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Abstract

Introduction: Graph theory has been applied to study the pathophysiology of multiple sclerosis (MS) since it pro-
vides global and focal measures of brain network properties that are affected by MS. Typically, the connection
strength and, consequently, the network properties are computed by counting the number of streamlines (NOS)
connecting couples of gray matter regions. However, recent studies have shown that this method is not quantitative.
Methods: We evaluated diffusion-based microstructural measures extracted from three different models to assess
the network properties in a group of 66 MS patients and 64 healthy subjects. Besides, we assessed their corre-
lation with patients’ disability and with a biological measure of neuroaxonal damage.
Results: Graph metrics extracted from connectomes weighted by intra-axonal microstructural components were the
most sensitive to MS pathology and the most related to clinical disability. In contrast, measures of network segre-
gation extracted from the connectomes weighted by maps describing extracellular diffusivity were the most related
to serum concentration of neurofilament light chain. Network properties assessed with NOS were neither sensitive
to MS pathology nor correlated with clinical and pathological measures of disease impact in MS patients.
Conclusion: Using tractometry-derived graph measures in MS patients, we identified a set of metrics based on
microstructural components that are highly sensitive to the disease and that provide sensitive correlates of clin-
ical and biological deterioration in MS patients.
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Impact Statement

Graph theory has been widely used to study the alterations in the structural connectivity of multiple sclerosis (MS) patients.
Usually, brain graphs used for the extraction of network metrics are created by counting the number of streamlines connecting
gray matter regions, however, this method is not quantitative. In this study, we used tractometry to average the values of
diffusion-based microstructural maps along the reconstructed streamlines. Our results show that network metrics extracted
from the connectomes weighted on microstructural maps provide sensitive information to MS pathology, which correlate
with clinical and biological measures of disease impact.
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Introduction

Multiple sclerosis (MS) is a disease of the nervous
systems characterized by focal and diffuse inflamma-

tion and degeneration, which variably affect structural and
functional connectivity (Rolak, 2003). Demyelination and
axonal degeneration are cardinal features of MS, which af-
fect specific tracts but also alter brain networks, both locally
and globally (Rolak, 2003).

Hence, methods to assess global and local network proper-
ties are valuable to investigate the pathophysiology of MS, as
well as to better understand its clinical and biological impact.

Tractography allows reconstructing noninvasively the
major fiber tracts of the white matter (WM), which are iden-
tified through ‘‘streamlines’’ (Yeh et al., 2020). The map of
streamlines—that is, structural connections of the brain that
form a ‘‘connectome’’—can be modeled as a network, where
nodes correspond to gray matter regions and edges represent
the streamline connections between pairs of them (Sotiro-
poulos and Zalesky, 2019).

The weight of an edge in a connectome reflects the inter-
regional connection strength between brain regions and aims
to characterize biologically interpretable properties such as
axon density and demyelination (Kamagata et al., 2019).
This network formalism (graph theory) allows characterizing
brain connectivity in vivo and studying a wide range of neu-
rological diseases (Sotiropoulos and Zalesky, 2019). Graph
theory permits in fact the analysis of connectivity at the to-
pological level by extracting some metrics that may capture
pathology-related alterations (Van Wijk et al., 2010).

The most common strategy to weight connectome edges is
based on counting the number of streamlines (NOS) connecting
each pair of regions ( Jones et al., 2013; Sotiropoulos and Zale-
sky, 2019). However, recent studies have highlighted that this
approach lacks specificity and it is not quantitative in fact, trac-
tography algorithms, propagate through the estimated fiber ori-
entation without considering the density of the underlying
bundles. Thus, although tractography is very effective in recov-
ering the major fiber pathways, it does not inform about the
number of axons constituting these fiber bundles (axon densi-
ty). For this reason, NOS cannot be considered a valid bio-
marker of the strength of connection between regions ( Jones
et al., 2013; Sotiropoulos and Zalesky, 2019; Yeh et al., 2020).

To retrieve information on the underlying tissue and, in
turn, to get more biologically interpretable properties, sev-
eral microstructural diffusion-based models have been com-
bined with the estimated streamlines (Bells et al., 2011).

The most common model is diffusion tensor imaging
(DTI) that characterizes the measured diffusion displacement
as a three-dimensional (3D) Gaussian process, which com-
pletely describes the molecular mobility along each axis
and the correlation between the movements and the axes
(Descoteaux, 2008; Le Bihan et al., 2001). However, DTI as-
sumes a single fiber population in each voxel, therefore, it
does not provide sufficient information of the individual tis-
sue microstructure features. However, more advanced mod-
els have the ability to isolate the signal contribution from
different tissue compartments, further increasing the speci-
ficity to different tissue subtypes (Alexander et al., 2019).
These models include neurite orientation dispersion and den-
sity imaging (NODDI) (Zhang et al., 2012) and spherical
mean technique (SMT) (Kaden et al., 2015, 2016).

