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ABSTRACT: The blood−brain barrier (BBB) is a physical barrier
that regulates the homeostasis of the neural microenvironment. A
relative estimate of the BBB permeability, which is important for
drug design, may be experimentally provided by the logBB (the
blood−brain concentration ratio) and the logPS (permeability−
surface-area product), while many computational methods aim to
identify key properties that correlate well with these quantities.
Although currently existing computational methods (e.g., quanti-
tative structure activity relation) have made a significant
contribution in screening various compounds that could
potentially translocate through the BBB, they are unable to
provide a physical explanation of the underlying processes and they
can often be computationally demanding. Here, we use steered
molecular dynamics simulation to estimate the BBB permeability of various compounds on the basis of simple lipid−membrane
models by computing the nonequilibrium work, Wneq, produced by pulling the compounds through the membrane. We found that
the values of Wneq correlate remarkably well with logBB and logPS for a range of compounds and different membrane types and
pulling speeds, independently of the choice of force field. Moreover, our results provide insight into the role of hydrogen bonds, the
energetic barriers, and the forces exerted on the ligands during their pulling. Our method is computationally easy to implement and
fast. Therefore, we anticipate that it could provide a reliable prescreening tool for estimating the relative permeability of the BBB to
various substances.

■ INTRODUCTION
Millions of people around the world suffer from some kind of
central nervous system (CNS) disorder.1 A well-known example
of such condition is Alzheimer’s disease and, as in many other
cases, a possible cure may require the delivery of drugs to the
brain. However, 98% of small-molecule drugs and almost all of
the larger ones are unable to reach the brain because of the
presence of the blood−brain barrier (BBB), which, among
others, protects the brain from toxins and pathogens while
allowing for the delivery of necessary nutrients and oxygen to the
brain.2,3 The properties of the BBB aremainly determined by the
endothelial cells, but they are induced and maintained by
complex communication with other types of cells according to
the needs of the CNS.4 In fact, the transfer of substances
between the blood microcirculation system and the brain
parenchyma can take place through a number of active (energy is
required, e.g., ATP hydrolysis) and passive translocation
mechanisms, where the latter are driven by concentration and
electrostatic gradients.5 These mechanisms and the way that
they apply to different substances eventually determine the BBB
permeability, which can be expressed by two commonly used
experimental descriptors: the steady-state concentration of a
drug in the brain over the concentration in the blood (logBB)
and the permeability−surface-area product (logPS).6 In general,

the entry to the CNS depends on a range of factors
characterizing a compound, such as molecular weight, lipid
solubility, ability to form hydrogen bonds, amino acid
composition, charge, and three-dimensional (3D) structure
(conformation, flexibility, folding, and others).7−9 To this end,
the role of many of these characteristics might manifest in model
membranes because the rate of passive diffusion across a
membrane is proportional to the partition coefficient of the
compound between the membrane and the external me-
dium.6,10−12 In this respect, the difficulty in traversing such
membranes may constitute a measure of the barrier that a
substance needs to overcome, in this way providing important
information for pharmacokinetics and rational drug design,
which is the motivation of the current study. Thus, model
membranes provide opportunities for prescreening various
compounds with the aim of reducing the cost and enhancing the
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speed of the BBB-permeation analysis, for example, by
estimating the partitioning free energy, which has been the
focus of previous computational studies.6,10,11

In general, the blood−brain permeability can be experimen-
tally determined by various in vivo methods, for example, by
measuring the ratio between the compound concentration in
brain tissues and blood samples (logBB).1,13 These methods are
very reliable, but they are laborious and relatively low
throughput. Therefore, in vitro methods based on various cell
assays have been employed to predict the BBB permeability.14

Still, these methods are time-consuming and expensive
rendering them practically inconvenient for screening large
collections of chemicals. In contrast, various computational
approaches15,16 have already served as potential prescreening
tools with the aim of reducing the cost and enhancing the speed
of BBB-permeability analysis.15 Examples of such approaches are
the quantitative structure activity relation and the application of
artificial intelligence algorithms (e.g., machine learning, genetic
algorithms, and artificial neural networks),3 which have
elucidated the role of various parameters, such as lipophilicity,
hydrogen-bonding,17−19 and other physicochemical factors of
the compounds (e.g., solubility, excess molar refraction,
polarizability, hydrogen-bond acidity/basicity, and drug sol-
vation free energy in water)8,10,20,21 by assuming that the BBB
permeability is governed by these descriptors (e.g., lipophilicity,
hydrogen-bonding, polarizability, acidity/basicity, polar surface
area, pKa, etc.). The results of these studies have been
corroborated on the basis of the high correlation coefficient
between experimental and computational predictions for
representative sets of compounds.6,10,11

Molecular simulation has also been employed to predict the
permeability of the BBB by using simple membrane models and
free-energy calculation techniques. For instance, Lombardo et
al. have shown that the BBB partitioning in terms of logBB for a
series of compounds ranging from simple solutes to histamine
H2 antagonists was correlated with the computed solvation free
energy in water without taking into account specificities that
pertain to the membrane structure.10 Furthermore, this
correlation provided successful predictions of blood−brain
partitioning for compounds outside of the training dataset,
which highlights the potential of these methods as prescreening
tools. In another study, Carpenter et al. have obtained very good
agreement with experimental results on the logBB and the logPS
of twelve drug-like compounds using the lipid bilayer as a simple
BBB model and molecular dynamics (MD) simulation of all-
atom models combined with free-energy methods.6 Their
predictions have correlated remarkably well with both the
experimental logBB and logPS, obtaining values of the
correlation coefficient close to 1. A similar approach has been
adopted to express the membrane permeability of small
compounds through the diffusion constant and the potential
of mean force in MD simulation.11 These studies have clearly
underlined the predictive power of MD methods toward
estimating energetic barriers associated with BBB permeability
and identifying the physical mechanisms related to the
translocation of various compounds through the BBB. Still,
standard MD methods combined with free energy calculation
methods are computationally expensive and often involve
complex simulation protocols that require a delicate and
iterative process in order to improve the accuracy of the results.
In this article, we propose a simple, reliable, and fastmethod to

provide a relative estimate of the BBB permeability to a
representative set of compounds, which also includes com-

pounds considered in previous computational studies.6 To
achieve this, we pull the selected compounds through model
membranes by using steered molecular dynamics (SMD)
simulation and monitor the nonequilibrium work, Wneq,
required to cross the membrane. We show that this approach
obtains robust results (e.g., independent of the membrane
model or the pulling speed) that correlate remarkably well with
the experimental values of logBB, and logPS, as well as the values
of the topological polar surface area (TPSA). Moreover, our
method provides detailed information on the forces experienced
by the compounds during the translocation process and the
formation of hydrogen bonds between the compounds and both
the model membrane and water molecules. We anticipate that
the proposed approach will have broader implications in this
research area as a simple, reliable, and fast prescreening tool for
predicting the relative permeability of the BBB to various
compounds.

