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Introduction
New psychoactive substances (NPS) are a com-
plex and diverse group of substances often known 
as either designer or synthetic drugs, or by the 
more popular but misleading colloquial term of 
‘legal highs’.1,2 They tend to be either analogues of 
existing controlled drugs and pharmaceutical 
products or newly synthesised chemicals, created 
to mimic the actions and psychoactive effects of 
licensed medicines and other controlled sub-
stances.3–5 By their number, nature and composi-
tion, NPS pose significant challenges for drug 
consumers, clinicians – both in drug services and, 
more broadly, researchers, forensic toxicologists, 
healthcare systems and drug control policy glob-
ally – and have been described as a ‘growing 
worldwide epidemic’.6,7

The United Nations Office for Drugs and Crime 
(UNODC) has defined NPS as ‘substances of 
abuse, either in a pure form or a preparation, that 
are not controlled by the 1961 Single Convention 
on Narcotic Drugs or the 1971 Convention on 
Psychotropic Substances, but which may pose a 

public health threat’.8 However, definitions of 
NPS can vary between countries, reflecting dif-
ferences in national legislation, rather than phar-
macological or structural classification. Although 
some former NPS have been subject to interna-
tional control under the UN Conventions (e.g. 
mephedrone in 2015; the synthetic cannabinoid 
ADB-FUBINACA in 2019), different approaches 
have been taken to legal control at national 
level.2,9,10 This has included the use of existing 
controlled drug legislation, new NPS-specific 
legislation, or extension of generic public health 
and medicines legislation. In the United Kingdom 
(UK), for example, the Psychoactive Substances 
Act 2016 introduced legislation that made it an 
offence to produce, supply, offer to supply, pos-
sess with intent to supply, possess on custodial 
premises, import or export psychoactive sub-
stances, but did not make it an offence to possess 
for personal use outside of a custodial setting.11 
In principle this created a ‘blanket ban’ of all cur-
rent and future NPS (with certain exemptions). 
However, the legislation has been criticised for 
the imprecise definition of psychoactivity, its 
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blanket nature covering compounds with quite 
differing harm profiles, difficulties in enforce-
ment, and exemptions that meant that popular 
NPS such as nitrous oxide can still be pur-
chased.4,12,13 Early evaluation of the Act sug-
gested that whilst the availability of NPS had 
decreased, there was no evidence of a reduction 
in NPS-related harms.14

By 2018, a total of 892 individual NPS, reported 
by 119 countries, were being monitored by the 
UNODC early warning system,15 and by the end 
of 2018, over 730 NPS had been notified to the 
European Monitoring Centre for Drugs and Drug 
Addiction (EMCDDA).16 The rapid proliferation 
at which new NPS have emerged on the global 
drugs market is unparalleled,17 and it was esti-
mated that at its peak in 2015, new NPS appeared 
at a rate of at least one new substance per week.18 
The number of new NPS detections has decreased 
in recent years and, in addition, the nature of the 
market has changed, with a relative decrease in 
the number of new stimulants and synthetic can-
nabinoids detected, and an increase in the num-
bers of new opioids and benzodiazepines 
available.16 The rapidly changing profile of the 
NPS market raises concerns over uncertainty and 
ambiguity regarding their chemical, metabolic 
and toxicity profiles, and the associated physical, 
social and mental health harms.19–21

Despite a large number of NPS being detected 
and actively monitored, estimates of general pop-
ulation use are relatively low compared with other 
type of controlled drugs, and use has fallen over 
the previous 5 years as result of factors such as 
legal control, market dynamics, substance trends 
and fashions, and changes in the availability of 
other controlled drugs.22 NPS epidemiology is 
under-developed, and differences in definition 
and methodologies means that it is difficult to 
gain accurate estimates of use. The 2018/2019 
Crime Survey for England and Wales (CSEW) 
reported around 0.5% of adults aged 16–59 years 
(approximately 152,000 people) had used NPS in 
the last year, and that around half of all NPS users 
were aged 16–24 years (encompassing approxi-
mately 86,000 young adults). Regarding fre-
quency of use, of those who had consumed any 
NPS in the last year, about half had consumed at 
least twice that year, around one in four had used 
NPS two or more times a month and around 8% 
had used NPS daily.23 Whilst individual NPS are 
not included in the CSEW, the most popular 
forms of substance were powders, crystals or 

tablets (31.0%); herbal smoking mixtures 
(24.1%); liquids (17.9%); or ‘another substance’ 
(31.0%). Prevalence of nitrous oxide (‘laughing 
gas’) has remained relatively high and stable over 
the past few years (despite legal control in 2016), 
and 2.3% of 16–59 year olds and 8.7% of 16–
24 year olds report use in the previous year. 
Amongst 16–24 year olds, nitrous oxide is now 
the second most prevalent drug after cannabis 
(reported by 17.3% of 16–24 year olds).23

Although research suggests that NPS are associ-
ated with harms in key populations such as peo-
ple who are homeless or prisoners,24 there are no 
robust estimates of levels of use. For example, 
the 2018/2019 Crime Survey for England and 
Wales described above is based on self-reporting 
by users. Data on adult drug treatment in 
England suggests that whilst there has been a 
recent increase in presentations (1223 in 2018–
1363 in 2019; 11% increase), this was largely in 
service users taking NPS alongside opioids (and 
not solely NPS); it only represents 1% of all ser-
vice users in treatment; and numbers have fallen 
from a peak in 2015/2016 (2042; a 33% 
decrease).25 The Office for National Statistics 
(ONS) reported that there were 125 deaths regis-
tered in England and Wales in 2018 where NPS 
were mentioned on the death certificate. 
Although this represented only 2.9% of all drug-
related poisonings, it was the highest number yet 
recorded.26

