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Single-cell characterization of step-wise acquisition of
carboplatin resistance in ovarian cancer
Alexander T. Wenzel 1,2,12, Devora Champa3,8,12, Hrishi Venkatesh 4,9, Si Sun3,10, Cheng-Yu Tsai 3,11, Jill P. Mesirov2,3, Jack D. Bui5,
Stephen B. Howell3,6✉ and Olivier Harismendy 3,7✉

The molecular underpinnings of acquired resistance to carboplatin are poorly understood and often inconsistent between in vitro
modeling studies. After sequential treatment cycles, multiple isogenic clones reached similar levels of resistance, but significant
transcriptional heterogeneity. Gene-expression based virtual synchronization of 26,772 single cells from 2 treatment steps and 4
resistant clones was used to evaluate the activity of Hallmark gene sets in proliferative (P) and quiescent (Q) phases. Two behaviors
were associated with resistance: (1) broad repression in the P phase observed in all clones in early resistant steps and (2) prevalent
induction in Q phase observed in the late treatment step of one clone. Furthermore, the induction of IFNα response in P phase or
Wnt-signaling in Q phase were observed in distinct resistant clones. These observations suggest a model of resistance hysteresis,
where functional alterations of the P and Q phase states affect the dynamics of the successive transitions between drug exposure
and recovery, and prompts for a precise monitoring of single-cell states to develop more effective schedules for, or combination of,
chemotherapy treatments.
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INTRODUCTION
Patients diagnosed with high grade serous ovarian cancer are
generally treated initially with either cisplatin or carboplatin
(CBDCA) in combination with paclitaxel. While 65–75% of patients
respond to the primary treatment1, resistance emerges frequently
during therapy and this is a major obstacle to cure2. Unlike
targeted agents where high levels of resistance are common,
repeated treatment of sensitive cells with clinically relevant levels
of exposure to cisplatin or CBDCA produces only low-level
resistance, typically in the range of 1.5–3-fold, a level sufficient
to account for clinical failure of treatment in vivo3.
The mechanisms underlying acquired resistance to platinum-

containing drugs have been the subject of intense study ever
since their discovery. Acquired resistance has been attributed to
changes in many types of cellular functions including import and
export of the drug, enhanced detoxification and DNA adduct
repair, inactivation of the mismatch repair checkpoint, and
repression of apoptotic signaling4. Findings from single genes or
transcriptome-wide studies of bulk cell populations can usually be
validated through overexpression or knock-out, but these studies
have failed to disclose any actionable gene or set of genes that are
consistently altered across different cell types or experiments and
that would point toward the need for widely useful approaches for
preventing or overcoming the development of resistance in
patients.
Apart from BRCA1/2 mutation reversion, which occurs in up to

26% of mutated patients5, the acquisition of CBDCA resistance is
believed to be epigenetically mediated6. Recent advances in the

study of resistance to kinase inhibitors has revealed the existence
of “persister” cells in lung cancer cell lines that are present at low
prevalence and can resist treatment through epigenetic mediated
mechanisms7. Previously, single cell tracing had shown that,
within a cell population, the immediate response to genotoxic
treatment can vary extensively from cell to cell giving rise to
considerable heterogeneity within the surviving population8,9.
More recently, similar observations were made in vemurafenib-
treated melanoma cells where cells in a transient resistant state
are present in the population prior to drug exposure and display
increased levels of expression of resistance genes10. Importantly,
the relevance of these recent models to the acquisition of
resistance to platinum-containing drugs has not been established
for either in vitro or in vivo models nor have the concepts been
validated in clinical studies.
Here, we present a comprehensive phenotypic and molecular

characterization of a set of ovarian cancer clones derived from a
single cell and selected in parallel for acquired resistance to
CBDCA. We show that the resistance is unlikely to be due to
genetic mutations, copy number changes, or differences in CBDCA
uptake. Resistance was associated with significant changes in
proliferation rate and the capacity to form colonies and organoids,
and there is substantial heterogeneity between clones. Transcrip-
tome profiling showed a common association of CBDCA resistance
with slow proliferation and high interferon signaling but also
demonstrated marked heterogeneity between resistant clones.
Importantly, single-cell transcriptome analysis allowed us to
characterize the resistant states at single-cell resolution,
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eliminating the confounding effect of cell cycle variation and
revealing functional changes specific to proliferative and quies-
cent phases.