■ MATERIALS AND METHODS

Choice of Compounds. In this study, we have chosen 26
small-molecule compounds, which were selected from the
literature (Tables S1 in the Supporting Information). The logBB
and TPSA values are known for all compounds, while the logPS
values are available in the literature only for a subset of the
studied compounds. Moreover, many of them have been
previously studied by standard MD simulation6 by using the
GROMOS54a7 force-field. Here, we have modeled a set of 26
small-molecule compounds not only with the GROMOS54a7
force-field, but, also, by using the CHARMM36 force-field. All
the compounds have been previously used in experimental BBB
permeability reports and are well studied. Hence, the 3D
structures, a few common descriptors, and the logBB and logPS
values of the selected compounds have been documented in the
literature and obtained from the Collaborative Drug Discovery
in PubChem22,23 (Table S1 in the Supporting Information). The
selected 26 compounds have logBB values that are evenly
distributed between −2.51 and 1.64. Fourteen out of the 26
compounds can cross the BBB by a diffusion mechanism, while
the rest cannot translocate through the BBB.

Model for the Compounds and the Lipid Bilayer. A
typical system consists of a lipid bilayer surrounded by water and
one of the compounds (Table S1), which is positioned in the
water domain on the left of the lipid bilayer (Figure 1). The total
size of our systems was typically about 40,000 atoms. Following
previous work,6 the bilayer consists of 128 DOPC (1,2-dioleoyl-

Figure 1. Typical simulation setup of our system. The system consists
of a lipid bilayer (green), water (blue), and one of the compounds
(orange and green). The zero of the axis in the z direction is positioned
at the center of the lipid bilayer. The SMD force that pulls the dummy
atom through the bilayer in the z direction is indicated with a red arrow.
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sn-glycero-3-phosphocholine) lipids24,25 modeled with the
Berger force-field.24−27 The so-called “Berger lipids” can be
combined with the GROMOS representation of the com-
pounds.27 Hence, the GROMOS54a7 force-field was used to
model the 26 compounds. Moreover, the CHARMM3628−30

force-field was employed for both the bilayer by using the
CHARMM-GUI server31−33 and the 26 compounds (Table S1).
The parameters of the compounds were obtained from the ATB
server34−37 for the GROMOS54a7 force-field and the
SwissParam server38 in the case of the CHARMM36 force-
field. In general, the ATB server combines a knowledge-based
approach with quantum mechanical calculations. First, the
ligand was optimized using the HF/STO-3G theory and then
reoptimized at a more advanced level B3LYP/6-31G*.39−41 To
estimate the point charges of compound atoms, the electrostatic
potential was fitted using the Kollman−Singh procedure.42 The
bond and angle force constants were extracted from the Hessian
matrix. All ligands were modeled in their neutral form.
We have used a lipid bilayer with POPC lipids (2-oleoyl-1-

pamlitoyl-sn-glyecro-3-phosphocholine) in addition to DOPC
in order to assess the effect of themembrane composition on our
conclusions regarding the translocation ability of the com-
pounds. Themodel for POPC is also based on the CHARMM36
force-field and consists of 128 POPCmolecules. As in the case of
the DOPC, the membrane topology for the POPC membrane
model was created by using the CHARMM-GUI server,31,33,50

while the topology and the parameters for small compounds
were obtained by the SwissParam server,38 which is compatible
with the CHARMM36 all-atom force-field. Also, a DOPC
membrane model with cholesterol was studied with a DOPC/
cholesterol ratio of 2:1 and using the CHARMM force-field.
Finally, the simple point charge water model was used in the case
of the GROMOS54a7 force-field, while the TIP3P water model
was employed in the case of the CHARMM36 force-field.43

Steered Molecular Dynamics. SMD offers the possibility
of obtaining results much quicker than it might be possible with
standard MD simulation.44 In the case of the SMD simulation, a
spring is attached from one side to a dummy atom and from the
other side to the compound. Then, the dummy atom is pulled
from its initial position toward the bilayer in the z direction with
a constant velocity v, covering a distanceΔzc = vt (Figure 1) with

t indicating time. Hence, the elastic force experienced by the
compound at a certain time during pulling is F = k(Δz − vt),
where Δz is the displacement of the compound’s atom
connected with the spring in the direction of pulling. As in the
case of atomic force microscopy experiments,45 we chose k =
600 kJ/(mol·nm2) and different pulling velocities (i.e., v = 0.5,
1.5, and 5.0 nm/ns). These values have been also used in our
previous studies and are well-tested.46−48 Moreover, the spring
constant is suitable to carry out the pulling experiments, as can
be verified by the average position−time profiles for the
compounds (see Figure S1 in Supporting Information). To
prevent the membrane from drifting because of the external
force, the phosphate atoms on both lipid layers were restrained
by a harmonic potential with a spring constant of 1000 kJ/(mol·
nm2) in the z direction.
The main output of the simulation is the force, F, as a function

of time and the position, z, of the compound, from which we can
readily calculate the work,Wneq, required to pull the compound
through the bilayer over a distance Lz = ∫ dz, where Lz is the
width of the bilayer in the z direction. Wneq can be
mathematically expressed as Wneq = ∫ F dz. The average
force−time and force−position profiles obtained from five
individual trajectories for the 26 studied compounds are shown
in Figure S2 in the Supporting Information in the case of the
GROMOS54a7 force-field and the DOPC membrane model.
Once the system was set up as shown in Figure 1, the steepest

descent and conjugate gradient methods were used for energy
minimization, as is usually done. The energy-minimized system
was then utilized as an initial configuration for the SMD
simulation. The simulation was carried out at T = 323 K, by
employing the Nose−́Hoover thermostat with an effective
relaxation time parameter set to τT = 0.5 ps. The pressure was
maintained at 1 bar using the semi-isotropic Parrinello−Rahman
barostat with relaxation time τP = 1 ps, and a compressibility of
4.5 × 10−5 bar−1. The LINCS algorithm49,50 was used to
constrain bond lengths, thus allowing for a 2 fs time-step during
simulation. A cutoff of 1.4 nm was chosen for nonbonded
interactions, and the neighbor list was updated every 10 ps, while
long-range electrostatic interactions were calculated using the
particle−mesh Ewald method. Here, the GROMACS 5.1
package was used to carry out all simulations. Simulations

Figure 2. Typical snapshots obtained from simulation at different times as indicated during the pulling of mannitol with velocity v = 0.5 nm/ns in the
case of the GROMOS54a7 force-field and DOPCmembrane model. Phosphate atoms are restrained in order to prevent the displacement of the whole
membrane as the compound penetrates the bilayer.
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typically last from 1.8 to 18.0 ns depending on the pulling
velocity. In our study, the considered range of pulling velocities
span an order of magnitude, namely, v = 0.5, 1.5, and 5.0 nm/ns.
Average properties were calculated from an ensemble of five
trajectories with different initial conditions by using a random
initial velocity generation and changing the orientation of the
pulled compound (Figure S3). Examples of individual
trajectories are shown in Figures S4 and S5 in the Supporting
Information as well as Tables S2 and S3 for different membrane
models and force fields in the case of mannitol, which has the
smallest experimental logBB and logPS values and the highest
TPSA value. In fact, the logBB and the TPSA values for the 26
compounds of our study appear to be anticorrelated with R2 =
0.53 (R is the correlation coefficient), as shown in Figure S6.