NODDI explicitly takes orientation dispersion of the
neurites into account and models three microstructural envi-
ronments in a voxel: intracellular (or intra-axonal), extracel-
lular (or extra-axonal), and cerebral spinal fluid (or free
water) compartments (Zhang et al., 2012). SMT, instead, in-
vestigates the tissue microscopic features independently
from the fiber’s orientation. This characteristic allows mini-
mizing the confounding effects derived from fiber crossing,
curving, and orientation dispersion. Furthermore, this method
exploits a microscopic diffusion model that describes the sig-
nal coming from the tissue microenvironment to estimate the
microscopic features specific to the intraneurite and extra-
neurite compartments (Kaden et al., 2015, 2016).

The analysis of the connectomes with graph theory has
been previously applied to MS patients (Fleischer et al.,
2019; Kocevar et al., 2016; Li et al., 2013; Nigro et al.,
2015; Ozturk et al., 2010; Pagani et al., 2020; Pardini
et al., 2015; Rocca et al., 2016; Schiavi et al., 2020b). The
results of studies comparing MS patients with healthy con-
trols (HCs) have shown that different global structural net-
work changes occur in MS patients (Fleischer et al., 2019;
Kocevar et al., 2016; Li et al., 2013; Nigro et al., 2015;
Ozturk et al., 2010; Pagani et al., 2020; Pardini et al.,
2015; Rocca et al., 2016; Schiavi et al., 2020b). Some studies
evidenced that transferring and processing of information
within the networks of patients with MS are less efficient
with respect to HCs (He et al., 2009; Schiavi et al., 2020b;
Shu et al., 2011), whereas other studies revealed an increase
in network segregation in MS patients compared with HCs
(Gamboa et al., 2014; Llufriu et al., 2017; Richiardi et al.,
2012; Rocca et al., 2010; Schiavi et al., 2020b; Tewarie
et al., 2014).

In this study, we investigated the pathology-related alter-
ations in connectomes of MS patients compared with HCs
using tractometry (Bells et al., 2011). This technique weights
the connections obtained from tractography by averaging the
tissue properties estimated from diffusion-based microstruc-
tural maps along their paths, hereby providing more quanti-
tative estimates than the NOS and better biological
interpretability. More precisely, we investigated which mi-
crostructural maps and which global network metrics
extracted from them are more sensitive to alterations in the
structural connectivity of MS patients. Furthermore, we per-
formed a clinical and biological validation of tractometry by
assessing their relationship with (1) the Expanded Disability
Status Scale (EDSS) (Kurtzke, 2009) and (2) serum neurofi-
lament light polypeptide (sNfL) levels, which is a promising
biomarker of neuroaxonal injury (Khalil et al., 2018).

Subjects/Materials and Methods

Subjects

Sixty-six MS patients (39 females, 43.9 – 14.5 years, 20
primary/secondary progressive, and 46 relapsing remitting)
and sixty-four HCs (38 females, 36.9 – 12.8 years) were en-
rolled in this study, refer to Table 1 for more details. The in-
clusion criteria for the enrollment of MS patients included
(1) age between 18 and 75 years, (2) MS diagnosis fulfilling
McDonald criteria (Thompson et al., 2018), (3) absence of
neurological or psychiatric disease other than MS, and (4)
absence of contraindications in subjects for magnetic reso-
nance imaging (MRI). MRI and sNfL were assessed at

MICROSTRUCTURE-WEIGHTED CONNECTOMICS IN MS 7



least 3 months after a clinical relapse/corticosteroid treat-
ment and the assessment of disability scores (EDSS) was per-
formed within 3 months from the MRI in case of clinically
stable patients (Disanto et al., 2017).

The ethical review committee of the University Hospital
Basel (IRB of Northwest Switzerland) approved the study,
and all participants entered the study after written consent.

MRI acquisition

All subjects underwent MRI on a 3T system (Prisma; Sie-
mens Healthcare, Erlangen, Germany) with 64-channel head
and neck coil. The acquisition protocol included (1) 3D
FLAIR (repetition time [TR]/echo time [TE]/inversion time
[TI] = 5000/386/1800 ms) 1 mm3 isotropic spatial resolution;
(2) 3D MP2RAGE (TR/TI1/TI2 = 5000/700/2500 ms) 1 mm3

isotropic spatial resolution; and (3) multishell diffusion (TR/
TE/impulse duration [d]/time between impulses [D] = 4.5 s/
75 ms/19 ms/36 ms) 1.8 mm3 isotropic spatial resolution
with b values 700/1000/2000/3000 s/mm2 and 6/20/45/66
diffusion directions, respectively, per shell, and 12 measure-
ments at b value 0 s/mm2 with both anterior to posterior and
reversed phase encoding.

Anatomical images

MS lesions were semiautomatically segmented with an au-
tomatic in-house deep learning-based method (La Rosa et al.,
2020), followed by manual correction. This method takes as
input both FLAIR and MP2RAGE MRI contrasts and con-
sists of two convolutional neural networks. Thus, WM lesion
masks were manually corrected on the FLAIR sequences and
filled on the T1 images to improve the registration and the
segmentation steps on the patients’ images.