RESULTS
While resistance acquisition can be well recapitulated in vitro
through repeated drug exposure, variation between cell lines,
methodologies and the lack of selection replicates compromise
the identification of widely shared molecular changes associated
with resistance to platinum-containing drugs. We chose an
experimental design that would allow us to determine whether
genetically identical clones undergo the same molecular changes
during acquisition of resistance. Specifically, we isolated a single
cell from a non-clonal population of human ovarian cancer CAOV3
cells, and grew them to a small population (the parental clone)
from which 12 clones were isolated (Fig. 1a). Four of these clonal
populations were grown continuously in the absence of CBDCA (“S
clones”: S01–S04). The remaining 8 (“R clones”: R06, R07, R14-R19)
were each individually subjected to 4 cycles of exposure to CBDCA
at which point they tolerated 5 µM drug (subsequently referred to
as step 5) and averaged 1.7-fold resistance relative to the parental
clone (Fig. 1b). Four of these eight clones were then treated with
additional cycles of CBDCA at gradually increasing concentrations
until they tolerated 15 µM CBDCA (referred to as step 15) and
averaged 7.8-fold resistance relative to the parental clone.
Subsequent passages of the resistant clonal populations in the
absence of CBDCA for 63 doublings did not result in loss of

resistance (Supplementary Fig. 1), indicating that the phenotype
was stable within the number of passages used in the study.

Phenotypic and molecular characterization of isogenic
resistant clones
We next compared the phenotypic and molecular characteristics
of 4 S and 4 step 15 R clones to identify features associated with
acquired resistance. As shown in Fig. 1c–e, the growth of the R
clones was slower, they formed fewer large colonies in 2D culture,
and in low-attachment plates they formed a higher proportion of
small spheres. Importantly, the reduced proliferation can partly
explain the resistant phenotype (Supplementary Fig. 2) as
previously proposed11,12. However, given the large differences in
proliferation between R clones despite their similar level of
resistance, it is likely that other processes contribute to the
reduced cytotoxicity. Cells from all clones had similar distribution
of CBDCA content after 1 h exposure (Supplementary Fig. 3),
suggesting that unlike other models13, reduced drug uptake was
not a major contributor to resistance in the studied clones. Exome
sequencing of 4 S clones and 8 R clones (step 5) was used to
identify copy number alterations (Supplementary Table 1). Two
clones (S01 and R06) were affected by copy number gains (4 and
10 Mbp) and 7 clones (S01–03, R06, R16, R18, R19) had copy
number losses (0.2–12 M bp). When copy number changes
occurred, they were small in magnitude (less than 1.5-fold) and
none of them affected multiple R clones. We also identified a
median of 39 coding mutations per clone affecting a total of 74

Fig. 1 Phenotypic characterization of the resistant clones. a Schematic representation of the workflow to generate CBDCA resistant clones
from CAOV3. b Changes in IC50 of S clones (unselected) or R clones (8 at step 5 and 4 at step 15). Each IC50 is calculated from dose-response
curves of 6 replicates and experiments repeated twice or more (dots). Boxes represent the top and bottom quartiles of the distribution and
whiskers are extended to 1.5 time the interquartile range. c Doubling time measured over a 48 h time course—y axis cut for R18 (>100 h).
d Counting of colonies formed in a period of 9 days after seeding 200 cells per well. Experimental replicates (N= 6) are shown. e Fraction of
organoids (O), spheres (S) and cell aggregates (A) observed after 14 days growth in low adherence 3D culture model. For each sample (N= 8)
and replicates (N= 2), the total number (point size) and relative abundance (Gibbs triangle coordinates) of each type of structure are
indicated.
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genes. Neither total mutation burden nor gene-specific mutational
burden was significantly associated with the resistant phenotype,
albeit with limited statistical power (Supplementary Table 2).
Interestingly, CAAP1 T103P, was identified in all 8 R clones and 1 S
clone, and while the mutation is predicted to be deleterious
(CADD score= 2214), a role for CAAP1 in apoptosis signaling has
not been validated15,16. Thus, these clonal populations derived
from a single cell showed small genetic differences, unlikely to be
the result of the treatment, but due to the small number of clones
studied as well as the lack of functional information for most
variants, a genetic cause to the resistance cannot be fully
ruled out.
In order to identify molecular processes associated with

resistance, we measured the expression level of all genes in the
4 S and the 4 R clones at step 15 using RNA-seq. We identified 186
genes that were differentially expressed between S and R clones
(Fig. 2a). An enrichment analysis of Hallmark17 and Reactome18

gene sets from MSigDB19, revealed that resistance was associated
with a global repression of proliferation and translation and the
activation of genes involved with interferon and KRAS signaling,
and epithelial-to-mesenchymal transition (EMT) (Supplementary
Fig. 4). All of these are processes previously reported to be
involved in chemo-resistance or response to genotoxic injury20–22.
An unsupervised analysis revealed that, while the S clones had
similar transcriptional profiles, the profiles of the R clones were
highly heterogeneous (Fig. 2b). Processes related to cellular
proliferation (E2F targets) were repressed in all R clones, and
interferon and KRAS signaling were induced in all R clones (Fig. 2c).
In contrast, a clone-specific analysis revealed that cell cycle and
nucleotide excision repair were induced at higher level in R06,
EMT in R14, oxidative phosphorylation in R16. These processes are
not mutually exclusive and were dysregulated to different degrees
in the various resistant clones. Importantly, the regulation of these
resistance-associated processes is not specific to CAOV3. In order