Hence, the available values in the literature of logBB and TPSA
for our compounds suggest that a larger polar surface area of the
compounds is associated with a lower permeability of the BBB.
Moreover, values of TPSA below 90 Å2 suggest an increased
potential for BBB penetration, while larger values are usually
associated with lower probability of crossing the BBB.51

■ RESULTS AND DISCUSSION

Correlation of the maximum force, Fmax, and the nonequilibrium
work, Wneq, with the experimental logBB and logPS values, as
well as the TPSA values.
Figure 2 shows typical snapshots that illustrate the trans-

location of a compound through the model membrane, in this
case mannitol (see also movie in the Supporting Information),

Figure 3. Correlation of Fmax (left panel) and nonequilibrium work (right panel), Wneq, with logBB for the 26 compounds considered in this study
(Table S1) in the case of the CHARMM36 force-field for the DOPCmembrane model and pulling velocity v = 0.5 nm/ns (Table S4). The correlation
coefficient R2 is indicated at the top right corner of each graph.

Figure 4.The correlation between Fmax and the nonequilibriumwork,Wneq, with logBB, logPS, andTPSA for the compounds (Tables S1 and S6) in the
case of the GROMOS54a7 force-field for the DOPCmembrane model and pulling velocity v = 0.5 nm/ns (Table S5). The correlation coefficient R2 is
indicated at the top of each graph. Note that logPS is only available for 8 compounds.
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where the pulling velocity v = 0.5 nm/ns and the GROMOS54a7
force-field for themodel DOPCwas used in this case. Obviously,
the membrane remains stable during the simulation. Our
analysis for each case of force field, membrane model, and
pulling velocity, yields the maximum force, Fmax, exerted on the
compound, and the nonequilibrium work,Wneq, required to pull

the compound through the membrane can be readily calculated
from the force−position profiles (e.g., Figure S2 in the
Supporting Information) as discussed in our previous section.
The values of Fmaxand Wneq are reported in Table S4 of the
Supporting Information and plotted as a function of logBB in
Figure 3 for the 26 compounds and the DOPC membrane

Figure 5.Correlation between Fmax andWneq with logBB (top panel) and logPS (bottom panel) for the compounds considered in this study (Table S6)
in the case of the CHARMM36 force-field, velocity v = 5 nm/ns, and the POPC membrane model.

Figure 6.Number of hydrogen bonds at the position of the maximum force experienced by the compound in the case of the GROMOS54a7 force-field
with the DOPC model and pulling velocity v = 0.5 nm/ns as a function of logBB, TPSA (top panel), and logPS (bottom panel). The square of the
correlation coefficient, R, for each case is indicated on the top left corner of each graph.
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model simulated with the CHARMM36 forcefield and pulling
velocity v = 0.5 nm/ns. Our results indicate that the correlation
between Fmax and the logBB values of the compounds is high,
namely, R2 = 0.85. In particular, the maximum force increases as
the logBB values decrease. This result agrees well with the
expectation that a larger force may be required to translocate a
compound through the membrane when logBB is lower (e.g.,
mannitol). In the case ofWneq, the correlation of the simulation
results with the experimental logBB values of the compounds is
similarly high, namely, the correlation coefficient is R2 = 0.86.
Hence, our results indicate a remarkable correlation between the
experimentally measured logBB parameters and the reported
maximum force values, Fmax, and the nonequilibriumwork,Wneq,
despite the simplicity of our approach. Both quantities are larger
when logBB is smaller.
Our analysis in the case of 26 compounds modeled with the

GROMOS54a7 force-field and using the same pulling velocity
(v = 0.5 nm/ns) and the DOPC membrane model as in the case

of the CHARMM36 model is shown in Figure 4 and the
corresponding values of the maximum force, Fmax, and the
nonequilibrium work, Wneq, as a function of the experimental
logBB and logPS values as well as the TPSA are reported in
Table S5 in the Supporting Information. Overall, our results
suggest a high correlation between the simulation and the
experimental results. In all cases, the correlation coefficient, R,
obtains large values for both Fmax and Wneq. In particular, R2

obtains values larger than 0.80 for the correlation of Fmax and
Wneq with logBB. The correlation with the logPS is of the same
magnitude but slightly smaller. Finally, the correlation of Fmax
and Wneq with the TPSA of the compounds is also significant.
While Fmax shows a correlation as large as in the case of logBB
and logPS, Wneq manifests a smaller correlation with the TPSA
values, that is, R2 = 0.58. This is expected given the correlation
between the logBB and TPSA values (Figure S6 in Supporting
Information). Our study also suggests that the use of the Berger
lipid force-field for the membrane model, which may be
insufficient in some cases (e.g., when a cutoff of 1.0 nm is
used),52,53 yields consistent results with those obtained by using
the CHARMM36 force-field (cf. Figure 3). Hence, our
conclusions, which are validated for a large set of different
compounds, are not affected by the choice of the force field for
both the compounds and the membrane. Moreover, our results
are in very good agreement with the results obtained in the study
of Carpenter et al.,6 where twelve compounds were investigated
bymeans of the potential of mean force between the compounds
and the BBB. In summary, our results indicate a remarkable
correlation between the simulation and the experimental results

Figure 7. Correlation of the average vdW or electrostatic interaction energies with logBB, TPSA, and logPS at the position of the maximum force
experienced by the compound in the case of the GROMOS54a7 force-field, the DOPC membrane model and pulling velocity v = 0.5 nm/ns. The
correlation coefficient R for each case is indicated on the top left corner of each graph.

Figure 8. Snapshot of an equilibrium membrane of DOPC/cholesterol
with a ratio of 2:1. Cholesterol molecules are highlighted with vdW
spheres. Pymol software was used for the visualization of the molecules.
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irrespective of the force field used to model the membrane and
the compounds, which may justify the use of our approach as a
method for prescreening compounds with the aim of estimating
eventually the relative BBB permeability to different com-
pounds.
Effect of Pulling Velocity andMembrane Type. In order

to assess the influence of the pulling velocity, we carried out
SMD simulations with a range of pulling velocities, that is, v =
0.5, 1.5, and 5 nm/ns, and different bilayer compositions
(DOPC or POPC) for the 26 compounds of this study by using
different force fields. Our results in the case of the
GROMOS54a7 force-field for the DOPC membrane model
(cf. Figure 4) indicate that the correlation remains high when the
pulling velocity increases (Figure S7 and Table S5), namely v =
1.5 nm/ns. Hence, the values of R2 for the correlation of Fmax and
Wneq with logBB are not affected significantly by changing the
pulling velocity. Similarly, the correlation of Fmax andWneq with
the logPS and TPSA is of the same order. Further increase of the
velocity (i.e., v = 5.0 nm/ns) suggests that the correlation of Fmax
and Wneq with logBB, logPS, and TPSA remains again of the
same order (Figure S8 and Table S5). Hence, changes in the
pulling velocity do not affect our conclusions. Furthermore, we
have verified our conclusions for both the GROMOS54a7 and
the CHARMM36 force-fields, as well as different membrane
models (DOPC and POPC). Then, Figure 5 shows the
correlation of Fmax and Wneq with the experimental logBB and
logPS values in the case of the CHARMM36 force-field and
pulling velocity v = 5 nm/ns for the POPC membrane model.
The values are also reported in Table S6. We find that the
correlation of Fmax and Wneq with logBB, logPS, and TPSA is

