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The aim of our study was to establish an artificial intelligence tool for the diagnosis of breast disease base on ultrasound (US)
images. A deep learning algorithm Efficient-Det assisted US diagnosis method was developed to determine breast suspicious
lesions as benign, malignant, or normal. Totally 1181 US images from 487 patients of our hospital and 694 publicly accessible
images were employed for modeling, including 558 benign images, 370 malignant images, and 253 normal tissue images. The
actual diagnosis results for the patients were determined by the biopsy or surgery. Efficient-Det was first retrained using an
exclusive public breast cancer US dataset with transfer learning techniques. A blind test set consisting of 50 benign, 50
malignant, and 50 normal tissue images was randomly picked from the patients’ images as the independent test set to test its
searching ability on suspicious tumor regions. Furthermore, the confusion matrix and classification accuracy were employed as
evaluation metrics to select the optimal classification models. Efficient-Det has demonstrated remarkable progress in general
image recognition tasks with specific advantages of locating and identifying tumor areas simultaneously. Compared to the
manual method (mean accuracy: 95.3% and 60 s per image) and traditional feature engineering method (mean accuracy: 90%
and 15 s per image), our Efficient-Det has the capability of providing a competitive (mean accuracy: 92.6%) and fast (0.06 s per
image) classification result. The deployment of Efficient-Det in our local breast cancer discrimination task exhibits specific
applicability within real clinical workflows.

1. Introduction

Breast cancer risk is the second leading cause of death among
women in the world, but precise detection can provide an
opportunity for timely treatments [1]. Among the various
detection methods, B-mode ultrasound screening technology
is favored and recommended as a routine diagnostic tool due
to its low cost and fast imaging [2]. Although breast ultra-
sound imaging can characterize the suspicious tumor areas
of the breast tissue, massive daily image analysis aggravates
the burden of clinical radiologists [3]. Furthermore, the incon-
sistency of different radiologists on the same image may lead
to serious false-positive problems, thereby delaying the effec-
tive treatments [4].

Currently, different computer-aided diagnosis (CAD)
systems have been developed to standardize and accelerate
the diagnostic procedure [5]. Traditional CAD systems usu-
ally consist of two steps: segmentation and identification of
suspicious breast tumor regions. In the segmentation sec-
tion, interactive, semiautomatic, and even fully automatic
methods are implemented to generate cancer contour seg-
mentations [6]. Next, quantitative metrics, including mor-
phological or texture features of cancer regions, are
extracted following professional instructions [7]. After fea-
ture engineering, various classification algorithms, such as
linear discriminant analysis (LDA) and support vector
machines (SVMs), are then employed for the discrimination
of cancer types [8]. However, the performance of the two-
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stage cancer detection approach largely depends on the coin-
cidence degree of feature engineering and classification algo-
rithms. The prediction of breast cancers in a one-stage
fashion might be the trend, which has the advantage of pro-
viding flexible and faster diagnostic results.

In recent years, deep learning (DL) algorithms, particu-
larly convolutional neural networks (CNNs), have gained
extensive attention for classification tasks in different scenes
owing to their outstanding performance [9]. Unlike compli-
cated handcrafted feature engineering, the convolutional
neural network (CNN) architecture is capable of automati-
cally extracting repeatable and accurate representative deep
features [10]. As a consequence, major medical and govern-
mental organizations are seeking efficient artificial intelli-
gence (AI) algorithms to achieve automated clinical
applications [11]. Various CNN algorithms, such as ResNet,
U-Net, and DenseNet, have been redesigned to directly
inspect cancer images [10], to locate precise cancer areas
[12] or to mimic the human decision-making process in
diagnosis [13], and have shown excellent performance.
Although AI approaches show promise in breast cancer
image analysis, the expensive soft and hardware costs limit
their clinical applicability [14]. Recently, to reduce depen-
dence on models with abundant complex parameters, more
research has focused on designing a tiny and ingenious AI
algorithm for rapid detection. Efficient-Det is gaining
increasing attention due to its remarkable performance
based on the tiny scale of parameters [15]. The high stan-
dard dataset is becoming another technical obstacle, espe-
cially for developing nations. Large-scale investigation
programs are hard to implement, resulting in a shortage of
high-quality labeled datasets [16]. To fulfill this technical
gap, transfer learning techniques might be a welcomed
choice to retrain the general CNN architecture for the image
classification task of local breast cancer cases [17].