We processed T1-filled images with FreeSurfer and we
used the standard Desikan–Killiany atlas (Desikan et al.,
2006) for the automatic segmentation that provides cortical
and subcortical parcellation of 85 (42 for hemisphere + brain-
stem) regions of interest.

Diffusion MRI processing

Diffusion MR images were corrected for movement arti-
facts and susceptibility induced distortions using eddy and
top-up commands from FMRIB Software Library (FSL)
(Gibbs and Liu, 2015; Horsfield, 1999; Yamada et al.,
2014). To reconstruct the whole brain anatomically con-
strained tractography, we performed the five-tissue-type seg-
mentation on T1 images using MRtrix3 (Tournier et al.,

2019), a step that is necessary to retrieve the tissue information
according to the FSL algorithm (Smith et al., 2012). Once the
five tissues were obtained, they were registered to the diffu-
sion space using FMRIB’s linear image registration tool
with boundary-based algorithm provided by FSL (Jenkinson
et al., 2002). We estimated the response functions for each in-
dividual tissue type, as segmented by T1, to perform multitis-
sue spherical deconvolution, and we generated 3 millions of
streamlines using the iFOD2 algorithm of MRtrix3 (Tournier
et al., 2019).

To reduce the incidence of false positives that are typical
of probabilistic tractography (Sarwar et al., 2019), we set the
power parameter to 3. The power option, in fact, directly in-
fluences the magnitude of the conservative estimates of fiber
orientation used by iFOD2. With a power of infinity, theoret-
ically, iFOD2 is turned into a deterministic algorithm that is
known to find fewer false positives at the price of potentially
introducing false negative. However, because of the loss of
tissue and edema in the lesion areas, a pure deterministic al-
gorithm might be less efficient in reconstructing all the path-
ways in MS patients. Thus, we tuned this parameter by
visually inspecting the tractographies.

To compute microstructural maps from the DTI model,
we used the measurements with b £ 1000 s/mm2 for the fit-
ting of the diffusion tensor in FSL (O’Donnell and Westin,
2011). We retrieved the microstructural maps of fractional
anisotropy (FA), mean diffusivity (MD), and radial diffusiv-
ity (RD). The first describes the degree of the diffusion process
anisotropy, the second is the mean of the three eigenvalues
of the diffusion tensor, whereas the third describes the diffu-
sion perpendicular to the main diffusion direction (Le Bihan
et al., 2001). To fit the NODDI model, we used the AMICO
software (Daducci et al., 2015) on measurements with
b £ 2000 s/mm2 and obtained the maps of intraneurite volume
fraction (ICVF) and isotropic volume fraction (ISOVF). The
former describes the intracellular environment, whereas the
latter describes the free water in the extracellular environment
(Zhang et al., 2012).

For the extraction of microstructural maps from SMT, we
used the open-source code available at https://github.com/
ekaden/smt, on measurements with b £ 2000 s/mm2 (Devan
et al., 2020). We extracted the microstructural maps of
neurite volume fraction (INTRA), extraneurite transverse
diffusivity (EXTRATRANS), and extraneurite mean diffu-
sivity (EXTRAMD) that describe the intracellular compart-
ment, the anisotropic extraneurite compartment including its
transverse microscopic diffusivity and the signal outside the
axons, respectively (Kaden et al., 2015, 2016).

Table 1. Demographic and Clinical Characteristic of Multiple Sclerosis Patients and Healthy Controls

Group TOT M F
Age (years)
mean – SD

EDSS median
(min–max)

NfL (pg/mL)
mean (min–max)

T2 lesion volume (mm3)
mean – SD

HC 64 26 38 36.9 – 12.8 / / /
RR 46 16 30 37.3 – 11.7 1.5 (0–4) 7.4 (2.4–13.9) 6017.0 – 7123.0
PP 10 7 3 58.0 – 8.3 4 (2–6) 11.0 (4.7–17.1) 15,719.0 – 13,402.0
SP 10 4 6 60.2 – 5.5 6.1 (3.5–8) 14.3 (7.9–23.8) 16,431.0 – 18,679.0

Demographic and clinical characteristics of MS patients (divided according to the clinical phenotype of the disease) and HCs.
EDSS, expanded disability status scale; F, female; HCs, healthy controls; M, male; max, maximum; min, minimum; MS, multiple scle-

rosis; NfL, neurofilament light polypeptide; PP, primary progressive MS patients; RR, relapsing remitting MS patients; SD, standard devi-
ation; SP, secondary progressive MS patients; TOT, total.
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Connectome estimation

As reported in Figure 1, we generated the connectomes
using the cortical and the subcortical regions of gray matter
as nodes and the estimated streamlines as edges with differ-
ent weights. For the NOS, we created a matrix containing in
each cell the NOS that start from one region and arrive in an-
other region (0 = no connection).