similar, irrespective of the membrane type (DOPC or POPC).
In particular, the maximum force and the nonequilibrium work
remains highly correlated with the experimental logBB values,
namely, R2 = 0.72 and R2 = 0.80, respectively. The correlation
with the logPS is also high in the case of Fmax, but it is much lower
in the case of Wneq versus logPS. The results for Fmax and Wneq
with the TPSA values show a much weaker correlation in
comparison with the experimental logBB and logPS values. In
the case of Figure 5, R2 = 0.47 and 0.43 for the correlation of Fmax
and Wneq with TPSA, respectively. In summary, we conclude
that the correlation between Fmax and Wneq with logBB, logPS,
and TPSA are robust because it is not affected by the employed
forcefield for the compound and the membrane, the pulling
velocity and the membrane model (POPC or DOPC). In all
cases, our results suggest a significant correlation between Fmax
andWneq with the experimental logBB and logPS values, as well
as TPSA values, reported in the literature.

Hydrogen Bonds. We have analyzed the hydrogen bond
formation between the compounds and water (Figure S9 in the
Supporting Information), as well as between the compounds
and the lipids (Figure S10 in the Supporting Information), as a
function of the compound position. A hydrogen bond is formed
when the distance between the donor D and acceptor A is ≤ 3.5
Å and the D−H−A angle is ≥135° (H denotes the hydrogen
atom). The number of hydrogen bonds was estimated as the
average number of hydrogen bonds from the ensemble of our
trajectories separately for each compound. Analysis of the
hydrogen-bond formation between compounds and water
molecules (Figure S9) suggests that hydrogen bonds are present
in all cases, but compounds with lower logBB (smaller

Figure 9.Correlation of Fmax (left panel) and nonequilibriumwork (right panel),Wneq, with logBB, TPSA, and logPS for compounds considered in this
study (Table S1) in the case of the CHARMM36 force-field for the DOPC/cholesterol (2:1) membrane model and pulling velocity v = 5 nm/ns
(Table S4). The correlation coefficient R2 is indicated at the top right corner of each graph.
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permeability) overall have higher tendency of forming hydrogen
bonds with water. Moreover, the profiles are rather symmetric
with water molecules being also present in themiddle of the lipid
membrane during simulations. The latter effect may be a
consequence of water molecules being dragged by the
compounds during the pulling process, which mostly takes
place for compounds with low logBB (high tendency of forming
hydrogen bonds). In the case of hydrogen-bond formation
between the compound and the lipids, we can observe that the
presence of hydrogen bonds is related to the barrier that a
compound needs to overcome in order to translocate through
the membrane. In particular, the hydrogen bonds formed
between mannitol and the lipid molecules is the highest among
all compounds reaching the value of 3.8 (Figure S10).Moreover,
because of the apparent symmetric composition of the two
membrane layers in lipids, the profiles seem to be symmetric
with a first high peak in the number of hydrogen bonds
appearing in the left layer (Figure S10) and a subsequent lower
peak. Finally, compounds that translocate easily through the
membrane (high logBB values) do not form as many hydrogen
bonds.
We further attempt to measure the correlation between the

number of hydrogen bonds and the parameters logBB, logPS,
and TPSA as we did previously in the case of Fmax and Wneq.
Although in the latter cases we had found a remarkable
correlation, the correlation between the number of hydrogen
bonds and the experimental logBB and logPS seems weaker
(e.g., see Figure 6, where the case of GROMOS54a7 force-field
for the DOPC membrane model and pulling velocity v = 0.5
nm/ns is illustrated. Similar results we have obtained for all cases
considered in our study). This is clearly manifested by the values
of the correlation coefficient (R2 = 0.24 and 0.42, for the number
of hydrogen bonds vs logBB and logPS, respectively; Figure 6),
which however clearly indicate that the number of hydrogen
bonds decreases as the values of logBB and logPS increase. On
the contrary, the number of hydrogen bonds increases with the
increase of the TPSA with the correlation coefficient being R2 =
0.48, which is consistent with the correlation observed for the
Fmax andWneq. Our results show that compounds with low logBB
and logPS and high TPSA are able to form a larger number of
hydrogen bonds with the lipids, which may suggest that the low
BBB permeability be related to the ability of hydrogen-bond
formation between the compounds and the lipids or the solvent.
However, our results also suggest that this correlation be rather
weaker than the one observed between Fmax andWneq, and logBB
and logPS, which suggests that other factors might contribute to
this correlation.
Electrostatic and Van der Waals Interactions. SMD

simulation allows for the analysis of the interactions between the
compounds and the lipid bilayer into individual contributions,
for example, van der Waals (vdW) and electrostatic interactions.
Such interaction profiles with respect to the compound’s
position are provided in the Supporting Information (Figure
S11). A careful look at these profiles suggests that the vdW
interactions (short range) are more pronounced in the central
region of the bilayer with a width of about 4 nm. In contrast, the
electrostatic interactions (long range) between the compound
and the lipids are less pronounced in the very central region
between the two layers and within a region with width of about 2
nm in the z direction. By considering the magnitude of both the
vdW and the electrostatic interactions for every position within
the bilayer, we observe that these interactions are overall most
pronounced at a distance ±2 nm from the center of the lipid

bilayer. However, the electrostatic energy profiles appear to be
slightly asymmetric with the energy obtaining lower values in the
left part of the lipid bilayer. In contrast, the vdW interactions
indicate some asymmetry in the right part of the bilayer, which
may indicate the effect of steric interactions between the
compounds and the lipids as the compound enters the bilayer.
In Figure 7, we plot the average values of the vdW and

electrostatic energies as a function of logBB, logPS, and TPSA
and analyze their correlation on the basis of the correlation
coefficient R, as we have done previously. While Figure 7 shows
results for the GROMOS54a7 force-field and the DOPC
membrane model for pulling velocity v = 0.5 nm/ns, our
conclusions are similar for all cases of our study. In the case of
the vdW interactions, we observe that the magnitude of these
interactions barely correlates with the logBB and TPSA, while a
more pronounced correlation is observed with the logPS values,
that is, R2 = 0.32. In particular, the larger the logPS, the greater
the effect of the van der Waals interactions during the pulling of
the compound. A higher degree of correlation is observed in the
case of electrostatic interactions with respect to the experimental
logBB and logPS as well as the TPSA. In this case, the correlation
coefficient, R, obtains positive values, while R2 = 0.49 (logBB)
and R2 = 0.70 (logPS). We find that larger values of logBB and
logPS (higher permeability) correspond to smaller (absolute)
values of electrostatic energies. Hence, a smaller effect of
electrostatic forces is linked to a larger permeability of the BBB.
On the contrary, as the TPSA increases electrostatic forces
become more dominant (their absolute value increases) with R2

= 0.43 (a small opposite effect is observed for the vdW forces).
In summary, our results indicate a larger role of electrostatic
interactions during the compound translocation in contrast to
the van der Waals interaction. In the case of logBB and TPSA,
the magnitude of correlation is of the same order as in the case of
the hydrogen bonds. This may suggest that electrostatic
interactions and hydrogen bonds play a more important role
in the translocation of compounds than van der Waals
interactions.