The term new psychoactive substance is a legal 
definition and there is no universally agreed way 
to categorise NPS.27 Traditionally established 
recreational drugs and NPS have been function-
ally categorised into three broad categories (stim-
ulants, hallucinogens and depressants) based on 
the features seen with acute unwanted effects; 
more recently with the evolution of the NPS they 
have often been considered in four, somewhat 
overlapping functional categories related to their 
chemical structure, and psychopharmacological 
desired and unwanted effects: stimulants, can-
nabinoids, hallucinogens and depressants.27,28

This narrative review paper aims to provide a 
robust overview of the current trends and devel-
opments with NPS, including their chemical 
structures, mechanism of action, modes of use, 
intended intoxicant effects, and their associated 
physical and mental health harms. The current 
challenges faced by laboratory testing for NPS is 
also explored. The paper will adopt the ‘four 
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category’ classification, with the caveat that some 
new compounds do not neatly fit into these and 
their effects cross these boundaries. However, it 
is the authors’ experience that this model pro-
vides a utilitarian framework, especially for the 
generalist and clinician, who can often find the 
scale and rapidity of change in the field of NPS 
overwhelming. Inevitably, in a paper of this 
scope, there are limitations to the amount of 
information that can be provided about individ-
ual compounds. References on further reading 
will be provided for the interested reader. A final 
caveat is that some authorities and experts do not 
typically consider the compounds nitrous oxide 
and ketamine to fall under the definition of NPS; 
they do fall within the UNDOC definition, and 
thus the authors have kept them within this piece.

Synthetic stimulants
Synthetic stimulants comprise of a diffuse group 
of base compounds, which include cathinones, 
aminoindanes, phenethylamines, piperazines and 
tryptamines, of which synthetic cathinones are by 
far the largest group and the most studied.29 
Currently, they represent the largest group of 
NPS that are monitored by the UNODC and 
EMCDDA.16,17 They are designed to replicate 
the effects of traditional stimulant controlled 
drugs, such as cocaine, MDMA and ampheta-
mines.30 They can be made into a variety of for-
mulations and be insufflated, swallowed (often 
wrapped in paper, known as ‘bombing’), inhaled, 
smoked, injected or used rectally, the most com-
mon route being taken in pill/tablet form.31 
Synthetic stimulants promote an increase in 
synaptic availability of neurotransmitters, mainly 
dopamine (DA) and serotonin (5HT). DA plays 
an important role in motivation, arousal, learning 
and reward, whereas 5HT is a contributor to 
feelings of happiness and a sense of emotional 
connectedness (‘entactogenic’).32 Synthetic stim-
ulants act on the two neurotransmitter systems to 
different extents, accounting for their differing 
range of desired and unwanted effects.26,33 These 
include sought after experiences such as euphoria, 
increased feelings of empathy and compassion, 
sense of inner peace and relaxation, enhanced self-
confidence, sociability and libido, and boosted 
energy and alertness.33,34 Synthetic stimulants 
have also been associated with adverse effects 
such as high addiction potential, severe intoxica-
tions linked to cardiac, metabolic, neuropsychiatric 
and neurological complications and an increasing 
number of fatalities.35–37

Chemical structures
Common first generation synthetic cathinones 
(natural cathinone being the main psychoactive 
compound found in khat leaves) include meth-
cathinone, 4-methylmethcathinone (mephedrone, 
4-MMC, and first developed in the 1920s), 
3,4-methylenedioxy-N-methylcathinone (methyl-
one) and 3,4-methylenedioxypyrovalerone 
(MDPV) followed by a second generation consist-
ing of 4-methyl-N-ethylcathinone (4-MEC), 4-fluo-
romethcathinone (flephedrone, 4-FMC), its positional 
isomer 3-fluoromethcathinone (3-FMC) and α-PVP 
(α-pyrrolidinopentiophenone). Synthetic cathinones 
are similar in structure to amphetamine type stimu-
lants and are chemically referred to as β-ketone 
analogues because of the carbonyl (=O) group in β 
carbon.38,39 The common pharmacophore group 
responsible for the psychoactive effect observed in 
synthetic stimulants is phenethylamine,32 and its 
derivatives are reported to represent at least 37% of 
the NPS available on the illicit drug market.40

Synthetic stimulants structurally similar to pyrov-
alerone (a psychoactive drug once used in the 
treatment of chronic fatigue and lethargy) such as 
MDPV,41 are highly lipophilic compared with 
other synthetic stimulants, and so have a high 
blood–brain barrier penetration and volume of 
distribution, resulting in longer plasma and tissue 
half-lives.42,43 The presence of electrophilic 
groups such as fluorine also increases the lipo-
philic nature of synthetic stimulants analogues 
thereby making them more potent, a quality 
sought after by users who want to experience the 
ultimate new ‘party drug’ which is more potent, 
longer acting and delivers a better ‘high’.44