to validate these findings in additional ovarian cancer cell lines, we
re-analyzed gene expression profiles associated with acquired
cisplatin resistance in 8 ovarian cancer cell lines23. We could
confirm the greater heterogeneity of resistant clones compared to
untreated cells and showed that genes involved in IFNα or KRAS
signaling, or EMT were frequently activated while those related to
cell cycle and proliferation were repressed at equivalent time
point and treatment regimen (cycle 6, schedule C, Supplementary
Fig. 5). This analysis, therefore, confirms that the functional
changes observed in our system are consistent in cell lines and
models of platinum resistance. Interestingly, we observed that
ruxolitinib, a strong inhibitor of IFNα signaling via the JAK/STAT
pathway, could re-sensitize the CAOV3 cells to CBDCA (Fig. 2d)
suggesting that the JAK/STAT pathway activation is required for
the resistance in these cells. Similarly, inhibition of KRAS signaling
via silencing of MEK or inhibition of ERK1/2 has been shown to
increase platinum sensitivity in other ovarian cancer cell lines24–26.
Beyond common mechanisms of resistance highlighted or
confirmed by this analysis, our observations suggest important
differences between clones prompting a more detailed investiga-
tion of the dynamic changes in the processes mediating treatment
resistance.

Characterization of chemo-resistance at single cell resolution
Suspecting that phenotypic heterogeneity within the cell popula-
tion may be underlying the differences in the acquisition of drug
resistance, we measured the expression level of individual genes
in 26,772 single cells from the original CAOV3 cell population, the
parental clone derived from a single cell in this population, two S
clones and two time points for each of the R clones (step 5 and
step 15). The cells were classified according to their cell cycle
signatures and, in agreement with the slower proliferation of the
resistant clones, step 5 resistant cells were more likely to be

Fig. 2 Expression profiling of the derived clones. a Volcano plot indicating the fold change (y axis) and significance (x axis) of the genes
differentially expressed between S and R clones. b First two principal components derived from the expression profiles of each clone. c Most
significantly up or down-regulated gene sets (Hallmark and Reactome from MSigDB) in individual R clones compared to all S clones.
Significant gene sets (q < 0.005) enriched (score > 1.5) or depleted (score <−2) in at least one clone are reported. Color gradient indicates
enrichment score. d Treatment with 5 µM ruxolitinib (Rux) significantly decreases the growth-rate corrected half maximal inhibitory
concentration (GR50) in both Parental and R clones. The results of 3 dose-response experiments, 3 replicates per experiment are presented.
Significance was measured using Wilcoxon Test (* < 0.05, ** < 0.01, *** < 0.001). Boxes represent the top and bottom quartiles of the
distribution and whiskers are extended to 1.5 time the interquartile range.
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quiescent than the untreated cells (61% vs 21% in G0- Fig. 3a),
while step 15 cells resumed proliferation (~30% in G0) with the
exception of R16 (57% in G0).
The expression profiles were used to group all cells into 6

expression clusters, A through F (Fig. 3b–c). Cells from step 15 R
clones were distributed across 5 different clusters, whereas cells
from step 5 R clones clustered together, indicating that additional
treatment cycles increase transcriptional heterogeneity (Fig. 3d, e).
Interestingly, cells from R14 step 15 cells likely split into two sub-
populations which could not be reliably distinguished by
chromosomal copy number analysis (Supplementary Fig. 6a)
suggesting their differences in expression are not genetically
driven. Similarly, step 15 clones display increased aneuploidy
compared to their step 5 clones, suggesting that genetic drift may
contribute to their increased heterogeneity (Supplementary Fig.
6b, c). The single-cell analysis further revealed that a small fraction
(230/7814, 2.9%) of untreated cells were not in cluster A and were
primarily in cluster B (133/230, 57%). The converse was not true
with fewer than 0.2 % of the treated cells found in cluster A. From
this observation, one could speculate that untreated cells could
exist in a pre-resistant state prior to exposure to the drug, but
isolation or tracking of these cells would be required to
demonstrate this property. Cluster B had the largest fraction of
cells in G0 indicating that quiescence characterizes both pre-
resistant cells, step 5 and R16 step 15 cells (Fig. 3e). However,
differences in cell-cycle alone is unlikely to explain the variation in
cellular states as cells in all phases of the cell cycle exist in all
clusters. This observation prompted us to more carefully account
for cell cycle differences before characterizing the functional
changes associated with the different resistant states.