Effect of Cholesterol. To assess further the effect of the
membrane composition, we have altered the membrane
composition by including cholesterol (Figure 8) with a
DOPC/cholesterol ratio of 2:1. Here, results of the maximum
force and the nonequilibrium work in the case of pulling velocity
v = 5 nm/ns and theCHARMM36 force-field as a function of the
logBB and logPS experimental values are shown in Figure 9. The
estimated R2 values for the correlation are in very good
agreement with the membrane cases without the cholesterol.
Indeed, the addition of cholesterol does not affect the
correlation. The results of Figure 9 are documented in Table
S4 for each compound. While the correlation of the maximum
force, Fmax, and the nonequilibrium work, Wneq, with the logBB
and logPS experimental values is not affected by the membrane
model, the absolute values of Fmax (as a result also those ofWneq)
have increased by a factor of two (an example of a force−time
profile is shown in Figure S12 in the Supporting Information).
Hence, we conclude that the presence of cholesterol induces a
larger resistance to the compound. In other words, the
permittivity of the membrane is significantly reduced in a
proportional way without affecting the correlation between the
experimental and the simulation predictions.

■ CONCLUSIONS
The ability of drugs to cross the BBB depends on their
physicochemical characteristics, such as lipophilicity, 3D

Journal of Chemical Information and Modeling pubs.acs.org/jcim Article

https://dx.doi.org/10.1021/acs.jcim.9b00834
J. Chem. Inf. Model. 2020, 60, 3057−3067

3064

http://pubs.acs.org/doi/suppl/10.1021/acs.jcim.9b00834/suppl_file/ci9b00834_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.jcim.9b00834/suppl_file/ci9b00834_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.jcim.9b00834/suppl_file/ci9b00834_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.jcim.9b00834/suppl_file/ci9b00834_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.jcim.9b00834/suppl_file/ci9b00834_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.jcim.9b00834/suppl_file/ci9b00834_si_001.pdf
pubs.acs.org/jcim?ref=pdf
https://dx.doi.org/10.1021/acs.jcim.9b00834?ref=pdf


structure, and so on. Given that most of the drugs are unable to
cross the BBB, a large number of substances may need to be
tested in order to identify the ones that could translocate
through the barrier. However, many of the current experimental
approaches are low throughput and impractical for screening
large sets of substances. Moreover, existing computational
approaches can be computationally expensive or may neglect the
physical mechanisms of the underlying translocation processes.
Here, we have shown that the SMD simulation based on all-
atom models may be a fast, reliable, and computationally
inexpensive approach to determine the relative permeability of
the BBB to various substances. To achieve this, simple model
membranes were used. Our approach based on SMDwas able to
provide good agreement with the experimental results in terms
of the relative permeability of the compounds. In particular, we
have clearly shown that compounds with lower logBB are highly
correlated with larger values of nonequilibrium work required to
pull a compound through the bilayer, with correlation coefficient
values close to unity. Moreover, the maximum force has also
shown a remarkable correlation with the experimental logBB
values. The correlation between the simulation and exper-
imental data is consistent and parameters such as the forcefield,
the number of independent trajectories, and orientation of
compounds (Figure S3 in the Supporting Information), the
number of compounds, the membrane model and composition,
and the pulling velocity, do not affect our conclusions. We have
also monitored the formation of hydrogen bonds between the
compounds and both the lipids and the water molecules, where a
weaker correlation between simulation and experiment was
observed. Overall, the presence of a large number of hydrogen
bonds was associated with experimentally low permeability of
the BBB. Analysis of the van der Waals and electrostatic
interactions between the compounds and the lipid bilayer have
indicated a higher correlation between logBB/logPS and
electrostatic interactions rather than between logBB/logPS
and van der Waals interactions. Because all ligands of our study
were in neutral form, the effect of the charge of the compounds54

on the membrane permeability can be further considered in
future studies. Overall, we anticipate that our method opens new
opportunities for estimating the relative permeability of the BBB
to various compounds and future studies may involve more
complex membranes and coarse-grained models, including
models for the BBB.

■ ASSOCIATED CONTENT

*sı Supporting Information
The Supporting Information is available free of charge at
https://pubs.acs.org/doi/10.1021/acs.jcim.9b00834.

List of all simulated compounds (CID), their logBB,
logPS, TPSA, 3D structure, and selected descriptors,
including references related to the compounds; values of
F, Fmax, and Weq for mannitol for five individual
trajectories; independent force profiles for mannitol
from different trajectories and their average position−
time profile; force−time profiles for compounds of this
study;Wneq and Fmax versus logBB and logPS for different
velocities in the case of 26 compounds simulated with the
GROMOS54a7 force-field; number of hydrogen bonds
versus time and position and electrostatic interaction and
vdW interaction energy versus position for the studied
compounds; and results with different membranes

including cholesterol and an example of force−time
profile (PDF)
Translocation of mannitol through the DOPCmembrane
(cf. Figure 2) (MP4)

■ AUTHOR INFORMATION
Corresponding Author

Mai Suan Li− Institute of Physics, Polish Academy of Sciences, 02-
668 Warsaw, Poland; orcid.org/0000-0001-7021-7916;
Phone: +48 22 843 66 01; Email: masli@ifpan.edu.pl

Authors
Nguyen Quoc Thai − Institute for Computational Science and
Technology, Quang Trung Software City, Ho Chi Minh City
700000, Vietnam; Dong Thap University, Cao Lanh City
870000, Dong Thap, Vietnam

Panagiotis E. Theodorakis− Institute of Physics, Polish Academy
of Sciences, 02-668 Warsaw, Poland; orcid.org/0000-0002-
0433-9461

Complete contact information is available at:
https://pubs.acs.org/10.1021/acs.jcim.9b00834

Author Contributions
M.S.L. conceived the computer experiment. N.Q.T. conducted
the experiment. N.Q.T., P.E.T. and M.S.L. analysed the results.
M.S.L., P.E.T., andN.Q.T. wrote the paper. All authors reviewed
the manuscript.
Notes
The authors declare no competing financial interest.

■ ACKNOWLEDGMENTS
This work was supported by the Department of Science and
Technology at Ho Chi Minh city (grant No. 02/2018/D2/HD-
KHCNTT), Vietnam, and the project B2019.SPD.03. This
research has been supported by the National Science Centre,
Poland, under grant no. 2015/19/B/ST4/02721 and 2015/19/
P/ST3/03541. This project has received funding from the
European Union’s Horizon 2020 research and innovation
programme under the Marie Skłodowska-Curie Grant Agree-
ment no. 665778. The above grants with id 2015/19/P/ST3/
03541 and 665778 refer to the same POLONEZ 1 grant
awarded to the P.E.T. Allocation of CPU time at the
supercomputer center TASK in Gdansk (Poland) is highly
appreciated. This research was supported in part by PLGrid
Infrastructure.