To obtain the other connectomes, we used tractometry and
computed the average value along the tracts of the previously
described scalar maps extracted from the microstructural
models DTI, NODDI, and SMT to assess the connectivity
in a more quantitative way. These maps, in fact, provide in-
formation on the morphological structure of axons. To
achieve this, using MRtrix3 (Tournier et al., 2019), we sam-
pled the streamlines of each bundle in n points and then we
averaged the values of the microstructural maps described in
Diffusion MRI Processing section evaluated at those spatial
coordinates. This approach is expected to produce more
quantitative estimates of the connectivity that are presumed
to lead to a better interpretation of biological features
(Bells et al., 2011).

Network metrics

As suggested in Sotiropoulos and Zalesky (2019), we fil-
tered the connectomes by removing the connections that
were not present in at least 50% of HCs, to remove eventual
spurious WM connections (Buchanan et al., 2020; Zalesky
et al., 2010).

To remove eventual bias coming from the ease in tracking
shorter connections, we also zeroed all the values on the di-
agonal (Griffa et al., 2013). Then, we used Brain Connectiv-
ity Toolbox to extract from each connectome five global

network metrics: density, which is the ratio between actual
and possible connections, efficiency, which corresponds to
the average inverse shortest weighted path length and is
inversely related to the characteristic path length, mod-
ularity, which reflects the network segregation, clustering
coefficient, which indicates the degree on which nodes
tend to cluster together, and mean strength, which corre-
sponds to all the nodal strength average where the nodal
strength is defined as the sum of the edges’ weight connected
to a node.

The algorithms that are usually applied for the extraction
of network metrics explicitly assume that in weighted brain
networks, edges with the highest weights delineate the
strongest and most reliable connections (Zalesky et al.,
2010). However, in our study, we have also weighted the
connections with MD, RD, ISOVF, EXTRATRANS, and
EXTRAMD maps. According to this weighting approach,
edges with high values may represent connections that tra-
verse voxels characterized by the presence of cerebrospinal
fluid. Thus, high edge weights do not indicate stronger con-
nections and violate the underlying assumptions for network
analysis. To avoid this issue, as suggested in Zalesky et al.
(2010), we applied the negative logarithm transformation
to each entry of these weighted connectomes, to consider
the edges with the original lower weights as the most likely
communication paths.

Statistical analysis

The statistical analysis was performed in R using robust
models to account for eventual outliers (Koller and Stahel,
2011). First, we tested the differences in density among the
two groups of subjects using a robust linear model with age

FIG. 1. Pipeline for the construction of brain graphs weighed using tractometry. By combining the parcellation of gray
matter regions, the streamlines computed using tractography, and the different diffusion-based microstructural maps, we
obtained the weighted connectomes. Using these weighted connectomes, we built the brain graphs from which we calculated
the global network metrics to analyze the topological properties of the networks. dMRI, diffusion-weighted magnetic reso-
nance images. Color images are available online.
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and gender as covariate. Density was significantly different
between HCs and MS patients ( p < 0.001). We then tested
the relationship between density and T2 lesion volumes
using Pearson correlation, accounting for gender and age
as covariates. As expected, Figure 2 shows that density is
negatively related with the volume of the WM lesions
( p < 0.001, r =�0.611). Thus, in accordance with what
is reported in Schiavi et al. (2020b) and Van Wijk et al.
(2010), we added this variable among the confounding
factors.

We tested the H0-1 that there are no differences among
network metrics when they are extracted from a connec-
tome weighted for each of the nine considered microstruc-
tural measures; we also assessed the H0-2 that there are no
differences in network metrics between MS patients and
HCs when each network metric is extracted from a connec-
tome weighted for DTI, NODDI, and SMT.

We report p values adjusted for multiple comparisons with
Holm test (Aickin and Gensler, 1996) for both H0-1 (4 com-
parisons for each microstructural measure) and H0-2 (12
comparisons for DTI, NODDI, and SMT, respectively).
Finally, network metrics extracted from each connectome
were evaluated (1) in a robust linear model adjusted for gen-
der, age, and disease duration to evaluate their contributions
in explaining the worsening of motor disability measured
through the EDSS and (2) in a robust linear model adjusted
for gender and age to evaluate whether the alterations of
MS patient’s structural connectivity are related to the sNfL
increase.

Results

Results of groups comparison are reported in Table 2. The
values that reached statistical significance are highlighted in
bold, and the corresponding violin plots are shown in Figure 3.

Our results refute the first H0 hypothesis showing that (1)
when the network analysis was performed with tractometry
derived from DTI-MD, DTI-RD, and SMT-EXTRATRANS,
there was a significant decrease in global efficiency and in
mean strength in MS patients compared with HCs, and that
(2) if the network analysis was performed with tractometry
derived from NODDI-ICVF and SMT-INTRA, there were
both a significant decrease in global efficiency, clustering co-
efficient, and mean strength and a significant increase in
modularity of MS patients compared with HCs.

Interestingly, when the network analysis was performed
using NOS-weighted connectomes, there were no significant
differences between patients and controls surviving the use
of density as a confounding factor.