In this paper, we modified Efficient-Det, which is a lite
architecture proposed by Tan et al. [15], and used it to differ-
entiate benign breast masses, malignant breast masses, and
normal breast tissue based on two-dimensional gray scale
ultrasound images. In addition, expert radiologist methods
and feature engineering-based classification methods were
also conducted for comparison. We then explored the inter-
pretability of AI methods in improving the accuracy of dis-
criminating breast cancer images. The clinical applicability
of Efficient-Det in breast tumor classification is also
discussed.

2. Material and Methods

2.1. Study Design and Participants. We carried out a retro-
spective, single center, and diagnostic study by searching
the images of 986 female patients who underwent breast
ultrasound examination in the ultrasound image database
in our hospital from June 2015 to June 2020. According to
the exclusion criteria, 499 patients were excluded according
to the following criteria: (1) any preoperative intervention
and treatment (such as radiotherapy and chemotherapy)
before ultrasound examination and (2) the mass showed
unclear or no visible region of interest (ROI) on the sono-

gram. Clinical data included age, family history of breast
cancer, menopausal status, and pathological type. Image
quality was assessed by two radiologists with 5 and 10 years
of breast imaging experience. The flow chart describing the
research process is shown in Figure 1. To enrich the dataset,
a publicly accessible dataset including 379 benign, 182
malignant, and 133 normal tissue images was employed for
model training (https://www.kaggle.com/anaselmasry/
datasetbusiwithgt/version/1). Totally 1181 images were used
for data analysis in the present work, containing 558 benign
images, 370 malignant images, and 253 normal tissue
images.

2.2. Image Acquisition and Preprocessing. The two-
dimensional gray scale ultrasound images of breast masses
were obtained from 10 different ultrasound machines from
four manufacturers, and detailed information is presented
in Table S1. All patients were examined with a 7–12MHz
linear probe. The transducer was directly applied to the
skin surface to check the inner and outer quadrants of the
breast. Then, a scan was performed on the radial and
antiradial planes associated with the nipple or the sagittal
and transverse planes, starting from the inner upper
quadrant of the breast and then slowly moving to the outer
quadrant to obtain the sagittal image. Then, the transducer
was moved under the breast, and the scan was repeated
until the entire breast was examined. The benign and
malignant images are shown in Figure 2.

2.3. Image Preprocessing. For Efficient-Det, the open-source
software LabelImg was used to label the tumor ROI with
annotations (https://github.com/tzutalin/labelImg). Then,
the preprocessed images coupled with annotations were
saved and yielded for the loop training of Efficient-Det.

For expert radiologists, original test images were directly
presented coupled with digital patient history.

For feature engineering- (FE-) based methods, the can-
cer regions of interest (ROIs) were manually cropped by
an expert-defined method, which covered the entire tumor
area and boundary close to the tumor margin. Next, the
tumor ROI segmentations were fed to the automated pro-
gram for feature extraction. The detailed morphological fea-
tures including area, eccentricity, and orientation. Second,
based on these features are summarized in Table S2, as
well as the corresponding mathematical definitions.