■ REFERENCES
(1) Pardridge, W. M. Blood-brain barrier delivery. Drug Discov. Today
2007, 12, 54−61.
(2) Eyal, S.; Hsiao, P.; Unadkat, J. D. Drug interactions at the blood-
brain barrier: Fact or fantasy? Pharmacol. & Ther. 2009, 123, 80−104.
(3) Kumar, R.; Sharma, A.; Tiwari, R. K. Can we Predict Blood Brain
Barrier Permeability of Ligands using Computational Approaches?
Interdiscip. Sci.: Comput. Life Sci. 2013, 5, 95−101.
(4) Zlokovic, B. V. The Blood-Brain Barrier in Health and Chronic
Neurodegenerative Disorders. Neuron 2008, 57, 178−201.
(5) Theodorakis, P. E.; Müller, E. A.; Craster, R. V.; Matar, O. K.
Physical insights into the blood-brain barrier translocationmechanisms.
Phys. Biol. 2017, 14, 041001.
(6) Carpenter, T. S.; Kirshner, D. A.; Lau, E. Y.; Wong, S. E.; Nilmeier,
J. P.; Lightstone, F. C. A Method to Predict Blood-Brain Barrier
Permeability of Drug-Like Compounds Using Molecular Dynamics
Simulations. Biophys. J. 2014, 107, 630−641.

Journal of Chemical Information and Modeling pubs.acs.org/jcim Article

https://dx.doi.org/10.1021/acs.jcim.9b00834
J. Chem. Inf. Model. 2020, 60, 3057−3067

3065

http://pubs.acs.org/doi/suppl/10.1021/acs.jcim.9b00834/suppl_file/ci9b00834_si_001.pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.9b00834?goto=supporting-info
http://pubs.acs.org/doi/suppl/10.1021/acs.jcim.9b00834/suppl_file/ci9b00834_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.jcim.9b00834/suppl_file/ci9b00834_si_002.mp4
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Mai+Suan+Li"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
http://orcid.org/0000-0001-7021-7916
mailto:masli@ifpan.edu.pl
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Nguyen+Quoc+Thai"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Panagiotis+E.+Theodorakis"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
http://orcid.org/0000-0002-0433-9461
http://orcid.org/0000-0002-0433-9461
https://pubs.acs.org/doi/10.1021/acs.jcim.9b00834?ref=pdf
https://dx.doi.org/10.1016/j.drudis.2006.10.013
https://dx.doi.org/10.1016/j.pharmthera.2009.03.017
https://dx.doi.org/10.1016/j.pharmthera.2009.03.017
https://dx.doi.org/10.1007/s12539-013-0158-9
https://dx.doi.org/10.1007/s12539-013-0158-9
https://dx.doi.org/10.1016/j.neuron.2008.01.003
https://dx.doi.org/10.1016/j.neuron.2008.01.003
https://dx.doi.org/10.1088/1478-3975/aa708a
https://dx.doi.org/10.1016/j.bpj.2014.06.024
https://dx.doi.org/10.1016/j.bpj.2014.06.024
https://dx.doi.org/10.1016/j.bpj.2014.06.024
pubs.acs.org/jcim?ref=pdf
https://dx.doi.org/10.1021/acs.jcim.9b00834?ref=pdf


(7) Brasnjevic, I.; Steinbusch, H. W. M.; Schmitz, C.; Martinez-
Martinez, P. Delivery of peptide and protein drugs over the blood-brain
barrier. Prog. Neurobiol. 2009, 87, 212−251.
(8) Abraham, M. H.; Chadha, H. S.; Mitchell, R. C. Hydrogen
bonding. 33. Factors that Influence the Distribution of Solutes between
Blood and Brain. J. Pharm. Sci. 1994, 83, 1257−1268.
(9) Clark, D. E.; Doherty, A.; Bock, M.; Desai, M.; Overington, J.;
Plattner, J.; Samford, A.; Wustrow, D.; Young, H. Computational
Prediction of Blood-brain Barrier Permeation. Annu. Rep. Med. Chem.
2005, 40, 403.
(10) Lombardo, F.; Blake, J. F.; Curatolo, W. J. Computation of
Brain−Blood Partitioning of Organic Solutes via Free Energy
Calculations. J. Med. Chem. 1996, 39, 4750−4755.
(11) Lee, C. T.; Comer, J.; Herndon, C.; Leung, N.; Pavlova, A.; Swift,
R. V.; Tung, C.; Rowley, C. N.; Amaro, R. E.; Chipot, C.; Wang, Y.;
Gumbart, J. C. Simulation-based Approaches for Determining
Membrane Permeability of Small Compounds. J. Chem. Inf. Model.
2016, 56, 721−733.
(12) Tsinman, O.; Tsinman, K.; Sun, N.; Avdeef, A. Physicochemical
Selectivity of the BBBMicroenvironment Governing Passive Diffusion-
matching with a Porcine Brain Lipid Extract Artificial Membrane
Permeability Model. Pharm. Res. 2011, 28, 337−363.
(13) Smith, QR A review of blood-brain barrier transport techniques.
Methods Mol. Med. 2003, 89, 193−208.
(14) Gumbleton, M.; Audus, K. L. Progress and limitations in the use
of in vitro cell cultures to serve as a permeability screen for the blood-
brain barrier. J. Pharm. Sci. 2001, 90, 1681−1698.
(15) Norinder, U.; Haeberlein, M. Computational approaches to the
prediction of the blood-brain distribution. Adv. Drug Deliv. Rev. 2002,
54, 291−313.
(16) Wolak, D. J.; Thorne, R. G. Diffusion of Macromolecules in the
Brain: Implications for Drug Delivery. Mol. Pharm. 2013, 10, 1492.
(17)Mouritsen, O. G.; Jørgensen, K. A New Look at Lipid-membrane
Structure in Relation to Drug Research. Pharm. Res. 1998, 15, 1507−
1519.
(18) Young, R. C.; Mitchell, R. C.; Brown, T. H.; Ganellin, C. R.;
Griffiths, R.; Jones, M.; Rana, K. K.; Saunders, D.; Smith, I. R.; Sore, N.
Development of a new physicochemical model for brain penetration
and its application to the design of centrally acting H2 receptor
histamine antagonists. J. Med. Chem. 1988, 31, 656−671.
(19) Subramanian, G.; Kitchen, D. B. Computational models to
predict blood-brain barrier permeation and CNS activity. J. Comput.
Aid. Mol. Des. 2003, 17, 643−664.
(20) Abraham, M.; Chadha, H.; Mitchell, R. Hydrogen-bonding. Part
36. Determination of blood brain distribution using octanol-water
partition coefficients. Drug Des. Discov. 1995, 13, 123−31.
(21) Hemmateenejad, B.; Miri, R.; Safarpour, M. A.; Mehdipour, A. R.
Accurate prediction of the blood-brain partitioning of a large set of
solutes usingab initiocalculations and genetic neural network modeling.
J. Comput. Chem. 2006, 27, 1125−1135.
(22) Bolton, E. E.; Wang, Y.; Thiessen, P. A.; Bryant, S. H. PubChem:
Integrated Platform of Small Molecules and Biological Activities. Annu.
Rep. Comput. Chem. 2008, 4, 217−241.
(23) PubChem, http://pubchem.ncbi.nlm.nih.gov, July 31, 2019.
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Biomolecular Simulations of Membranes: Physical Properties from
Different Force Fields. J. Chem. Phys. 2008, 128, 125103.
(26) Berger, O.; Edholm, O.; Ja ̈hnig, F. Molecular Dynamics
Simulations of a Fluid Bilayer of Dipalmitoylphosphatidylcholine at
Full Hydration, Constant Pressure, and Constant Temperature.
Biophys. J. 1997, 72, 2002−2013.
(27) Oostenbrink, C.; Villa, A.; Mark, A. E.; van Gunsteren, W. F. A
Biomolecular Force Field Based on the Free Enthalpy of Hydration and
Solvation: the GROMOS Force-field Parameter Sets 53A5 and 53A6. J.
Comput. Chem. 2004, 25, 1656−1676.