When we tested the second H0 hypothesis, the network
analysis using tractometry derived from NODDI-ICVF
appeared to be the most sensitive. In fact, the mean strength
extracted from ICVF showed statistically significant differ-
ences between MS and HCs, and other network metrics
obtained using this map show similar results without reach-
ing statistical significance.

Among the tested maps, we found that network metrics
computed by weighting the connectomes with NODDI-
ICVF and SMT-INTRA well explained the EDSS (adjusted

FIG. 2. Correlation between the white matter lesion volume (in mm3) and the density of the connectomes of all MS patients
involved in our study. CI, confidence interval; WM, white matter. Color images are available online.
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R2 = 0.535 and adjusted R2 = 0.526, respectively). Although
age seemed to drive the differences, modularity also contrib-
uted significantly ( p = 0.016 and p = 0.028, respectively) as
given in Table 3 (we refer to Supplementary Tables S2 and
S3 for more details regarding the statistical analysis).

However, we found that network metrics computed by
weighting the connectomes with DTI-FA, DTI-MD, DTI-
RD, NODDI-ICVF, SMT-EXTRAMD, and SMT-
EXTRATRANS were associated with sNfL (adjusted
R2 = 0.597; adjusted R2 = 0.609; adjusted R2 = 0.600, adjusted
R2 = 0.598, adjusted R2 = 0.611, adjusted R2 = 0.603, respec-
tively). Again, modularity contributed significantly, despite
age and gender seem to drive the significance, as given in
Table 4 ( p = 0.025, p = 0.033, p = 0.016, p = 0.022,
p = 0.013, and p = 0.049, respectively).

Discussion

Our tractometry study compared the sensitivity of network
analysis performed using different connectomes, weighted
with these advanced models, to identify differences in struc-
tural network properties in MS patients versus HCs. In addi-
tion, our study provided a clinical and biological validation
of the results by assessing the relationship between (1) net-
work measure weighted for different microstructural param-
eters and (2) patient’s disability and (3) sNfL levels, which
are a measure of neuroaxonal damage.

Previous connectomic studies in MS patients used es-
sentially NOS or FA to weight the computed connectomes
(Charalambous et al., 2019; Kamagata et al., 2019; Koce-
var et al., 2016; Li et al., 2013; Llufriu et al., 2017; Pagani

Table 2. Comparison of Network Metrics Computed Using Different Microstructural Weightings

Between Multiple Sclerosis Patients and Healthy Controls

Network metrics Healthy controls MS patients
Adjusted

p value metrics
Adjusted

p value model

FA Efficiency 0.410 – 0.014 0.394 – 0.021 0.639 1.000
Modularity 0.065 – 0.010 0.078 – 0.020 0.477 0.812
Clustering coefficient 0.382 – 0.015 0.367 – 0.020 0.639 1.000
Mean strength 27.300 – 1.400 25.500 – 2.380 0.639 1.000

-ln(MD) Efficiency 6.030 – 0.087 5.900 – 0.179 0.020 0.075
Modularity 0.080 – 0.015 0.097 – 0.027 0.606 1.000
Clustering coefficient 5.810 – 0.100 5.69 – 0.160 0.218 0.812
Mean strength 412.000 – 13.900 393.000 – 28.100 0.020 0.062

-ln(RD) Efficiency 6.320 – 0.097 6.180 – 0.196 0.049 0.124
Modularity 0.078 – 0.015 0.095 – 0.027 0.489 1.000
Clustering coefficient 6.080 – 0.110 5.950 – 0.176 0.203 0.812
Mean strength 432.000 – 14.800 411.00 – 30.000 0.049 0.130

ICVF Efficiency 0.499 – 0.023 0.472 – 0.034 0.017 0.057
Modularity 0.069 – 0.014 0.088 – 0.026 0.017 0.069
Clustering coefficient 0.470 – 0.023 0.444 – 0.034 0.017 0.069
Mean strength 33.500 – 2.020 30.700 – 3.370 0.017 0.050

-ln(ISOVF) Efficiency 2.120 – 0.119 2.090 – 0.131 1.000 1.000
Modularity 0.116 – 0.014 0.131 – 0.025 1.000 1.000
Clustering coefficient 1.980 – 0.113 1.950 – 0.119 1.000 1.000
Mean strength 141.000 – 9.060 135.000 – 12.500 1.000 1.000

INTRA Efficiency 0.486 – 0.024 0.456 – 0.038 0.028 0.077
Modularity 0.069 – 0.014 0.087 – 0.025 0.030 0.214
Clustering coefficient 0.456 – 0.024 0.426 – 0.038 0.028 0.077
Mean strength 32.500 – 2.080 29.600 – 3.600 0.028 0.077

-ln(EXTRAMD) Efficiency 5.660 – 0.082 5.550 – 0.161 0.174 0.261
Modularity 0.080 – 0.015 0.098 – 0.027 0.794 1.000
Clustering coefficient 5.450 – 0.094 5.360 – 0.143 0.794 1.000
Mean strength 387.000 – 13.000 369.000 – 26.000 0.174 0.261