Variation of expression-based activity of biological processes
along the cell-cycle
The contribution of cell cycle to single-cell gene expression can
be mathematically subtracted to study the source of the
residual variation and its association with the resistant
phenotype. However, this correction method assumes the
independence of gene expression measurements. Nonetheless,
gene expression is tightly coordinated and gene-based cell-
cycle correction may mask important intrinsic differences as

cells progress through the cell cycle. Thus, to make the
correction, we chose instead to use the expression of 603
genes associated with cell cycle to order the cells along a linear
pseudotime (pt) trajectory from mitosis (G2M, M; pt < 0.20) to
growth and replication (MG1, G1S, S; 0.20 ≤ pt < 0.69) and
quiescence (G0; pt ≥ 0.69) (Fig. 4a, b). Consistent with the cell
cycle phase analysis, the distribution of cells along the
trajectory varied between clusters with the majority of cells in
cluster A (referred to as A cells) in proliferation (92% with pt <
0.69), B and C cells mostly in quiescence (79% and 74% pt ≥
0.69, respectively), while D, E, and F cells, corresponded to step
15 treatment of R06 and R14 clones, resuming proliferation
(19%, 15% and 15% with pt ≥ 0.69, respectively). The resulting
virtual synchronization allowed us to identify cells from
different clones that are in similar phases of the cell cycle,
which facilitates the interpretation of functional differences
associated with resistance.
The changes in activity, or enrichment score (ES), of the

Hallmark gene sets can be measured along the pseudo-time using
the smoothed geometric average of the gene expression (see
methods—Fig. 4c). In untreated cells (Cluster A), the activity varied
most strongly between proliferation (referred to as P; pt < 0.69)
and quiescence (referred to as Q; pt ≥ 0.69). In particular, and as
expected from their use in the trajectory inference, processes
associated with cell cycle progression had the highest activity in P
and shut down in Q (G2M checkpoint, E2F target, MTOR signaling).
The activity of other processes were either unchanged along the
cell cycle (TGFβ signaling, P53 pathway) or were induced as cells
progressed from P to Q (Hedgehog signaling, KRAS_DN). Such
time-resolved functional changes can also help interpret some of
the result observed in bulk RNA-seq as the differences proportion
of cells in P and Q phases between R and S clones would result in
apparent downregulation of process high in P and low in Q (e.g.,
E2F targets), or upregulation or processes low in P and high in Q
(e.g., IFN alpha response). Hence the overall variation in gene
expression - with and without dependency to changes in cell-cycle
distribution - justify the necessity to distinguish between cells in P
and Q to identify and properly interpret intrinsic functional
differences associated with acquired resistance.

Fig. 3 Evolution of expression states in all clones. a Distribution of cells in three phases of the cell cycles estimated from the expression
signatures. b Distribution of the cells from each clone and treatment group across the 6 clusters. c Distribution of cells in three phases of the
cell cycles estimated from the expression signatures. (d, e) Uniform Manifold Approximation and Projection (UMAP) of cells from the
aggregated analysis based on the first 2 principal components. Cells are colored according to their sample of origin (d) or Louvain cluster (e).
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Drug resistance associates with distinct patterns of activity
changes between proliferation and quiescence
As most clones and gene set activity showed the strongest
differences between P and Q phases, we next summarized the
observations across these two phases (Fig. 4d, and Supplementary
Fig. 7). The median activity level of cluster B, C, and D was the
lowest, irrespective of the phase. In contrast, the median activity in
cluster E and F had levels similar to cluster A and even slightly
higher in the Q phase. Across all gene sets activities, we observed
three correlation patterns relative to cluster A untreated cells (Fig.
4e): (1) a P-like pattern observed in P phase of cluster E and F,
highly correlated to P phase of cluster A, (2) a Q-like pattern
observed in Q phases of cluster E and F, correlated to Q phase of
cluster A, (3) an anti-P pattern observed in both P and Q phases of
cluster B, C, and D, with activity levels with strong negative
correlations in comparison to P phase of cluster A.
The cells following the anti-P pattern all belonged to cluster B,

C, and D, the clusters with the most repressed activity in both P
and Q phases. The gene sets that are the most active in the
proliferating cells from cluster A are also the most repressed in
these cells, irrespective of the cell cycle phase, suggesting the cells
adopt an expression state the most functionally distant from
untreated proliferative cells and more closely resembling
untreated quiescent cells. The resistant phenotype in these cells
could therefore be due to the maintenance of a quiescence-like
state, even in cells that are proliferating. In contrast, cells from
cluster E and F in P and Q phases followed the P-like and Q-like
patterns respectively, suggesting they resemble more closely
cluster A cells. The level of correlation with the Q phase is however
weaker, suggesting the difference may contribute to the
resistance. Importantly, the patterns observed are unlikely due
to genetic changes or associated with resistant steps as one clone

switched from Anti-P (R14 step 5) to P-like and Q-like (R14 step 15)
during the course of the treatment. Furthermore, the patterns are
independent from differences in proliferation rate, or fraction of
cells in Q, as cells from slow proliferation (cluster B) or faster
proliferation (cluster D) are both following the anti-P pattern.
The activity of some gene sets did not follow the patterns

described above and their analysis may help determine which
process are essential or dispensable to the resistant phenotype in
specific clusters (Supplementary Fig. 7). Increased IFNα response
signaling in both P and Q phases of cluster C suggests that this
process has been activated for clone R18 between step 5 and
step15 of the treatment. Cells from cluster D showed induction of
Wnt-signaling in both P and Q phases and UV response in P phase
to levels similar to untreated cells, suggesting these processes
may not contribute to the resistant phenotype as their activity was
restored during subsequent treatment of that clone. Compared to
Q phase untreated cells, Q phase cells in both cluster E and F have
more active inflammatory response (E and F), IFNα (E only), Wnt
signaling (F only) suggesting that these processes may contribute
to the resistance by altering the expression state of cells in
Q phase.