Mechanism of action
Synthetic stimulants increase the monoamine 
neurotransmitters DA and 5HT and to a lesser 
extent noradrenaline (NE) concentration in the 
synaptic cleft, which then mediate the stimulatory 
effects.45 Two distinct mechanisms are responsi-
ble for the increase in monoamine concentration 
in the synaptic cleft. Firstly there is stimulation of 
non-exocytotic neurotransmitter release by inhib-
iting the vesicular monoamine transporter-2 
(VMAT2) and reversing the transporter influx, 
thereby stimulating neurotransmitter release from 
the cytosolic pool or synaptic vesicles.46 Secondly, 
there is inhibition of the uptake of neurotransmit-
ters from the synaptic cleft by inhibiting the 
plasma membrane transporters, which are respon-
sible for the uptake of DA, 5HT and NE.47–50
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Harms and adverse effects
Historically synthetic stimulants were developed 
to treat patients with Parkinsonism, obesity or 
depression, but these were soon withdrawn due 
to concerns regarding their abuse and harm 
potentials.29,51 Some have recently been reported 
to have been used as cognitive enhancers or 
‘nootropics’ (classically to help students with 
their exams, with some reports of professionals 
using them to maintain attention at work in stress-
ful environments) and as part of weight loss regi-
mens.52,53 The acute physical and mental health 
harms associated with the use of synthetic stimu-
lants are due to sympathomimetic toxicity, which 
may present as agitation, nausea, vomiting, head-
ache, palpitations, tachycardia, hypertension and 
hyperthermia, and less frequently as paranoia, 
hallucinations, seizures and collapse.54 Less com-
monly, severe adverse effects such as significant 
peripheral organ damage and rhabdomyolysis 
have been reported, whilst deaths have been 
linked to hypertensive crises, hyperthermia, car-
diac arrest and/or serotonin syndrome.55 
Functional magnetic resonance imaging (fMRI) 
of rodents has shown that administration of 
MDPV results in desynchronisation of functional 
connectivity between the pre-frontal cortex and 
striatum, nucleus accumbens and the insular cor-
tex.56 More recent in vitro studies in neuronal, 
skeletal muscle and hepatic cells have demon-
strated potentially cytotoxic effects of synthetic 
stimulant exposure, including mitochondrial dys-
function, glutathione depletion, oxidative stress 
and apoptosis pathway activation, which are 
aggravated under hyperthermic conditions; how-
ever, the extent to which these mechanisms are 
relevant to their effects in vivo remains unclear.56–58

Case reports have shown synthetic stimulants can 
induce acute intra-parenchymal and subarach-
noid haemorrhages as well as ischemic infarc-
tion,58 and α-PVP has been implicated in 
ST-elevation myocardial infarction (STEMI) 
with multiple intra-cardiac thrombi.59 Intravenous 
methcathinone (M-CAT) use has been associated 
with the rare syndrome of manganese-associated 
Parkinsonism (as the preparation of M-CAT 
involves use of potassium permanganate) and 
cognitive impairment, which has been termed 
‘ephedrone encephalopathy’. Persistent globi pal-
lidi hyperintensities on T1-weighted MRI have 
also been reported in those with this rare syn-
drome, and M-CAT use for longer than 6 months 
correlated with significant disability that did not 
improve despite drug cessation.60

A number of public health concerns associated 
with synthetic stimulants have been highlighted. 
The growing practice of ‘slamming’ during 
ChemSex [sexual activity engaged with multiple 
partners and often without protection, while 
under the influence of stimulant drugs, often with 
co-use of drugs such gamma-hydroxybutyrate 
(GHB) and related analogues] in which mephed-
rone and/or other stimulants are injected to 
enhance sexual activity has raised concerns 
regarding substance use disorders, and increased 
risk of injection site injury, blood-borne virus 
transmission and sexually transmitted diseases.61 
In Scotland, an increase in injection of NPS, 
including synthetic stimulants, was associated 
with contiguous increases in HCV infection.62 
Synthetic stimulants have been found in a num-
ber of products claiming to enhance ‘brain health’ 
and cognitive ability,63 and those targeting ath-
letes wanting to improve their performance.64 
Those with a diagnosis of attention deficit hyper-
activity disorder (ADHD) have increasingly 
turned to the internet to source synthetic stimu-
lants to help with their symptoms.65,66 The harm-
ful interactions between synthetic stimulants and 
prescription drugs, increasing the risk of drug tox-
icity or reducing the therapeutic efficacy of the 
drugs has also been highlighted.67

Synthetic cannabinoids
Synthetic cannabinoids emerged in the mid-2000s 
and were first formally identified and reported to 
the EMCDDA in 2008, initially being used as 
alternatives to herbal cannabis, particularly to 
avoid detection in those settings with forensic 
drug testing regimes such as prisons, sports pro-
grammes and the military.68 They have since pro-
liferated worldwide in many different structures, 
forms and potencies, and currently represent the 
largest and most structurally diverse class of 
NPS.69,70 The UNODC have reported approxi-
mately 280 synthetic cannabinoids had been iden-
tified by the end of 2019.71 They are typically 
manufactured and transported from producer 
countries as bulk powders, and, after dissolving in 
solvents such as acetone or methanol, are most 
commonly sprayed onto inert plant material 
(resembling traditional cannabis) or paper (to 
minimise risk of detection and facilitate access to 
forensic settings such as prisons) and either mixed 
with tobacco or smoked directly – inhalation being 
the main route of use.72 Synthetic cannabinoids 
have been missold [e.g. as delta-9-tetrahydrocan-
nabinol (d9-THC) or cannabidiol (CBD)], and 
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have been detected in formulations such as pow-
ders and as liquids for use in vaping devices, or 
tablets and capsules resembling ecstasy.73

Synthetic cannabinoids interact with the endo-
cannabinoid system, which is involved in various 
physiological functions, including cognition, 
motor control, pain sensation, appetite, cardio-
vascular and respiratory performance, gastroin-
testinal motility and immunoregulation.74 Positive 
experiences from use include relaxation, euphoria 
and disinhibition, which are similar to the desired 
effects of d9-THC, the main psychoactive com-
ponent of traditional cannabis.75

However synthetic cannabinoids are associated 
with a wide range adverse effects, including car-
diovascular and respiratory complications, 
haemodynamic embarrassment, renal injury and 
cerebrovascular accidents (‘strokes’).76–80 There 
have been numerous reports of severe morbidity 
and mortality from synthetic cannabinoids, espe-
cially from use in prisons and other secure set-
tings and in people who are homeless.24,81–85 In 
England and Wales, synthetic cannabinoids com-
prised the largest proportion of NPS-related poi-
soning deaths in 2018,85 with large outbreaks of 
intoxications also being reported in Europe.86