2.4. Efficient-Det Algorithm. The Efficient-Det algorithm
presented here was a one-stage architecture that is capable
of providing precise segmentation and accurate classification
simultaneously. The efficiency of this new model was signif-
icantly improved by conducting systematic parameter opti-
mization including weighted bidirectional feature pyramid
networks (BiFPNs) and the compound scaling strategy of
depth, width, and resolution of the network. Efficient-Det-
B0 was selected here, which has the tiniest model size but
can achieve competitive accuracy. The network parameters
and the structure of Efficient-Det-B0 are presented in detail
in Table S3 and Figure 3, respectively. The mobile inverted
bottleneck (MBCov) designed by MobileNet-V2 was used
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for baseline construction, which could extract deeper
features with less computation. After feature extraction, the
final prediction layer was the categories of benign,
malignant, and normal scores. A transfer learning strategy
was employed to modify Efficient-Det for breast tumor
classification. First, the parameters of Efficient-Det were
initialized with values derived from COCO dataset
pretraining. Then, data augmentation, including shearing,
rescaling, and flipping, was applied to each breast tumor
image during model training. Specific training skills, such
as early stopping, learning rate decay, and freeze fine-
tuning, were conducted to speed up model training. The
Efficient-Det loss is defined in Equation (1), which is the
summation of smoothL1 and Focal Loss. smoothL1 is the
box regression regulation function commonly used on

object detection systems, which is defined in Equation (2),
and x denotes the error between the predicted value and
true value. LossFL was proposed by He et al. to solve the
positive-negative imbalance problem that occurs in object
detection [18]. It is defined in Equation (3), where y′
denotes the output after the activation function, α denotes
the balancing factor, and γ (gamma) is used to adjust the
weight decrease rate of simple samples.

Loss = smoothL1 + LossFL, ð1Þ

smoothL1 xð Þ =
0:5x2 xj j < 1

xj j − 0:5 otherwise
,

(
ð2Þ

LossFL =
−α 1 − y′

� �γ
log y′ y = 1

− 1 − αð Þy′γ log 1 − y′
� �

y = 0

8><
>: : ð3Þ

2.5. Model Training. In the Efficient-Det training, 150 sam-
ples (namely, 50 benign images +50 malignant images +50
normal tissue images) were randomly picked from the
patients’ images from our hospital. They formed a blind test
set used for to examine the Efficient-Det model searching
ability on suspicious tumor regions and the predicative abil-
ity. The remaining 1031 images were shuffled for model
training and validation with a split ratio value of 0.75, and
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Public accessible dataset
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Performance on test set

Figure 1: Flow chart of the development procedures for the deep learning model for breast tumor discrimination.

(a) (b)

Figure 2: Breast tumor images acquired with two-dimensional gray
scale ultrasound and color Doppler ultrasound: (a) malignant
tumor image; (b) benign tumor image.
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the weighted split strategy for different classes was con-
ducted to avoid imbalance issues.

For the expert diagnosis, only the selected 150 samples in
Efficient-Det model blind test set were used to examine the
accuracy of expert diagnosis. The discriminant ability for
the expert diagnosis was determined by results from biopsy
or surgery. For the feature engineering, the SVM classifier
with a linear kernel (default parameter) was then employed
to achieve automated discrimination of benign and malig-
nant tumors based on morphological features. Because there
were no morphological features for the normal tissue
images, only benign images and malignant images were used
for modeling. The 50 benign images and 50 malignant
images in the Efficient-Det model blind test set were also
used for bind test in the FE-SVM model.

2.6. Evaluation Metrics. In this study, a confusion matrix and
a classification accuracy were employed as evaluation met-
rics [19]. The confusion matrix lists all actual samples in col-
umns and predicted samples in rows. The classification
accuracy is defined in Equation (4), where TP, TN, FP, and
FN denote true positive, true negative, false-positive, and
false-negative samples, respectively. The mean accuracy
defined in Equation (5) was employed to quantify the per-
formance of each classification model.

Accuary = TP + TN
TP + FP + FN + TN

, ð4Þ

MeanAccuracy =
1
k
〠
k

i=0
Accuracyk: ð5Þ

3. Results

3.1. Performance Comparison of Different Classification
Methods. Table 1 summarizes the results of all classification
methods. The expert diagnosis achieved the highest classifi-
cation accuracy (mean accuracy 95.3%), followed by
Efficient-Det (mean accuracy 92.6%) and SVM classifier
with feature engineering techniques (mean accuracy 90%).
In addition, the Efficient-Det model had the shortest time-
consuming (0.06 s per image). The classification results in
Figure 4 show that our Efficient-Det may intuitionistically
present breast cancer diagnosis results compared to other
methods. An excellent localization performance suggests
that our Efficient-Det can precisely select suspicious tumor
regions for further assessment. Notably, additional cancer
identification probabilities are given to support the inferred
results. Beyond detailed prediction probabilities, the
Efficient-Det could obviate the need for double reading
and thereby may have many practical benefits.