DISCUSSION
As shown from the multiple replicates, treatment steps, and gene
sets analyzed, the acquisition of resistance to CBDCA is a highly
heterogeneous process with the repression of proliferation, and
transition to a quiescent state as a common underlying factor. As
such, the variation of activity of biological process along the cell
cycle, and in particular between proliferation and quiescence can
confound the functional annotation of the resistant phenotype. In
order to determine whether the changes in expression of specific

Fig. 4 Functional analyses of single-cell resistant states after in silico synchronization. a Fraction of cells in each inferred cell cycle phase as
a function of the pseudo-time (x axis bins). Three aggregated cell cycle phases are indicated above the plot and determined by bins
containing more than 50% of the cells in G2/M or M (mitosis, blue bar, pt < 0.2), in G1S or MG1 (growth and proliferation, red bar, 0.2 ≤ pt <
0.69) or in G0 (quiescence, black bar pt ≥ 0.69). b The distribution of cells (kernel density – y axis) along the pseudo-time trajectory (x axis) is
represented for each expression-based clustering. c Scaled enrichment score (ES) of the hallmark gene sets (clustered rows) observed in
cluster A cells as a function of pseudo-time (columns). d Median scaled enrichment score of all hallmark gene sets across cells from P (red
points) and Q (black points) phases for each of the 6 clusters. Boxes represent the top and bottom quartiles of the distribution and whiskers
are extended to 1.5 time the interquartile range. e Correlation of hallmark gene sets median scaled enrichment score for all clusters and
proliferation phases.
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processes mediate the resistant phenotype, we used single-cell
expression profiling to virtually synchronize cells and compare the
activity of biological processes along the cell cycle. This analysis
revealed that processes may be altered differently between P and
Q phases during the acquisition of resistance and that different
clones and treatment steps may follow different patterns.
In contrast to previous studies, the use of isogenic, single-cell

derived cell lines allowed the generation and comparison of
multiple matching resistant and sensitive samples. This rigorous
experimental design, applied to the CAOV3 cell line, substantially
reduced experimental noise. Additionally, CAOV3 has been
unambiguously characterized as a serous ovarian cancer cell line
in contrast to other models of platinum resistance such as
A278027. Most experimental studies of resistance choose a
continuous exposure to the drug, selecting for cells in a drug
persister state which expand to a drug-tolerant persister state. In
contrast, in our study we chose to mimic chemotherapy cycles,
giving an opportunity for the cells to recover between treatment
steps through multiple cycles. Carrying out such multi-clone,
multi-step experiments offers significant challenges in the
laboratory, since clones rapidly acquire variable proliferation and
treatment recovery dynamics. While the source of this diversity is
not completely understood, it is likely rooted in the differences in
Lamarckian induction of adaptive response observed in other
systems28. Variability between ovarian cancer cell models exists
and while our observations were replicated in public studies with
similar experimental design (Supplementary Fig. 5), their validity in
additional HGSOC models or even organoid systems remains to be
established. Importantly, our study addressed the possibility that
the resistant phenotype is genetically acquired. The analysis was
however limited to mutations and copy number profiling and,
starting from isogenic clones, the design assumed the convergent
evolution of several resistant clones potentially altered in the
same gene or locus. The analysis was however limited by the small
number of clones studied and the reduced statistical power to
conduct multi-genic or genetic burden tests. Hence, while our
study does not completely rule out the possibility of a genetically
driven phenotype in our model, the comprehensive remodeling of
the cell cycle and associated processes observed and discussed
below gave us an opportunity to explore non-genetic causes.
Interestingly, sequential treatment cycles such as the one used