Chemical structures
The main classes of synthetic cannabinoids can be 
divided into the following major chemical classes: 
classical cannabinoids, carbazoles, cyclohexyl-sub-
stituted phenols, naphthoylindoles, the URB-class 
and benzoylindoles.22,87 New synthetic cannabi-
noids are regularly developed by both legitimate 
and clandestine chemists, and these differ by the 
addition or removal of a substituent group,88 mak-
ing the pharmacological profiles of new com-
pounds entering the market difficult to predict and 
monitor.89 Synthetic cannabinoids demonstrate 
limited structural similarity to d9-THC, and are 
referred to as synthetic cannabinoids due to their 
pharmacological mechanisms.90 Therefore, unless 
specifically included in reference databases they 
will typically not be detected in conventional drug 
screening procedures such as urine tests.91

Mechanism of action
Synthetic cannabinoids interact primarily with the 
endocannabinoid system, and its two specific G 
protein-coupled receptors: predominantly with the 
cannabinoid receptor type-1 (CB1) and, less 

frequently, with the cannabinoid receptor type-2 
(CB2). The CB1 receptor is widespread throughout 
the brain, with particular concentration in the neo-
cortex, basal ganglia and hippocampus, where they 
modulate pre-synaptic neurotransmitter release, 
and participate in a variety of brain function modu-
lations, including executive, emotional, reward and 
memory.92,93 The CB2 receptor, initially thought to 
be confined to immune cells and peripheral tissues, 
has recently also been found in cerebellum and 
brain stem neurons, where their roles remain an 
issue of active research.94 Research into how syn-
thetic cannabinoids modulate their effects via these 
receptors and the difference between the observed 
clinical effects of traditional cannabis and synthetic 
cannabinoids is ongoing, but current hypotheses 
include biased signalling at cannabinoid receptors 
or the disruption of mitochondrial homeostasis. 
Synthetic cannabinoids do not contain cannabidiol 
(the main neuro-protective compound found in 
natural cannabis which predominantly acts on CB2 
receptors) and this may also be related to the 
increased toxicity observed with these compounds 
compared with natural cannabis.95,96

Synthetic cannabinoids have a greater potency 
and binding affinity than d9-THC at the cannabi-
noid receptors. They are full agonists compared 
with the partial agonist properties of d9-THC, 
with potency of 10–200 times greater than that of 
d9-THC. These differences likely underpin the 
emerging greater incidence of major psychiatric 
complications and other adverse effects compared 
with traditional cannabis.96–99 A self-reported sur-
vey of 80,000 illicit substance users revealed that 
those who used synthetic cannabinoids were 30 
times more likely to end up in an emergency 
department than users of traditional cannabis.79

Harms and adverse effects
There is currently no evidence for any therapeutic 
potential of synthetic cannabinoids with over-
whelming reports of mild to severe adverse 
effects.100 Most common mild-to-moderate 
adverse effects include nausea, protracted vomit-
ing, agitation, drowsiness, dizziness, confusion, 
hypertension, tachycardia and chest pain, which 
typically have a limited duration and require only 
supportive treatment. There is growing evidence 
that renal injury is associated with a direct toxic 
effect upon the kidneys rather than an indirect 
effect due to dehydration (caused by vomiting) as 
was previously thought.101,102 A wide range of seri-
ous physical health harms associated with synthetic 
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cannabinoid use has also been reported. These 
include convulsions and seizures,103 rhabdomyoly-
sis and hyperemesis syndrome,104,105 supraven-
tricular and ventricular arrhythmias,106,107 
pulmonary embolism,107,108 intracranial hemor-
rhage,109 delirium and multiple organ failure.104,110 
Serious mental health harms include paranoia, 
psychosis, aggression and violence towards others, 
self-harm and suicide. A trend of synthetic can-
nabinoid related toxicity has also been observed, 
with first generation compounds predominantly 
presenting with cannabis-like unwanted effects, 
second generation compounds with cardiovascu-
lar/stimulant toxicity and third generation com-
pounds with neurological toxicity associated with 
central nervous system depression. 98,111–114

Synthetic cannabinoid use has been associated 
with white matter abnormalities in adolescents 
and young adults, which may lead to cognitive 
impairment and vulnerability to psychosis.115 
MRI brain changes associated with synthetic can-
nabinoid toxicity reveal diverse findings, includ-
ing embolic stroke, global hypoxic-ischaemic 
brain injury, demyelinating injury, and leptome-
ningeal enhancement.116 These varied imaging 
findings may reflect the diverse actions of the 
endocannabinoid system, including its role in the 
regulation of cerebral perfusion, inflammatory 
responses and mitochondrial function.70 Synthetic 
cannabinoids have been implicated in executive-
function impairment either after acute or repeated 
consumptions.117 Intense psychological with-
drawal syndromes after use have also been 
described leading to a high addictive potential for 
synthetic cannabinoids, where users have been 
reported to use synthetic cannabinoids every 
30 min to avoid feeling unwell.118–120

Public health concerns have been raised around 
the use of synthetic cannabinoids in vaping devices 
or water pipes and the subsequent development of 
serious lung injuries including acute respiratory 
distress syndrome and the diffuse alveolar haemor-
rhage.121 Termed EVALI (e-cigarette, or vaping, 
product-use-associated lung injury), recent reports 
have highlighted the increasing association with 
either lipoid pneumonia, chemical pneumonitis or 
an organising pneumonia leading to respiratory 
complications including death.121,122

Synthetic hallucinogens
Synthetic hallucinogens (SH) include two main 
subcategories: hallucinogens and dissociatives.