3.2. Confusion Metrics of Prediction Results of Different
Classifiers. The prediction results of three classification
methods for benign lesions, malignant lesions, and normal
tissues were presented in the confusion matrix (Figure 5).
Five images of benign lesions were misclassified as malig-
nant as shown in Figure 5(a) by experts, while their predic-
tions of malignant lesions and normal tissues were
consistent with the real results. SVM classifier performed
well in the prediction of benign lesions, but there were 10
cases of misjudgment in malignant lesions as shown in
Figure 5(b). The accuracy of the Efficient-Det model was
higher than that of experts (48/50 vs. 45/50) in identifying
benign lesions but lower than that of experts in identifying
malignant lesions and normal tissues (45/50 vs. 49/50; 46/
50 vs. 49/50). Compared with SVM classifier, the Efficient-

EfficientNet (target model)

EfficientNet (source model)

Transfer learning
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Figure 3: The procedure of fine-tuning Efficient-Net (Efficient-Det core algorithm) using the transfer learning technique. Different from the
structure of Tan’s workflow (be reserved for feature extraction), the original prediction layer in Efficient-Net was changed into the categories
of benign, malignant, and normal scores (the rightest label bar), and the hyperparameters of the modified Efficient-Det were next updated to
satisfy for breast cancer classification using transfer learning strategy.
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Det model had slightly lower accuracy in identifying benign
lesions (48/50 vs. 50/50), while it was more accurate in iden-
tifying malignant lesions (45/50 vs. 40/50) (Figure 5(c)).

3.3. False-Positive Classification Cases of All Classification
Models. The minimum false-positive cases of all classifica-
tion models centered around ambiguous images, which are
presented in Figure 6. The malignant lesion was misclassi-
fied as a benign image with a 0.76 confidence score
(Figure 6(a)). The gland ROI (red rectangle) was misclassi-
fied as a malignant image with a confidence score of 0.56
by Efficient-Det. In contrast, another gland ROI (blue rect-
angle) was captured, which produced a different explanation
(normal image confidence score: 0.50) (Figure 6(b)).
Efficient-Det provided three different explanations in an
image with only one benign lesion ROI, while only one
was correct (green rectangle) with a confidence score of
0.61. The ROI of cross section of the rib (red rectangle)
was misclassified as a malignant image, while the small
benign lesion was not effectively recognized, resulting in
the ROI (blue rectangle) of the normal area being captured
(Figure 6(c)).

3.4. Grad-Cam Visualization of Convolutional Features. We
intuitively presented the recognition pattern of the DL
model by generating heat maps, including Grad-Cam feature
heat map, and the overlay images (Figure 7): The Efficient-
Det activated the greatest predictive regions of the tumor
with red and yellow, while the weaker predictive regions
were green and blue. As shown in Figures 7(a) and 7(b),

when visualized for tumors, the suspicious regions were
highlighted. Moreover, the Grad-Cam features showed that
Efficient-Det was interested in the center region inside the
tumor (red colors highlight from overlay images), which
may be important for predicting the particular variety of
tumors. In Figure 7(c), Grad-Can features show that it failed
in detecting any suspicious tumor ROIs, which supports the
Efficient-Det to provide a “normal” decision.