(28) Klauda, J. B.; Venable, R. M.; Freites, J. A.; O’Connor, J. W.;
Tobias, D. J.; Mondragon-Ramirez, C.; Vorobyov, I.; MacKerell, A. D.,
Jr; Pastor, R. W. Update of the CHARMM All-atom Additive Force
Field for Lipids: Validation on Six Lipid Types. J. Phys. Chem. B 2010,
114, 7830−7843.
(29) Venable, R. M.; Sodt, A. J.; Rogaski, B.; Rui, H.; Hatcher, E.;
MacKerell, A. D., Jr; Pastor, R. W.; Klauda, J. B. CHARMM All-atom
Additive Force Field for Sphingomyelin: Elucidation of Hydrogen
Bonding and of Positive Curvature. Biophys. J. 2014, 107, 134−145.
(30) Jo, S.; Lim, J. B.; Klauda, J. B.; Im, W. CHARMM-GUI
Membrane Builder for Mixed Bilayers and its Application to Yeast
Membranes. Biophys. J. 2009, 97, 50−58.
(31) Jo, S.; Kim, T.; Iyer, V. G.; Im,W. CHARMM-GUI: A web-based
graphical user interface for CHARMM. J. Comput. Chem. 2008, 29,
1859−1865.
(32) Jo, S.; Kim, T.; Im, W. Automated Builder and Database of
Protein/Membrane Complexes for Molecular Dynamics Simulations.
PloS One 2007, 2, No. e880.
(33) Lee, J.; Cheng, X.; Swails, J. M.; Yeom, M. S.; Eastman, P. K.;
Lemkul, J. A.; Wei, S.; Buckner, J.; Jeong, J. C.; Qi, Y.; Jo, S.; Pande, V.
S.; Case, D. A.; Brooks, C. L.; MacKerell, A. D.; Klauda, J. B.; Im, W.
CHARMM-GUI Input Generator for NAMD, GROMACS, AMBER,
OpenMM, and CHARMM/OpenMM Simulations using the
CHARMM36 Additive Force Field. J. Chemical Theory Comput.
2015, 12, 405−413.
(34) Malde, A. K.; Zuo, L.; Breeze, M.; Stroet, M.; Poger, D.; Nair, P.
C.; Oostenbrink, C.; Mark, A. E. An Automated Force Field Topology
Builder (ATB) and Repository: Version 1.0. J. Chemical Theory Comput.
2011, 7, 4026−4037.
(35) Automated Topology Builder. http://compbio.chemistry.uq.
edu.au/atb/, accessed July 31, 2019.
(36) Canzar, S.; El-Kebir, M.; Pool, R.; Elbassioni, K.; Malde, A. K.;
Mark, A. E.; Geerke, D. P.; Stougie, L.; Klau, G. W. Charge Group
Partitioning in Biomolecular Simulation. J. Comput. Biol. 2013, 20,
188−198.
(37) Koziara, K. B.; Stroet, M.; Malde, A. K.; Mark, A. E. Testing and
Validation of the Automated Topology Builder (ATB) Version 2.0:
Prediction ofHydration Free Enthalpies. J. Comput. Aid. Mol. Des. 2014,
28, 221−233.
(38) Zoete, V.; Cuendet, M. A.; Grosdidier, A.; Michielin, O.
SwissParam: A Fast Force Field Generation Tool for Small Organic
Molecules. J. Comput. Chem. 2011, 32, 2359−2368.
(39) Becke, A. D. Density-functional thermochemistry. III. The role of
exact exchange. J. Chem. Phys. 1993, 98, 5648−5652.
(40) Lee, C.; Yang, W.; Parr, R. G. Development of the Colle-Salvetti
Correlation-energy Formula into a Functional of the Electron Density.
Phys. Rev. B 1988, 37, 785.
(41) Perdew, J. P.; Wang, Y. Accurate and Simple Analytic
Representation of the Electron-gas Correlation Energy. Phys. Rev. B
1992, 45, 13244.
(42) Singh, U. C.; Kollman, P. A. An Approach to Computing
Electrostatic Charges for Molecules. J. Comput. Chem. 1984, 5, 129−
145.
(43) Berendsen, H. J. C.; Postma, J. P. M.; van Gunsteren, W. F.;
Hermans, J. Interaction Models for Water in Relation to Protein
Hydration. In Intermolecular Forces; Reidel, D., Ed.; Springer:
Dordrecht, The Netherlands, 1981; pp 331−342.
(44) Suan Li, M.; Khanh Mai, B. Steered Molecular Dynamics-A
Promising Tool for Drug Design. Curr. Bioinform. 2012, 7, 342−351.
(45) Gibson, C. T.; Carnally, S.; Roberts, C. J. Attachment of Carbon
Nanotubes to Atomic ForceMicroscope Probes.Ultramicroscopy 2007,
107, 1118−1122.
(46) Mai, B. K.; Viet, M. H.; Li, M. S. Top Leads for Swine Influenza
A/H1N1 Virus Revealed by Steered Molecular Dynamics Approach. J.
Chem. Inf. Model. 2010, 50, 2236−2247.
(47) Mai, B. K.; Li, M. S. Neuraminidase inhibitor R-125489 - A
promising drug for treating influenza virus: Steeredmolecular dynamics
approach. Biochem. Biophys. Res. Commun. 2011, 410, 688−691.

