AlexaFluor488 and 647, donkey anti-chicken AlexaFluor488. Nuclei were stained with 25

mg/ml DAPI. Images were taken on Zeiss LSM700 or LSM800 laser scanning confocal microscopes

equipped with a 25x/NA0.8 objective.

Table 1. List of zebrafish transgenic and mutant lines.

Name
Specificity/Purpose/
Phenotype Reference

Tissue specific promoter lines

Tg(elavl3:GAL4-VP16)zf357 Post-mitotic neurons (Stevenson et al., 2012)

Tg(sst2:RFP)gz19 Pancreatic delta cells (Li et al., 2009)

Tg(sox10:GAL4)sq9 Neural crest cells (Lee et al., 2013)

Tg(sox10:CreERT2, myl7:GFP)t007 Neural crest cells, heart marker (Mongera et al., 2013)

Tg(ubb:loxP-CFP-loxP-nuc-
mCherry)jh63

Ubiquitous (Wang et al., 2015)

Tg(kdrl:EGFP)s843 Endothelial cells (Jin et al., 2005)

UAS lines

Tg(UAS:EGFP-CAAX)m1230 Visualize neurons (Fernandes et al., 2012)

Tg(UAS:BoTxBLC-GFP)icm21 Inhibit neurotransmitter release (Sternberg et al., 2016)

Tg(UAS:NTR-mCherry)c264 Ablate neurons (Davison et al., 2007)

Tg(UAS:GFP)zf82 Visualize neural crest cells (Asakawa et al., 2008)

Mutant lines

cloches5, clochem39 Lacking endothelial cells (Stainier et al., 1995; Liao et al., 1997)

sox10tw2 Lacking neural crest cells (Kelsh et al., 1996)

DOI: https://doi.org/10.7554/eLife.34519.022
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Data analysis
Image data were analyzed using Imaris (Bitplane) and Huygens (Scientific Volume Imaging) soft-

wares. Statistical analysis was performed using Prism (GraphPad).
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