Hallucinogens
Hallucinogens are typically further sub-divided into 
three classes: tryptamines, lysergamines and 
phenethylamines.123 Most hallucinogens share a 
common mechanism of 5-HT2A receptor modula-
tion of serotoninergic activity, although there is an 
increasing understanding of the role of the gluta-
matergic system, and some dissociative hallucino-
gens also have activity at κ opioid receptors.124 
Routes of use include inhalation, nasal insufflation, 
oral ingestion (pill or blotter paper), sublingual/buc-
cal administration, and intravenous injection.125–127

Distributed throughout the brain and spinal cord, 
serotonin is involved in the control of a wide 
range of behavioural, perceptual, and regulatory 
systems, including mood, hunger, body tempera-
ture, sexual behaviour, muscle control, and sen-
sory perception. Common sought after 
experiences include euphoria and joy, alterations 
in time/space perception, increased creativity and 
insight, accelerating and broadening thought pro-
cesses and content, promoting novel thought 
associations, and providing psychedelic, spiritual 
and mystical experiences.128 Common adverse 
effects include complications associated with ser-
otonergic and sympathomimetic toxicity,129 and a 
broad range of mental health crises.130

Chemical structure.  The largest group of syn-
thetic hallucinogens are the phenethylamine 
derivatives which are 2,5-dimethoxyphenethyl-
amines, and contain a small lipophilic substituent 
at the 4-position, known as the 2C series because 
they possess two carbon atoms between the ben-
zene ring and amino group.131 Further derivatives 
are mostly but not exclusively chemically modi-
fied at the phenyl ring. The introduction of an 
N-benzylmethoxy (‘NBOMe’) group has resulted 
in an increase the potency of derivatives.132

Tryptamines are a group of monoamine alkaloids 
that are synthesised through decarboxylation of 
the amino acid tryptophan, and include com-
pounds such as alpha-methyltryptamine (AMT), 
N,N-dimethyltryptamine (DMT), N,N-diallyl-5-
methoxytryptamine (5-MeO-DALT) and 
5-methoxy-N,N-disopropyltyptamine (5-MeO-
DIPT) ‘foxy methoxy’. They possess an indole 
ring structure, a bicyclical combination of a ben-
zene ring and a pyrrole ring, with an amino group 
attached to a 2-carbon side chain.133

Synthetic derivatives of the ergot alkaloid deriva-
tive lysergic acid diethylamide (LSD) such as 
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1-acetyl-LSD (ALD-52), 1-propionyl-LSD (1P-
LSD) and 1-butyryl-LSD (1B-LSD) have been 
shown to have very different pharmacological pro-
files and may differ significantly in their effects.134,135

Mechanism of action.  Phenethylamine derivatives 
interact mainly with cortical serotonin receptors, 
with the highest affinity for 5-HT2A receptors.136 
NBOMe derivatives have higher affinity for 
5-HT2A and 5-HT2C receptors and lower affin-
ity for 5-HT1A receptors compared with their 2C 
analogues. Tryptamine derivatives have an affinity 
for 5-HT1A, 5-HT2A and 5-HT2C receptors, 
and can inhibit reuptake and increase the release 
of serotonin.133 LSD analogues activate both 
5-HT2A and 5-HT1A receptors.137 Activation of 
5-HT2A receptors causes glutamate release and 
activation of alpha-amino-3-hydroxy-methyl-
5-4-isoxazolpropionic (AMPA) glutamatergic 
receptors, thus increasing cortical activity and 
information processing.138

Harms and adverse effects.  Over the last 50 years, 
there has been ongoing interest and research into 
the use of the hallucinogen base compounds and 
their synthetic derivatives in the treatment of anx-
iety, depression and substance misuse disorders, 
and as an adjunct in psychotherapy. Data are cur-
rently encouraging, but lacking adequate evi-
dence for use outside of scientific trials at this 
time.139–142

Common adverse effects primarily reported in 
studies of non-clinical use, shared across all three 
classes include tachycardia, hypertension, mydri-
asis, hyperthermia, agitation, aggression, halluci-
nations, drowsiness and confusion.143–147 More 
serious adverse effects associated with phenethyl-
amine derivatives, include multi-organ failure, 
psychosis, seizures and serotonin syndrome.144 
Serious adverse effects of tryptamine derivatives 
include prolonged delusions,148 rhabdomyolysis 
and renal failure and a number of reported fatali-
ties.149,150 LSD derivative adverse effects include 
impaired thermoregulation, cardiovascular insta-
bility, difficulty concentrating, imbalance and 
exhaustion.151

Case reports have highlighted serious but rela-
tively uncommon complications associated with 
toxicity of synthetic hallucinogens including an 
‘excited delirium’ picture with severe agitation, 
aggression, and violence,152 hyperreflexia and clo-
nus,130 and acute pulmonary oedema and hyper-
thermia leading to death.153

Dissociatives
The two main classes of dissociatives are arylcy-
clohexylamine [to which ketamine, phencyclidine 
(PCP) and methoxetamine (MXE) belong] and 
diarylethylamine. PCP was first synthesised in 
1956 as an anaesthetic but largely withdrawn 
from frontline use because of its unfavourable 
side effects and abuse potential. Ketamine 
remains an important medicine in both specialist 
anaesthesia and aspects of pain management and 
is currently being studied as a rapid-acting anti-
depressant.154 Both classes of dissociatives act as 
antagonists on the N-methyl-d-aspartate receptor 
(NMDAR).155