Journal of Chemical Information and Modeling pubs.acs.org/jcim Article

https://dx.doi.org/10.1021/acs.jcim.9b00834
J. Chem. Inf. Model. 2020, 60, 3057−3067

3066

https://dx.doi.org/10.1016/j.pneurobio.2008.12.002
https://dx.doi.org/10.1016/j.pneurobio.2008.12.002
https://dx.doi.org/10.1002/jps.2600830915
https://dx.doi.org/10.1002/jps.2600830915
https://dx.doi.org/10.1002/jps.2600830915
https://dx.doi.org/10.1016/s0065-7743(05)40026-3
https://dx.doi.org/10.1016/s0065-7743(05)40026-3
https://dx.doi.org/10.1021/jm960163r
https://dx.doi.org/10.1021/jm960163r
https://dx.doi.org/10.1021/jm960163r
https://dx.doi.org/10.1021/acs.jcim.6b00022
https://dx.doi.org/10.1021/acs.jcim.6b00022
https://dx.doi.org/10.1007/s11095-010-0280-x
https://dx.doi.org/10.1007/s11095-010-0280-x
https://dx.doi.org/10.1007/s11095-010-0280-x
https://dx.doi.org/10.1007/s11095-010-0280-x
https://dx.doi.org/10.1002/jps.1119
https://dx.doi.org/10.1002/jps.1119
https://dx.doi.org/10.1002/jps.1119
https://dx.doi.org/10.1016/s0169-409x(02)00005-4
https://dx.doi.org/10.1016/s0169-409x(02)00005-4
https://dx.doi.org/10.1021/mp300495e
https://dx.doi.org/10.1021/mp300495e
https://dx.doi.org/10.1023/a:1011986613392
https://dx.doi.org/10.1023/a:1011986613392
https://dx.doi.org/10.1021/jm00398a028
https://dx.doi.org/10.1021/jm00398a028
https://dx.doi.org/10.1021/jm00398a028
https://dx.doi.org/10.1023/b:jcam.0000017372.32162.37
https://dx.doi.org/10.1023/b:jcam.0000017372.32162.37
https://dx.doi.org/10.1002/jcc.20437
https://dx.doi.org/10.1002/jcc.20437
https://dx.doi.org/10.1016/s1574-1400(08)00012-1
https://dx.doi.org/10.1016/s1574-1400(08)00012-1
http://pubchem.ncbi.nlm.nih.gov
https://dx.doi.org/10.1007/s00232-010-9296-8
https://dx.doi.org/10.1007/s00232-010-9296-8
https://dx.doi.org/10.1063/1.2897760
https://dx.doi.org/10.1063/1.2897760
https://dx.doi.org/10.1016/s0006-3495(97)78845-3
https://dx.doi.org/10.1016/s0006-3495(97)78845-3
https://dx.doi.org/10.1016/s0006-3495(97)78845-3
https://dx.doi.org/10.1002/jcc.20090
https://dx.doi.org/10.1002/jcc.20090
https://dx.doi.org/10.1002/jcc.20090
https://dx.doi.org/10.1021/jp101759q
https://dx.doi.org/10.1021/jp101759q
https://dx.doi.org/10.1016/j.bpj.2014.05.034
https://dx.doi.org/10.1016/j.bpj.2014.05.034
https://dx.doi.org/10.1016/j.bpj.2014.05.034
https://dx.doi.org/10.1016/j.bpj.2009.04.013
https://dx.doi.org/10.1016/j.bpj.2009.04.013
https://dx.doi.org/10.1016/j.bpj.2009.04.013
https://dx.doi.org/10.1002/jcc.20945
https://dx.doi.org/10.1002/jcc.20945
https://dx.doi.org/10.1371/journal.pone.0000880
https://dx.doi.org/10.1371/journal.pone.0000880
https://dx.doi.org/10.1021/acs.jctc.5b00935
https://dx.doi.org/10.1021/acs.jctc.5b00935
https://dx.doi.org/10.1021/acs.jctc.5b00935
https://dx.doi.org/10.1021/ct200196m
https://dx.doi.org/10.1021/ct200196m
http://compbio.chemistry.uq.edu.au/atb/
http://compbio.chemistry.uq.edu.au/atb/
https://dx.doi.org/10.1089/cmb.2012.0239
https://dx.doi.org/10.1089/cmb.2012.0239
https://dx.doi.org/10.1007/s10822-014-9713-7
https://dx.doi.org/10.1007/s10822-014-9713-7
https://dx.doi.org/10.1007/s10822-014-9713-7
https://dx.doi.org/10.1002/jcc.21816
https://dx.doi.org/10.1002/jcc.21816
https://dx.doi.org/10.1063/1.464913
https://dx.doi.org/10.1063/1.464913
https://dx.doi.org/10.1103/physrevb.37.785
https://dx.doi.org/10.1103/physrevb.37.785
https://dx.doi.org/10.1103/physrevb.45.13244
https://dx.doi.org/10.1103/physrevb.45.13244
https://dx.doi.org/10.1002/jcc.540050204
https://dx.doi.org/10.1002/jcc.540050204
https://dx.doi.org/10.2174/157489312803901009
https://dx.doi.org/10.2174/157489312803901009
https://dx.doi.org/10.1016/j.ultramic.2007.02.045
https://dx.doi.org/10.1016/j.ultramic.2007.02.045
https://dx.doi.org/10.1021/ci100346s
https://dx.doi.org/10.1021/ci100346s
https://dx.doi.org/10.1016/j.bbrc.2011.06.057
https://dx.doi.org/10.1016/j.bbrc.2011.06.057
https://dx.doi.org/10.1016/j.bbrc.2011.06.057
pubs.acs.org/jcim?ref=pdf
https://dx.doi.org/10.1021/acs.jcim.9b00834?ref=pdf


(48) Vuong, Q. V.; Nguyen, T. T.; Li, M. S. A New Method for
Navigating Optimal Direction for Pulling Ligand from Binding Pocket:
Application to Ranking Binding Affinity by Steered Molecular
Dynamics. J. Chem. Inf. Model. 2015, 55, 2731−2738.
(49) Hess, B.; Bekker, H.; Berendsen, H. J. C.; Fraaije, J. G. E. M.
LINCS: A Linear Constraint Solver for Molecular Simulations. J.
Comput. Chem. 1997, 18, 1463−1472.
(50) Brooks, B. R.; Brooks, C. L., III; Mackerell, A. D., Jr; Nilsson, L.;
Petrella, R. J.; Roux, B.; Won, Y.; Archontis, G.; Bartels, C.; Boresch, S.;
Caflisch, A.; Caves, L.; Cui, Q.; Dinner, A. R.; Feig, M.; Fischer, S.; Gao,
J.; Hodoscek, M.; Im, W.; Kuczera, K.; Lazaridis, T.; Ma, J.;
Ovchinnikov, V.; Paci, E.; Pastor, R. W.; Post, C. B.; Pu, J. Z.;
Schaefer, M.; Tidor, B.; Venable, R. M.; Woodcock, H. L.; Wu, X.;
Yang, W.; York, D. M.; Karplus, M. CHARMM: The Biomolecular
Simulation Program. J. Comput. Chem. 2009, 30, 1545−1614.
(51) Hitchcock, S. A.; Pennington, L. D. Structure−Brain Relation-
ships. J. Med. Chem. 2006, 49, 7559−7583.
(52) Pluhackova, K.; Kirsch, S. A.; Han, J.; Sun, L.; Jiang, Z.; Unruh,
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