4. Discussion

In this study, we present an intelligent classification method
(Efficient-Det) that achieved competitive results with expert
radiologists on a clinical task of ultrasound breast cancer
classification. Although manual and traditional ML classifi-
cation methods show encouraging results, these studies have
relied on plenty of enriched experience or professional,
handcrafted engineering features. For instance, when human
readers evaluate breast cancer, they may obtain access to dig-
ital patient history to confirm the final referral decision.
From Table 1, it seems acceptable that only 60 s was needed
when manually diagnosing each image, but a flood of ultra-
sound breast cancer images was generated daily, and labor
shortages became an unavoidable challenge. In contrast,
the ML method offers a huge improvement because it pro-
vides automatic assessment. However, the establishment of
feature engineering will cost considerable manpower and
time. Consequently, only a few advanced medical institu-
tions have the ability to afford an expensive classification

Table 1: Results from different classification methods.

Classification methods
Classification accuracy

Mean accuracy Time cost per image
Benign Malignant Normal

Expert 90% (45/50) 98% (49/50) 98% (49/50) 95.3% (143/150) 60 s

FE + SVM 100% (50/50) 80% (40/50) — 90% (90/100) 15 s

Efficient-Det 96% (48/50) 90% (45/50) 92% (46/50) 92.6% (139/150) 0.06 s

Expert: expert radiologist manual decisions; FE + SVM: feature engineering with support vector machines; Efficient-Det.
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Figure 4: Classification results on different images between experts and Efficient-Det: (a) origin images; (b) identification process and results
of experts; (c) identification results of Efficient-Det.
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system based on complicated feature engineering. In addi-
tion, the traditional ML method is not interface-friendly
for clinical radiologists; inferred results were directly present
without cancer location.

Although an expert can classify different types of breast
cancers with the highest accuracy, the time cost of 60 sec-
onds per image is extraordinary for a clinical radiologist.
Long-term high-intensity image inspection will inevitably

lead to persistent anxiety, stress, and low accuracy. Com-
pared to the expert method, the two-stage traditional CAD
method, which employs an SVM classifier with feature engi-
neering, can eliminate repetitive and tedious human inspec-
tion. Although feature engineering and SVM classifiers can
currently be implemented separately using program auto-
mation, additional operations such as feature sorting and
standardization are needed. Furthermore, solely based on
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Figure 5: Confusion metrics of different classifiers: (a) expert; (b) SVM classifier; (c) DL classifier.
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Figure 6: False-positive classification cases: (a) real malignant cases with benign referral; (b) a small dark region was identified as a benign
tumor; (c) real tissue image with benign and malignant predictions.
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morphological features, only benign and malignant tumors
can be binary classified, and normal tissue images cannot
be effectively recognized. Recent searches believe that texture
feature extraction can enrich feature engineering functions,
thereby improving the classification accuracy; however, the
time cost of processing per image will be significantly
increased. Our one-stage Efficient-Det achieves a balanced
result, with a high classification accuracy of 92.6%, similar
to expert behavior, and short time (0.06 s per image).
Despite the huge computational resources required for opti-
mizing the Efficient-Det model, once training on the model
is complete, it could be deployed in the cloud for automated
classification of breast tumors.

However, these comparisons are not without limitations.
Especially for traditional ML classifiers, the normal tissue
images were not fed to feature engineering. In the past, the
specific gray level-gradient cooccurrence matrix (GLCM)
technique was conducted to quantify normal tissue images
[20]. Since many studies have provided evidence that CNN
features are superior to handcrafted GLCM features, this
time-consuming and tedious FE was not conducted here.
Another limitation comes from the interpretation of differ-
ent classification models. Usually, human readers add the
symptom description to support their screening decisions,
which could be traced from the patient’s digital history.
Although the ML and DL methods exhibit a tradeoff
between accuracy and simplicity, both only provide the pre-
dicted probability scores as inference results. In ML
methods, the first feature engineering component provides
a naturally initial explanation when designing the hand-
crafted rule to quantify tumor regions, where classical rule-
based methods are highly enriched in interpretation but
may not be robust enough for characterization. The power
of Efficient-Det comes from the deep CNN architecture by
stacking greater abstraction (more deep convolutional

layers) and tighter integration (back-propagation derivation
and end-to-end training) using advanced establishment
techniques. Consequently, while Efficient-Det enables supe-
rior performance to other methods, the lack of decompos-
ability into inside individual components makes it a
regrettable “black box,” which is hard to interpret.