-ln(EXTRATRANS) Efficiency 6.020 – 0.101 5.870 – 0.193 0.023 0.077
Modularity 0.079 – 0.015 0.096 – 0.027 0.514 1.000
Clustering coefficient 5.780 – 0.111 5.650 – 0.175 0.090 0.261
Mean strength 411.000 – 14.600 390.000 – 28.800 0.023 0.070

NOS Efficiency 2109 – 83.500 2120 – 104.000 0.494 /
Modularity 0.360 – 0.025 0.382 – 0.039 0.867 /
Clustering coefficient 197 – 7.880 203 – 9.630 0.243 /
Mean strength 43,658 – 1346 43,094 – 1920 0.867 /

Results of group comparison performed with robust linear model accounting for gender, age, and density as covariates. To account for
multiple comparison, we applied Holm post hoc correction (1) for each network metrics of each microstructural map (adjusted p value met-
rics) and (ii) for each network metrics extracted from all the microstructural maps of each diffusion-based model (adjusted p value model).
The statistically significant results are highlighted in bold.

EXTRAMD, extraneurite mean diffusivity; EXTRATRANS, extraneurite transverse diffusivity; FA, fractional anisotropy; ICVF, intra-
neurite volume fraction; INTRA, neurite volume fraction; ISOVF, isotropic volume fraction; MD, mean diffusivity; MS, multiple sclerosis;
NOS, number of streamlines; RD, radial diffusivity.
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et al., 2020; Pardini et al., 2015; Shu et al., 2011, 2016),
which were then used to extract network-based metrics
in MS patients and HCs. These studies showed an overall
decrease in patient network performances especially re-
garding a decrease in efficiency and an increase in network
segregation.

Although these studies have proven to be sensitive to MS
pathology, they lack yet specificity to the structural substrate
of network alterations. Weighting the connectomes for mea-
sures derived from microstructural models applied to multi-

shell diffusion data allows to achieve higher specificity to
alterations occurring within specific compartments of the
brain tissue (Lakhani et al., 2020).

Since MS is a complex neurological disease, which is
characterized by inflammatory demyelination and axonal
loss, and also by remyelination and network remodeling
(Cunniffe and Coles, 2019), the information derived from
network measures obtained using microstructural maps may
be more sensitive and specific than the approaches based
on NOS. Newly developed advanced multicompartment

FIG. 3. Violin plots of the metrics showing statistically significant differences between HCs (in green) and multiple scle-
rosis patients (in red). In the upper part of the violin plots, we show the efficiency, modularity, clustering coefficient, and
mean strength resulting from the connectomes weighted using ICVF and INTRA. In the bottom part, we show efficiency
and mean strength resulting from the connectomes weighted using RD, EXTRATRANS, and MD. EXTRATRANS, extra-
neurite transverse diffusivity; HC, healthy controls; ICVF, intraneurite volume fraction; INTRA, neurite volume fraction;
MD, mean diffusivity; RD, radial diffusivity. Color images are available online.
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diffusion MRI models are in fact able to isolate the contribu-
tion of the signal deriving from the different tissue compart-
ments, thus having the potential to detect specific tissue
subtypes and associated injuries with increased pathologic
specificity (Lakhani et al., 2020).

When assessing the pathological sensitivity of our
network-based analysis derived from tractometry, we have
found that the most sensitive microstructural measures
were related to the intracellular compartment, that is, intra-
axonal compartment since we focused on WM connections.
Specifically, when the connectomes were weighted for both
NODDI-ICVF and SMT-INTRA, we measured a significant
decrease in global efficiency, clustering coefficient, and
mean strength as well as a significant increase in modularity
in MS patients compared with HCs. This indicates an in-
creased network segregation, a decrease in the number of
connections, and, in turn, a loss in network efficiency in
MS patients, confirming and extending what was observed
in Welton et al. (2020), where a normalized NOS measure
was applied.

Adding to previous knowledge, our results also show a di-
rect relationship between the observed reduction in the edge
values weighted with NODDI-ICVF and SMT-INTRA and
axonal damage, since these two maps describe the aniso-
tropic signal of the intra-axonal compartment. Furthermore,
it is probable that these results are also related to the demy-
elination that occurred in those axons, since NODDI-ICVF
has been also shown to strongly correlate with the myelin
fraction of a spinal cord tissue, in a recent postmortem
MRI and histology study (Grussu et al., 2017). As a conse-
quence, the reduction in efficiency, clustering coefficient,
and connection strength that we measured in MS patients—
together with the observed increase in modularity (and hence

segregation)—may be representative of both axonal damage
and demyelination in the tracts of interest. In contrast, mea-
sures of demyelination and of increased diffusivity obtained
with DTI showed less sensitivity to MS pathology, whereas
NOS measures appeared to be relatively insensitive.

Similarly, when we assessed the relationship between the
network-based measures derived from microstructural maps
and patient’s disability, only the modularity measured in
connectomes weighted with NODDI-ICVF and SMT-
INTRA maps shows a significant relationship with patient
disability, suggesting that the network segregation caused
by axon myelin damage led to a disruption in network prop-
erties that is associated with the overall patient disability.