Routes of use include inhalation, nasal insuffla-
tion, oral ingestion and intravenous injection.156 
The sought after experiences include the sense of 
a disconnection between thoughts, identity, mem-
ory and consciousness, as well as sensory and tac-
tile distortions, euphoria and depersonalisation. 
Common serious adverse effects include neuro-
logical impairment, renal and bladder injury.129

Chemical structure.  All first-generation dissocia-
tives are simple derivatives of PCP. The arylcyclo-
hexylamine structure contains three distinct 
regions: an aromatic ring, a substituted cyclohex-
ane ring, and a basic amine function. The first-
generation dissociatives involved an aryl or amino 
substitution, without alteration of the cyclohexane 
ring. Retention of the cyclohexane ring provides 
for NMDAR affinity and therefore potency.157 
The latest generation of dissociatives, diarylethyl-
amines, include 1-(1,2-diphenethyl) piperidine 
(diphenidine) and 1-[1-(2-methoxyphenyl)-
2-phenylethyl] piperidine (2-MeO-diphenidine), 
and are also similar in structure to PCP.158

Mechanism of action.  Similar to ketamine and 
PCP, dissociative arylcyclohexylamine and dia-
rylethylamine drugs act as relatively selective 
non-competitive antagonists at the ionotropic 
glutamatergic NMDAR. Their NMDAR affinity 
is strongly correlated with their clinical potency in 
producing dissociative effects The NMDAR 
channels play an important role in synaptic plas-
ticity and synapse formation underlying memory, 
learning and formation of neural networks during 
development in the central nervous system.159 
Ketamine has a predominant action at the NMDA 
receptors whereas PCP, methoxetamine, 3-MeO-
PCP, 4-MeO-PCP and 3-MeO-PCE have actions 
at serotonin receptors which may explain some of 
their additional toxicity.160
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Harms and adverse effects.  Current research into 
the use of dissociatives in the treatment of a num-
ber of conditions is ongoing, including depression, 
pain management and palliative care.161,162 Com-
mon adverse effects shared across both classes 
include nausea, diaphoresis, hypertension, tachy-
cardia, renal impairment, agitation, disorientation, 
confusion, nystagmus, slurred speech, hallucina-
tions, amnesia, ataxia and muscle rigidity.163 Seri-
ous adverse effects include cerebellar toxicity, 
rhabdomyolysis, severe kidney and bladder dam-
age and a number of fatal intoxications.164

In vitro studies have shown MXE to potently 
inhibit neuronal activity and alter monoamine 
metabolism.165 Repeated parenteral administra-
tion of mMXE stimulates the mesolimbic dopa-
minergic transmission in rats, and affects brain 
functions and behaviour.166 A similar study found 
that repeated parenteral administrations of MXE 
induced anxiety-like states and interfered with 
memory.167 The same investigation also demon-
strated that MXE induced persistent damage of 
dopaminergic neurons in the nigrostriatal and 
mesocorticolimbic systems, as well of serotoner-
gic neurons in the nucleus accumbens core.167 
MXE use by humans has been associated with 
acute neurological impairment including psycho-
motor agitation and altered motor coordina-
tion,168 and chronic bladder and urinary tract 
toxicity reported in mice.169

Case reports have reported serious adverse effects 
including seizures, hyponatremia, and sinus brad-
ycardia,170 neurological impairment with signifi-
cant cerebellar toxicity and a number of fatalities 
associated with intoxication.171–176

Synthetic depressants
Synthetic depressants are broadly classified into 
two sub-categories: synthetic benzodiazepines 
and synthetic opiates. Their acute emergency 
presentations can appear similar – though treat-
ments are different – but they differ in their 
impact on mental health.24 Furthermore, among 
high-risk opioid users, benzodiazepines, espe-
cially when injected, can prolong the intensity 
and duration of the opioid effects.177

Synthetic benzodiazepines
Synthetic benzodiazepines are commonly con-
sumed for non-medical purposes. Primary moti-
vations for use overlap with clinical utility, such as 

hypnotic and anxiolytic effects, and to manage 
the acute effects of stimulants or to self-treat 
withdrawal symptoms, but they also produce a 
subjective ‘high’.178 Reports on internet forums 
also suggest that users experience anticonvulsant, 
muscle relaxant and amnesic properties.179

Chemical structure.  The base structure is the 
fusion of a benzene ring and a diazepine ring, 
individual compounds varying widely according 
to additions to the base structure, for example, 
2-keto compounds (diazepam), 3-hydroxy com-
pounds (temazepam), 7-nitro compounds (clon-
azepam), Triazolo compounds (alprazolam) and 
Imidazo compounds (midazolam).180

Mechanism of action.  A contemporary hypothesis 
is that novel benzodiazpeines mediate their effects 
through interactions at gamma-aminobutyric 
acid-A (GABA-A) receptors similar to prescrip-
tion benzodiazepines.181 GABA-A receptors are 
ion channels that consist of different subunit 
compositions, responding to the inhibitory neu-
rotransmitter GABA. Synthetic benzodiazepines 
may enhance the effects of GABA as positive allo-
steric modulators by binding to a receptor site 
that is different from the binding site of 
GABA,180,182 resulting in sedative, hypnotic 
(sleep-inducing), anxiolytic (anti-anxiety), anti-
convulsant, and muscle relaxant properties. 
Another mechanism of action reported includes 
activation of the mitochondrial translocator pro-
tein (TSPO) 18 kDa, which stimulates synthesis 
of neuroactive steroids, including allopregnano-
lone. 4-chlorodiazepam (Ro 5-4864) binds to this 
protein instead of GABA-A receptor, leading to 
anxiogenesis and an increased risk of seizures.183 
Some synthetic benzodiazepines have also been 
found to activate the AMPA glutamate receptor, 
leading to the rapid opening and closing of an ion 
channel that is permeable to cations (sodium, cal-
cium and potassium); if inhibited, this results in 
an inhibition of central nervous system fast excit-
atory synaptic transmission. Tofisopam is a com-
petitive antagonist at this receptor (and doesn’t 
have GABA-A activity) and may cause anxiolytic 
actions without the sedative effects seen with 
other benzodiazepines.184