in our study may allow multiple rounds of adaptation to two
different types of transitions to occur: from drug-free to treatment
(drug on) and reciprocally (drug-off), providing, therefore, multiple
chances for such adaptation – and associated heterogeneity – to
occur. There is a strong association between cell cycle transition
and drug exposure transition, as cells exposed to the drug will
activate G1 checkpoint and may enter into quiescence, until repair
can be completed and drug removed. Reciprocally, drug removal
eventually leads to re-entry in cell cycle. As a consequence
processes active in P phase are more likely to impact the drug-on
transition whereas processes active in Q phase would be more
likely to impact the drug-off transition. Specifically, processes
accelerating P to Q transition or slowing Q to P transition are both
likely to increase resistance by keeping cells in a low proliferative
state. Such a hysteresis resistance model (Supplementary Fig. 8) is
compatible with the following observations: processes in cells
from cluster B had activity levels similar to, or lower than,
untreated cells in Q phase, suggesting that cells in P phase are
primed for a fast P to Q transition in this earlier treatment step.
Alternatively, processes in cells from cluster E and F in Q phase
have higher activity levels than untreated cells in Q phase
suggesting that these processes slow down Q to P transition in
support of resistance.
Cellular hysteresis models similar to the one discussed here,

have been used previously to describe antibiotic resistance in
bacteria29 or transition between epithelial and mesenchymal
states in cancer cells30, but are not commonly used to model

cancer drug resistance. The model accounts for the treatment
memory effect that has been observed31, proposing that transition
between states is not symmetric and can be mediated by distinct
processes. Single-cell RNA-sequencing (scRNA-seq) and virtual
synchronization allowed us, for the first time, to independently
study cells undergoing drug exposure in each state thereby
offering an observation window on the processes already primed
before a transition occurs. However, the treatment time course
(step 5 and step 15) and observation window (post recovery) used
in our experiments lacks sufficient resolution to fully validate the
model on individual treatment cycles and to precisely follow how
the activity of different processes changes as a function of drug
concentration, exposure or recovery duration, or number of cycles.
The collection of multiple time points, within hours before and
after each transition is likely to provide much clearer information.
Importantly, the use of single-cell assays such as scRNA-seq or
RNA-FISH is critical to capture events shortly after treatment
where only few cells remain and to alleviate the need to expand
them and introduce undesirable variation.
Based on our observations, it is unlikely that a single signaling

or Hallmark process exclusively contributes to the acquisition of
CBDCA resistance. The bulk analysis identified IFNα response
signaling as an induced process shared by multiple clones.
Activation of interferon signaling is triggered by the DNA damage
response (DDR)32 and was previously observed in response to
genotoxic stress. Expression of IRF1, a main effector of interferon
signaling, is induced by cisplatin and may limit this drug’s
effectiveness21. The process could be successfully blocked by pre-
exposure to ruxolitinib which restored sensitivity. Hence, consis-
tent with the findings of the genetic profiling, this observation
suggested that resistance is unlikely to be inherited. The virtual
synchronization showed little variation in IFNα response signaling
along the cell cycle, which suggests that despite a strong shift of
resistant clones into quiescence, the bulk analysis may have
measured intrinsic changes independent of cell cycle. Interest-
ingly, the level of induction of IFNα in both P and Q phase was
correlated with the response to ruxolitinib with R14 and R18
clones being the most sensitive. IFNα response was, however, not
induced in cluster B corresponding to step 5 treatment, perhaps
suggesting that the sensitizing effect of ruxolitinib, although
visible in untreated cells, may not apply to earlier treatment steps.
Furthermore, it is not clear whether the inhibition of JAK/STAT
signaling would restore sensitivity by accelerating the Q to P
transition or slowing down P to Q. Studies in tissue regeneration
have shown that inhibition of JAK/STAT promotes stem cell
expansion suggesting that inhibition of JAK/STAT could wake up
quiescent cells33. Such considerations on the direction of the
effect are important for the design of combination therapy to
prevent or reverse resistance and more precisely determine the
treatment schedule. One can envision a combination of platinum
drugs with treatments slowing down P to Q transition to prevent
resistance development. Reciprocally, treatment accelerating Q to
P transition, targeting processes active in Q phase, would increase
the benefit of drug holidays and accelerate the re-sensitization of
the tumor.
Beyond IFNα response signaling, it is possible that many other

processes are impacting the dynamics of the transition at every
treatment cycle and such redundancy may explain the hetero-
geneity observed between clones or after multiple cycles.
However, cellular processes are constrained by the underlying
regulatory circuitry and strongly inter-dependent. Multiple
research efforts are underway to map these dependencies and
reduce the complexity to fewer comprehensible dimensions34,35.
The cellular hysteresis model of transition however adds a
dynamic dimension ignored so far. The addition of single-cell
assays and virtual synchronization to systematic, large scale assays
will likely help generalize the phenomenon to multiple stimuli and
understand which processes are acting in concert along each
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transition direction. It is likely that some of them may be key
regulators of one direction without affecting the other. Such
precise mapping would be important to determine which
processes, or combination of processes, can be targeted to more
effectively prevent the acquisition of resistance or more rapidly
and durably re-sensitize cells. Similarly, the analysis of the
epigenetic changes associated with the transitions are likely to
capture underlying regulatory mechanisms supporting the hys-
teretic memory of change in growth conditions. Subsequent
analysis at single-cell resolution would be needed to distinguish
regulatory elements primed or poised for each transition direction.
Importantly, while our demonstration relies on in vitro observa-

tions, these processes are at play in vivo, in patients, where
multiple stimuli from the micro-environmental niche, in addition
to the treatment itself, may impact the cells’ decision to enter or
exit a proliferative state and it is likely that the hysteresis paradigm
applies to any transition between states, which in oncology, often
boils down to proliferation, quiescence or cell-death.