We acknowledge that EDSS is a crude measure of clinical
disability and EDSS scores >5 are mainly driven by walking
abilities, as well as by spinal cord damage. However, it is im-
portant to note that it is also very often the case that individ-
uals with high disability scores and long disease duration
have also an important lesion load in the brain that seem to
be confirmed by our analyses. To disentangle better these
two aspects, in future studies more data should be acquired
for patients with EDSS ‡5 to better investigate the impact
of the spinal cord damage.

Counterintuitively, when we assessed the relationship be-
tween network-based measures derived from microstructural
maps and neuroaxonal damage—as measured in the serum
with NfL—we found that the decrease in modularity
weighted by measures of extracellular diffusivity was related
to a biological increase of neuroaxonal damage. These re-
sults are quite intriguing as they may indicate that the prop-
erties of the extracellular compartment, which is essentially
constituted by the extracellular matrix, interstitial fluids,
and glia cells, influence the network aggregation in a way

Table 3. Correlation Between Network Metrics Weighted for Intraneurite Volume

Fraction/Neurite Volume Fraction, and Expanded Disability Status Scale

Estimate SE t value Pr(>jtj)

ICVF
Multiple R2: 0.592; Adjusted R2: 0.535

(Intercept) �23.745 22.859 �1.039 0.303
Density 31.724 34.456 0.921 0.361
Efficiency �7.735 69.011 �0.112 0.911
Modularity 33.539 13.553 2.475 0.016
Clustering coefficient 52.857 49.289 1.072 0.288
Mean strength �0.673 1.121 �0.600 0.551
Gender 0.151 0.351 0.430 0.668
Age 0.069 0.014 5.034 <0.001
Disease duration 0.008 0.010 0.744 0.460

INTRA
Multiple R2: 0.584; Adjusted R2: 0.526

(Intercept) �23.546 23.784 �0.990 0.326
Density 33.357 35.799 0.932 0.355
Efficiency 3.083 76.846 0.040 0.968
Modularity 28.678 12.690 2.260 0.028
Clustering coefficient 48.160 52.987 0.909 0.367
Mean strength �0.798 1.187 �0.672 0.504
Gender 0.070 0.349 0.201 0.841
Age 0.072 0.014 5.196 <0.001
Disease duration 0.007 0.010 0.677 0.501

The statistically significant results are highlighted in bold.
Robust linear models to identify the contribution of each network metrics in explaining the EDSS. Age, gender, and disease duration are

included as covariates. For compactness, only the maps that show significant results are presented. In the upper part we have the model cor-
responding to ICVF, whereas in the bottom we have the model corresponding to INTRA. Both models explain *53% of our data. In the two
models, in addition to age that describes most of EDSS, modularity also seems to contribute to explaining the worsening of the disease, high-
lighting that EDSS is related to the segregation of the network.

SE, standard error.
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that is, in part, proportional to neuroaxonal damage (Van
Horssen et al., 2007). Network metrics obtained with connec-
tomes weighted for NOS did not show any correlation with
both patients’ EDSS and sNfL.

It is important to remark that the lesions of MS patients are
characterized by voxels containing different types of tissue,

which makes tissue segmentation critical for those voxels.
For this reason, we have decided to use the multishell multi-
tissue constrained spherical deconvolution algorithm, which
is able to take into account partial volume effects and allows
to estimate the fiber orientation distribution in multiple tis-
sues, even within the same voxel. The obtained estimation

Table 4. Correlation Between Network Metrics Weighted for Different Microstructural

Measures and Serum Neurofilament Light Polypeptide

Estimate SE t value Pr(>jtj)

FA
Multiple R2: 0.649; Adjusted R2: 0.597

(Intercept) 2.488 12.122 0.205 0.838
Density �5.219 18.413 �0.283 0.778
Efficiency �25.316 44.521 �0.569 0.572
Modularity 10.774 4.663 2.310 0.025
Clustering coefficient 10.402 16.795 0.619 0.539
Mean strength 0.274 0.716 0.383 0.703
Gender 0.212 0.091 2.339 0.024
Age 0.023 0.003 6.634 <0.001

MD
Multiple R2: 0.660; Adjusted R2: 0.609

(Intercept) �0.017 0.937 �1.801 0.078
Density 0.025 0.0138 1.800 0.078
Efficiency 0.456 0.260 1.755 0.086
Modularity 7.297 3.330 2.192 0.033
Clustering coefficient 1.147 1.041 1.102 0.276
Mean strength �0.689 0.3856 �1.787 0.080
Gender 0.255 0.096 2.658 0.011
Age 0.019 0.003 5.439 <0.001

RD
Multiple R2: 0.652; Adjusted R2: 0.600

(Intercept) �70.348973 63.352860 �1.110 0.272
Density 104.913926 98.913304 1.061 0.294
Efficiency 17.315908 16.691008 1.037 0.305
Modularity 8.127231 3.249140 2.501 0.016
Clustering coefficient 1.020346 1.005984 1.014 0.316
Mean strength �0.271909 0.256680 �1.059 0.295
Gender 0.235082 0.094214 2.495 0.016
Age 0.019849 0.003594 5.522 <0.001