Harms and adverse effects.  Data on the effects 
and harms of new synthetic benzodiazepines 
remains somewhat limited at this time, but early 
studies have shown anxiolytic, anticancer, anti-
convulsant, antipsychotic, muscle relaxant, anti-
tuberculosis and antimicrobial actions.179,185
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Adverse effects include a sedative-hypnotic toxi-
drome and can include confusion, dizziness, 
drowsiness fatigue, as well as auditory and visual 
hallucinations, delirium, seizures, deep sleep and 
coma,184 and atypical symptoms such as agita-
tion, hyperthermia and tachycardia.186 Abrupt 
cessation may lead to withdrawal symptoms, such 
as anxiety, panic attacks, restlessness, insomnia 
and convulsions.187 A number of fatalities have 
been reported, as well as the added risk in relation 
to toxicity due to the slower onset of action and 
longer half-life of some of the synthetic benzodi-
azepines (slower onset users take more doses than 
required; longer half-life toxicity is more pro-
longed).188–191 Bentazepam has been associated 
with chronic hepatitis.192

Synthetic opioids
Opioids include opiates, semi-synthetic opioids 
and synthetic opioids. Opiates are natural sub-
stances that originate from Papaver somniferum 
(opium poppy), which contain more than 20 dif-
ferent subtypes.193 Two of these, morphine and 
codeine, are two of the most common pain medi-
cations prescribed.194 Synthetic opioids are cre-
ated to bind to the same receptors in the brain as 
opiates, and produce similar effects such as 
euphoria, anxiolysis, feelings of relaxation and 
drowsiness. Undesirable side effects include nau-
sea, dizziness, constipation, vomiting, tolerance 
and respiratory depression.195

The international opioid drug deaths epidemic is 
a source of much research and debate, but an 
examination of this is outside the scope of this 
review, and will be covered in a linked paper.195–

198 In Europe, 49 new synthetic opioids were 
detected between 2009 and 2018, 34 of which 
were fentanyl derivatives.16 Whilst fentanyl itself 
is subject to international control, only some 
derivatives (e.g. carfentanil) are subject to inter-
national control at the time of writing. Recent evi-
dence points to a problematic surge in the 
availability of heroin mixed with fentanyl (cheaper 
and easier to obtain than pure heroin) leading to 
an increased risked of morbidity and mortality for 
the user, who is normally unaware of the addition 
of the synthetic opioid.199–201

Chemical structure.  The chemical structure of 
opioids is subdivided into those based the 
4,5-epoxymorphinan ring (e.g. morphine), the 
phenylpiperidines (e.g. fentanyl) and the diphe-
nylheptylamines (e.g. methadone). Synthetic 

opioids are modifications of each of these base 
compounds.202

Mechanism of action.  Synthetic opioids analogues 
interact with G protein-coupled opioid receptors 
in the brain and spinal cord as partial to full ago-
nists at mu, delta and kappa opioid receptor sub-
types, with selectivity for the mu opioid 
receptor.203,204 Agonism at mu opioid receptors is 
responsible for the main pharmacological effects 
of opioids, including euphoria, analgesia and 
respiratory depression, as well as the development 
of dependence.205 Many synthetic opioids are 
considerably more potent than traditional opi-
oids. The potency of fentanyl (acting on the mu 
opioid receptor) is 50- to 200-fold higher than 
morphine, and that of carfentanil (also on the mu 
opioid receptor) approximately 10,000 times 
higher than morphine.203,206

Harms and adverse effects.  Synthetic opioid 
adverse effects range from mild (pruritus, nau-
sea, vomiting, constipation, dizziness) to severe 
(respiratory depression, apnoea and central ner-
vous system depression).207,208 Intoxication with 
synthetic opioids has been associated with non-
cardiogenic pulmonary oedema, acute lung 
injury, diffuse alveolar haemorrhage and rhabdo-
myolysis.209,210 Withdrawal from synthetic opi-
oids may present with physiological and 
psychological distress.211 Statistics on morbidity 
and mortality may not reflect the real-life situa-
tion as users may recover, for example, from a 
mixed heroin/synthetic opioid overdose when 
naloxone is administered and the illicit drug doc-
umented will then be heroin and not a synthetic 
one.212,213 In the STRIDA project from Sweden, 
it was reported that there were a number of cases 
of toxicity related to the use of MT-45 (a syn-
thetic opioid) that, in addition to typical opioid-
like toxicity, was also associated with hearing loss 
and/or deafness.214,215

Laboratory testing
Testing for NPS in clinical and forensic settings 
can be a complex task, as routine testing of such 
compounds in individuals who present with rec-
reational drug toxicity is not typically undertaken, 
and the validity and reliability of test kits varies 
considerably in detecting these many new agents. 
Furthermore, in clinical practice, patients are typ-
ically treated on the basis of the pattern of toxicity 
they present with, and the turn-around time for a 
standard and comprehensive NPS screen would 
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often mean that the results are not available in a 
time-frame that would alter the clinical manage-
ment of the patient.17 Test designs also need to 
take into account that users of NPS will be likely 
to use additional over-the-counter medication, 
other illicit drugs,216,217 and that NPS prepara-
tions themselves may be contaminated with other 
illicit drugs,218 or dissolved in diluents.219