METHODS
Generation of CBDCA resistant clones
CAOV3 cells and all sublines were grown in RPMI 1640 containing 5% fetal
bovine serum and 1X penicillin/streptomycin. The clonally derived cell lines
were always plated at 40,000 cells per well in 6 well plates and allowed to
attach overnight before adding the drug. A selection cycle consisted of
exposure to the drug for 7 days following which cells were allowed to
recover in drug-free medium for ~2 weeks until they resumed growth and
reached confluence. CBDCA sensitivity was determined from
concentration-survival curves using ≥5 concentrations; viability was
determined with the Cell Counting Kit 8 (Dojindo Molecular Technologies,
Rockville, MD) or Crystal Violet reagent after 96 h of drug exposure.

2D and 3D growth assays
CAOV3 cells were seeded at 200 cells/well in a 6-well plate in replicates of 3
or 6 and allowed to form colonies for 9 days after which they were stained
with Crystal Violet. Colonies were counted microscopically. The capacity to
grow in 3 dimensions was tested by seeding 20,000 cells/well in ultra-low
attachment 6 well plates (Corning Ref 3471) in stem cell medium (1:1
DMEM:F12 plus L-glutamine, 15 mM HEPES, 100 U/mL penicillin, 100 μg/mL
streptomycin, 1% knockout serum replacement, 0.4% bovine serum
albumin, and 0.1% insulin-transferrin-selenium (Corning, Corning, NY).
The stem cell medium was further supplemented with human recombi-
nant epidermal growth factor (20 ng/mL) and human recombinant basic
fibroblast growth factor (10 ng/mL). The medium in each well was
refreshed every 3 days by adding 500 µL/well of fresh stem cell media
supplemented with the growth factors. Spheres were counted under a
microscope and subclassified as either tight spheres or organoids after 7
and 14 days of culture.

Ruxolitinib treatment
Validation of JAK inhibition. The parental clones (6 wells seeded at 105

cells/well) were pre-treated with 5 µM of Ruxolitinib (50mM in DMSO – LC
laboratories) or vehicle. The cells were then treated with 1000 units of
human Interferon-β for 24 h. RNA was then isolated using TRIzol
(ThermoFisher), quantified using Nanodrop and 1 µg was converted to
cDNA (High Capacity cDNA Reverse Transcription Kit - Applied Biosystems).
The quantitative real-time PCR amplification −95 °C (10min) and 34 cycles
of 95 °C (1min), 60 °C (30 s), 72 °C (1 min) – final: 72 °C (5 min) - was carried
out in duplicate using the following pairs of primers: ISG15_FWD
(GAGAGGCAGCGAACTCATCT), ISG15_REV (CTTCAGCTCTGACACCGACA)
and 18S_FWD (CGCCGCTAGAGGTGAAATTCT) and 18S_REV (CGAACCTCC
GACTTTCGTTCT). Expression data were normalized to the geometric mean
of housekeeping gene 18 s to control the variability in expression levels
and were analyzed using the 2-ΔΔCT method.

Dose-response assay. The growth rate of each clone was first established
by seeding in 500, 1000, or 2000 cell per well and monitoring for 96 h (3
wells per time point, per sample). The density allowing exponential growth
at 96 h was chosen to seed the cells in triplicate (96-well plates): Parent and
R06: 2000 cells/well, R14: 2500 cells/well, R16: 3000 cells/well, and R18:

3000 cells/well. The cells were pre-treated with 5 μM Ruxolitinib or vehicle.
Two additional wells were seeded in parallel to correct for growth rate
differences (with and without Ruxolitinib) at the time of CBDCA treatment
(time 0). The remaining wells were treated at time 0 with increasing CBDCA
dose for 96 h, following which the cells were detached using 0.25%
Tryspin-EDTA, diluted 1:2 in trypan blue and viable cells counted using a
Hemocytometer. The Growth Rate and Growth-Rate corrected half-
maximal inhibitory concentration (GR50) were calculated following Hafner
et al.36 and the GRmetrics bioconductor package.

Mass cytometry
Cells were incubated with 15 µM CBDCA for 1 h at 37 oC, washed and then
exposed to a 1:500 dilution of Cell-ID Intercalator 103Rh for 15min at 37 oC
to mark the dead cells in the population. Analysis of ~2 × 105 cells from
each sample was carried out on a Fluidigm Helios mass cytometer using
EQ Four Element Calibration Beads for normalization. The results are
presented in Supplementary Table 3.