To increase the interpretation of large-scale CNN
models such as Efficient-Det, the gradient-weighted class
activation mapping (Grad-Cam) technique was employed
here to visualize the “black box” [21]. Grad-Cam can pro-
duce “visual explanations” for model decisions by generating
a coarse localization map highlighting the important regions
when predicting the target tumors. As shown in Figure 7, we
present the original tumor image, corresponding Grad-Cam
feature heat map, and the overlay images. The Grad-Cam
feature heat map was calculated by extracting the gradient
information from the last convolutional layer, in which a
particular decision value of interest is reserved. Furthermore,
to present the high-resolution and class-discriminative
Grad-CAM visualizations, pixel-space gradients and loca-
tions are fused. Specifically, ReLU activation is used to the
linear combination of weighted feature maps to force the
Grad-Cam feature to focus on the features which have a pos-
itive influence on the class of interest. By adopting this strat-
egy, the positive pixel intensity of targeted regions on Grad-
Cam is increased, while negative pixels belonging to other
categories are weakened. As a result, important regions of
the image that correspond to any decision of interest are
visualized in high-resolution detail when the image contains
evidence for suspicious regions. As shown in Figures 7(a)
and 7(b), when visualized for tumors, the suspicious regions
were highlighted. Moreover, the Grad-Cam features showed
that Efficient-Det was interested in the center region inside
the tumor (red colors highlight from overlay images), which
may be important for predicting the particular variety of
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Figure 7: Grad-Cam visualization of convolutional features: (a) Grad-Cam performed on predicting benign tumor image; (b) Grad-Cam
performed on predicting malignant tumor images; (c) Grad-Cam performed on predicting normal tissue image.
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cancer tumors. In Figure 7(c), Grad-Can features show that
it failed in detecting any suspicious tumor ROIs, which sup-
ports the Efficient-Det to provide a “normal” decision.

5. Conclusion and Future Perspectives

We present the evidence of Efficient-Det’s capability to
detect and identify breast tumors based on two-
dimensional gray scale ultrasound images in this study. We
retrained Efficient-Det using an exclusively public ultra-
sound dataset and then measured performance on our local
breast cancer dataset. In this context, Efficient-Det (mean
accuracy 92.6%) outperforms traditional FE-based CAD
methods (mean accuracy 90%) by a smaller margin. The
time cost per image for Efficient-Det was excellent, only at
0.06 s. Although expert radiologists achieved a higher mean
accuracy score (95.3%) than Efficient-Det, a huge time cost
was required for deciding each image (60 s). Our research
suggests that in future clinical deployments, Efficient-Det
might offer competitive diagnostic results in a shorter time.
Furthermore, Efficient-Det may benefit from fine-tuning
with increasing local data. Since only limited data are cur-
rently provided, extra data could help Efficient-Det build a
strong baseline for anti-false-positive cases, thereby provid-
ing robust and precise diagnostic results. Although early
stage detection of breast cancer is more clinical, it is also
challenging. Hence, in order to construct the preliminary
structural framework of the diagnostic model, more distinc-
tive parameters from benign and malignant lesions were
preferentially included and analyzed, which provided a
parameter basis for the subsequent construction of early
stage detection model.

AI systems tend to be invasive rather than the current
routine procedure. Although the optimal use of the AI
method within clinical workflows remains to be determined,
current research suggests that AI technology exhibits a spe-
cific advantage in simplifying the clinical procedure (such
as unnecessary biopsies) and improving diagnostic accuracy.
Since US technology is fast and widely adopted in screening
breast cancer, AI-assisted US detection systems are preferred
by more researchers. Additionally, it is necessary to explore
intelligent and tiny AI algorithms for cloud deployment.
We believe that our lite Efficient-Det research will provide
a profound understanding of applying intelligent algorithms
for breast tumor classification and valuable insights to
researchers in this field.
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