The Novel Psychoactive Treatment UK Network 
(NEPTUNE) recognise the current limitations in 
the availability of timely clinical testing available 
during acute presentations of NPS toxicity, and 
currently recommend toxicity diagnoses are made 
primarily on clinical features rather than by testing. 
However, NPS toxidromes may be highly non-
specific (such as synthetic stimulant and synthetic 
cannabinoid toxicity) and, as noted, users may have 
taken multiple NPS or other substances simultane-
ously, making identification of a likely causative 
NPS class(es) from clinical features alone difficult. 
As such, reliable and clinically validated testing for 
NPS from human samples are clearly of value. 
Colorimetric tests, immunoassays and mass spec-
trometry-based techniques have been employed in 
the detection of NPS. A recent systematic review 
reported that relatively few tests are able to detect 
more than 50 NPS types.220 Colorimetric methods 
are based on a target compound reacting with a 
reagent to produce a detectable colour change. 
They are easy to use, portable, point-of-use tests, 
with limited need for sample pre-preparation. The 
disadvantages include user variability in detecting 
colour-changes, cross-reactivity (associated with 
false-positive results), in addition to the limited 
range of individual NPS compounds that may be 
tested for in a single sample.220

Immunoassays for NPS allow for potentially rapid 
testing, and are suitable for testing non-invasively 
obtained samples (typically urine samples, or dis-
solved drugs). Lateral flow immune-chromato-
graphic assays have been used in harm-reduction 
trials where opiate users were encouraged to self-
test drugs for the presence of fentanyl.221 
Commercially available immunoassays are limited 
to testing for relatively small selections of NPS. 
The sensitivity of commercially available immuno-
assay testing may also be limited, with a study of 
cross-reactivity amongst five commercially-availa-
ble immunoassay kits reported to have failed to 
detect 13 of 94 (14%) NPS samples tested.222

Gas and liquid chromatographic mass spectrom-
etry-based methods offer more sensitive and 

specific identification of individual NPS, and 
allow for quantification of NPS within biological 
samples. These techniques can allow for sampling 
across a range of biological samples, including 
blood, urine, hair,223 saliva,224 urban wastewater 
and dried blood samples.225,226 Samples for analy-
sis require laboratory pre-preparation before 
being used for these techniques, though so-called 
‘dilute and shoot’ techniques are being validated 
to allow for more rapid preparation of biological 
samples for liquid chromatography mass spec-
trometry.227,228 Liquid chromatography with 
quadrupole time of flight mass spectrometry 
(LC-QTOF MS) has demonstrated some superi-
ority to gas chromatography mass spectroscopy 
(GC MS) in detecting most forms of NPS within 
serum samples.227 Databases of spectral informa-
tion from known NPS chemical structures are 
currently being built and validated, to allow for 
identification of known (and potentially unknown) 
substances based on the technique used.228,229

Conclusion
NPS comprise a diverse and ever-growing group 
of substances. There is much we still do not know, 
especially about the newest agents, and they can 
vary considerably in their desired effects and 
harms, even within drug classes. The classification 
system that has been used for this review has 
arisen for reasons of practicality and clinical util-
ity, though this means that it inevitably has some 
limitations. The currently used four separate clas-
sification system groups together compounds with 
highly varied chemical structures (such as the syn-
thetic cannabinoids), or mechanistically heteroge-
neous compounds (such as the hallucinogens and 
depressants) in a practical workable system for 
clinicians, scientists, law enforcement agencies 
and other interested parties.

Even with this broad classification system there 
remains considerable overlap between some 
groups of NPS (such as the 2-C series, 5-MeO 
DALT, and NBOMe- series), which may have 
characteristics in terms of their pharmacology, 
desired effects and/or unwanted effects that fit 
within more than one of the classification groups.

Much of the literature on health effects of NPS is 
derived from self-reports, and small case series, 
which are very likely to be subject to a variety of 
selection and recall biases. Given the nature of 
NPS and their use, the reliance on small case series 
and self-reports is unsurprising. In the UK, 
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national advisory bodies such as NEPTUNE and 
UK National Poisons Information Service (NPIS) 
are likely to be able to monitor trends of NPS use 
in a more rigorous and prospective manner. A net-
work of emergency departments in Europe have 
collaborated to form the European Drug 
Emergencies Network Plus (EuroDEN-Plus) pro-
ject, to better understand the pattern of toxicity 
associated with NPS clinical presentations.230–233

Clearly there is a need for healthcare and emer-
gency professionals who are likely to encounter 
NPS use to remain up-to-date with clinical fea-
tures of NPS use, and evidence-based approaches 
to harm-minimisation and treatment of depend-
ence syndromes need to be developed. These 
should ideally be developed in conjunction with 
the experiences of NPS users themselves. Whether 
the current popularity of NPS use will continue 
remains uncertain, and there is comparatively little 
evidence regarding NPS use in lower- or middle- 
income countries, where NPS use may be particu-
larly likely to be associated with societal harm.

Clinicians treating individuals who present with 
harms related to the use of NPS may feel less con-
fident in managing those patients compared with 
patients who present following the use of classical 
recreational drugs.234 However, since the man-
agement of both groups of individuals is typically 
based on the presenting clinical features rather 
than the specific drug(s) involved, clinicians 
should feel more confident in utilising the knowl-
edge, skills and experience in managing classical 
recreational drugs to any individual who presents 
with acute recreational drug/NPS toxicity.

Further research is needed on the neuropsychologi-
cal consequences of NPS use, given the apparent 
neurotoxic effects associated with NPS use. Recently 
developed novel radiotracers for use in positron 
emission tomography (PET) for CB1 and CB2 
receptors, as well as hydrolytic enzymes of the endo-
cannabinoid system, may be of use in identifying 
changes in vivo in those with sustained and acute 
synthetic cannabinoid (and other NPS) use.235
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