Exome sequencing and analysis
The sequencing libraries were prepared and captured using SureSelect
Human All Exon V4 kit (Agilent Technologies) following the manufacturer’s
instructions. The sequencing was performed using the Illumina HiSeq
2000 system, generating 100 bp paired-end reads. All raw 100 bp paired-
end reads were aligned to the human genome reference sequence (hg19)
using BWA37 and further jointly realigned around indels sites using
GATK’s38 IndelRealigner. Duplicate reads were removed using Picard Tools
MarkDuplicates39. Supplementary Table 4 presents the summary statistics
of the sequencing. The variants were called using Freebayes40 and filtered
for high quality (QUAL/AO > 10). We annotated the variants with
ANNOVAR41, removed non-coding and synonymous variants, variants in
dbSNP147, or shared between all samples, leading to a total of 93 variants
across all 8 samples (Supplementary Table 2). The copy number changes
were called independently on each chromosome using CODEX42 with
default settings (Supplementary Table 1), limited to the expected exonic
target from the SureSelect capture kits and expecting fractional copy
number from aneuploidy. Segments smaller than 100 kb, supported by less
than 3 exons, or with copy number between 1.5 and 2.5 were excluded.

RNA sequencing and analysis
RNA was extracted using Qiagen RNAEasy and the libraries were prepared
from 1 µg of RNA using TruSeq following the manufacturer instructions
(shear time modified to 5min). The libraries were sequenced on HiSeq
4000 (paired end 100 nt reads) and analyzed using BCBio-nextgen 1.0.143

RNA-Seq default pipeline which included adapter removal with cutadapt
v1.1244, read splice aware alignment with Bowtie2/Tophat suite v2.22.845,46

for quality control, and isoform expression level estimation using sailfish
0.10.147. The differential expression was determined using DESeq248. We
performed Gene Set Enrichment Analysis49 implemented in the liger R
package using gene sets from MSigDB19.

Single cell RNA-sequencing
Data generation. We used the 10x Chromium (10x Genomics v2 reagents)
to isolate ~2000 single cells from each sample following the manufac-
turer’s instructions. Briefly, the cells/GEM droplets emulsion was formed
using the 10x Chromium controller. The reverse transcription and template
switching steps added both a cell-specific barcode and unique molecular
identifier to each cDNA. The emulsion was then broken up and the GEM
cleaned up. The single-strand cDNA was fragmented enzymatically and
subjected to library preparation, including clean-up, end-repair, adapter
ligation and enrichment PCR to add a sample-specific index. The libraries
were quantified using Agilent Tape-station, and pooled for sequencing on
the Illumina HiSeq 4000 for single index paired-end sequencing (28+ 98nt
reads). The resulting sequencing reads were separated using bcl2fastq and
analyzed using the Cell Ranger v2 pipeline count, combining reads from
different sequencing runs.

Data analysis. The barcode/cell matrices from different samples were
further aggregated using Cell Ranger aggregate normalizing to total
number of reads (Supplementary Table 5). The aggregated count matrices
were processed with Seurat version 3.1.150. Genes expressed in fewer than
three cells were removed. Additionally, cells were removed if fewer than
200 genes or more than 3700 genes were detected, or if mitochondrial
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genes made up more than 10% of their transcriptome. The remaining data
was log normalized and scaled using the NormalizeData and ScaleData
functions in Seurat with default parameter settings. To identify clusters,
Seurat FindVariableGenes and RunPCA functions were run with default
parameters and followed by FindNeighbors with the top 50 principal
components and a resolution of 0.2 to identify the cell clusters. To assign
cells to cell cycle phases, the Seurat CellCycleScoring function was modified
to accept more than the 2 cell cycle gene sets. Using this function, each
cell was scored for six cell cycle related gene sets derived from Xue et al.
(G0.1 gene set excluded)51 and was assigned the cell-cycle phase
corresponding to the gene set with the maximum score.

Pseudo-time gene set enrichment analysis. The expression of 603 genes
distributed across six cell cycle gene sets51 was used to organize cells
along a linear pseudo-time trajectory using SCORPIUS version 1.0.252,
following the default workflow from the tutorial53. Cells from each cluster
were grouped in smoothing pseudo-time windows (interval= 0.2, incre-
ment= 0.01 as a fraction of the pseudo-time range). The gene expression
of all cells in a window was summarized into a virtual cell gene expression
using a method derived from Baran et al.54. In brief, the geometric mean of
each gene’s expression was calculated, divided by the median across all
windows and clusters, and log transformed. The resulting gene expression
profile of each virtual cell was then used to calculate the enrichment score
of each gene set in the MSigDB’s Hallmark collection17 using single sample
GSEA (ssGSEA)55 as implemented in the GenePattern56 module. The
enrichment score values were then scaled between 0 and 1 scaling the
value in a given bin and cluster to the full range of values across all bins
and clusters (Fig. 4c). These scaled enrichment scores were further used to
calculate the median in each P and Q phase for each cluster (Fig. 4d).
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