ISOVF
Multiple R2: 0.650; Adjusted R2: 0.598

(Intercept) �2.588 8.710 �0.297 0.768
Density 3.139 13.664 0.230 0.819
Efficiency �2.507 5.519 �0.454 0.652
Modularity 8.077 3.415 2.365 0.022
Clustering coefficient 3.588 3.125 1.148 0.257
Mean strength �0.011 0.094 �0.114 0.910
Gender 0.221 0.089 2.481 0.017
Age 0.020 0.003 5.710 <0.001

EXTRAMD
Multiple R2: 0.66; Adjusted R2: 0.611

(Intercept) �0.018 0.018 �1.639 0.108
Density 0.025 0.016 1.558 0.126
Efficiency 0.509 0.318 1.599 0.116
Modularity 8.502 3.297 2.579 0.013
Clustering Coefficient 1.455 1.128 1.290 0.203
Mean strength �0.749 0.474 �1.580 0.121
Gender 0.270 0.094 2.880 0.006
Age 0.018 0.004 4.857 <0.001

EXTRATRANS
Multiple R2: 0.655; Adjusted R2: 0.603

(Intercept) �64.478 33.700 �1.913 0.062
Density 102.322 54.520 1.877 0.069
Efficiency 16.863 9.344 1.805 0.077
Modularity 6.648 3.295 2.018 0.049
Clustering coefficient 0.840 1.047 0.803 0.426
Mean strength �0.273 0.147 �1.861 0.069
Gender 0.248 0.095 2.606 0.012
Age 0.020 0.003 5.670 <0.001

The statistically significant results are highlighted in bold.
Robust linear models to identify the correlation between the changes in the structural connectivity of MS patients through the global net-

work metrics and the increase of sNfL. Age and gender are included as covariates. For compactness, only the maps that show significant
results are presented. Both models explain *60% of our data. In the six models, in addition to age, which explain most of sNfL increase,
gender and modularity also seem to contribute to explaining the increase of NfL blood concentration, highlighting that the network segre-
gation is related to increased inflammation and axonal damage.

sNfL, serum neurofilament light polypeptide.
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of the FODs, in combination with the iFOD2 tracking algo-
rithm (Tournier et al., 2010) constrained to a deterministic-
like behavior, guarantees the reconstruction of the streamlines
even in lesion voxels (Lipp et al., 2020). Thus, even in the
areas affected by lesions, the connectivity is not completely
disrupted.

Nevertheless, in very damaged lesions, there may be no re-
sidual anisotropic tissue, leading, therefore, to the estimation
of few connections (Van Wijk et al., 2010). This causes a de-
crease in connection density of the connectomes that is nega-
tively correlated with the volume of the WM lesions as shown
in Figure 2, and very damaged lesions may also significantly
impact the microstructural properties of the entire tract they
affect. In light of this, and to grant a fair comparison between
connectomes of the two groups of subjects (Schiavi et al.,
2020b), we used the connection density as a confounding fac-
tor in our statistical analyses. Nevertheless, it has to be ac-
knowledged that the impact of very destructive lesions will
be more evident on NOS-weighted connectomes than in con-
nectomes weighted by other microstructural measures.

Limitations of our study are related to the small number of
enrolled patients, which did not allow us to perform a proper
comparison of the sensitivity and biological correlation of
microstructure-weighted network metrics between progressive
and relapsing-remitting patients. We have, however, computed
the results of the group comparison between relapsing remit-
ting MS patients and HCs (Supplementary Table S1), which
showed very similar results to those obtained in the whole
cohort. In a follow-up study, we will expand the cohort by
including more progressive patients. Another limitation of
this study is related to the fact that sNfL was assessed within
3 months from the MRI, hence we cannot exclude that
disease-related or unrelated factors may have affected
sNfL values. Furthermore, in this study we have focused
on the relationship between network metrics derived from
microstructural-weighted connectomes and disability or bi-
ological biomarkers of disease impact (i.e., sNfL).

Future studies will also attempt at assessing the value of
weighting the connectomes with myelin-specific measures
such as myelin water fraction and quantitative magnetiza-
tion transfer (Granziera et al., 2020; Koenig et al., 1990;
Mackay et al., 1994; Mossahebi et al., 2014, 2015). Finally,
another interesting point for the future could be to evaluate
the sensitivity to the pathology by weighting the connec-
tomes using the newly proposed anatomically constrained
microstructure-informed tractography (Daducci et al., 2014;
Schiavi et al., 2020a).

Conclusion

In conclusion, we have shown that network-derived met-
rics in MS patients are most sensitive to MS pathology and
most related to clinical disability when connectomes are
weighted for intracellular/intra-axonal microstructural met-
rics, whereas connectomes weighted for extracellular diffu-
sivity permit to assess network metrics that are most
related to biological measures of neuroaxonal damage.
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