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Massive hemorrhage is a leading cause of death worldwide. During the last decade
several retrospective and some prospective clinical studies have suggested a beneficial 
effect of early plasma-based resuscitation on survival in trauma patients. The underlying 
mechanisms are unknown but appear to involve the ability of plasma to preserve the 
endothelial glycocalyx. In this mini-review, we summarize current knowledge on glyco-
calyx structure and function, and present data describing the impact of hemorrhagic 
shock and resuscitation fluids on glycocalyx. Animal studies show that hemorrhagic
shock leads to glycocalyx shedding, endothelial inflammatory changes, and vascular
hyper-permeability. In these animal models, plasma administration preserves glycocalyx 
integrity and functions better than resuscitation with crystalloids or colloids. In addi-
tion, we briefly present data on the possible plasma components responsible for these 
effects. The endothelial glycocalyx is increasingly recognized as a critical component for 
the physiological vasculo-endothelial function, which is destroyed in hemorrhagic shock. 
Interventions for preserving an intact glycocalyx shall improve survival of trauma patients.
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The aim of this mini-review is to give an overview on plasma treatment in massive bleeding. We 
will briefly describe current pathophysiological concepts of vascular damage in hemorrhagic shock, 
summarize data on the use of plasma as a resuscitation fluid, and report experimental data suggesting 
a protective role of plasma on endothelial integrity.

TRAUMA, MASSive HeMORRHAGe, AnD TRAUMA-inDUCeD 
COAGULOPATHY (TiC)

epidemiology and Definition of Massive Hemorrhage
The World Health Organization estimates that in the year 2000, 5 million people died of injuries, 
accounting for 9% of global annual mortality (1). After central nervous injury, massive hemorrhage 
represents the second-leading cause of death, being responsible for 30–40% of trauma-related 
mortality (1). Death can occur within 3–6 h by exsanguination from uncontrolled hemorrhage and 
one-third to half of the deaths occur before reaching the hospital (1, 2). Modern transfusion practices 
and blood supply make massive hemorrhage a potentially preventable cause of death in different 
settings (e.g., civilian or military trauma, surgery, post-partum). The benefit of blood component 
transfusion in the context of trauma has been discussed for many years but it is only since the 
retrospective study of Borgmann published in 2007 (3) that plasma transfusion has been recognized 
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as a probable positive factor for survival. However, “survival bias” 
remains an unsolved pitfall of retrospective studies, not only for 
interpreting potentially causative factors related to survival (i.e., 
did the patient “survive because she received plasma transfusion” 
or did she “get plasma transfusion because survived long enough 
to receive it”?) but also for defining massive hemorrhage. In fact, 
the classical definition of massive hemorrhage is based on the 
number of packed red blood cells (PRBC) units transfused during 
the first 24  h after admission. High mortality rates during the 
first 24  h and rapid time course of massive hemorrhage make 
transfusion rate (e.g., ≥3 PRBC units/60 min) a more appropri-
ate definition (4). In addition, data analysis from the PROMMT 
study enabled Rahbar et al. to identify those patients most likely 
to develop massive hemorrhage based on emergency admission 
variables, such as systolic blood pressure, heart rate, pH, and 
hemoglobin (5). This prospective observational study showed 
that transfusion with higher ratio of plasma to PRBC early in 
resuscitation is associated with an improved survival at 24 h (6). 
Specifically, adult trauma patients surviving beyond 30 min from 
admission and transfused with ≥1 unit of PRBC in the first 6 h 
and ≥3 units of PRBC during the first 24 h showed a significantly 
higher survival at 6 and 24 h, and 30 days when receiving plasma 
units and PRBC at a ratio of at least 1:1 (6, 7). Of note, such high 
plasma to PRBC ratios beyond the first 24 h was not associated 
with survival by day 30.

Pathophysiological Concepts
The so-called acute trauma coagulopathy (ATC) (8) and TIC 
(9) have been conceptualized through different models, all 
converging to the key concept of «endothelial stress» (10–20), 
also named «endotheliopathy of trauma» (21, 22) or «shock-
induced endotheliopathy» (23). The endothelium covering an 
area of about 5,000 m2 is one of the frailest and initial victims 
of massive hemorrhage (24). For instance, severe hypo-perfusion 
is associated with increased levels of circulating heparan sulfate, 
a component of the endothelial surface with anticoagulatory 
properties similar to heparin (25). Moreover, the co-existence of 
severe tissue injury, leading to high in vivo thrombin generation, 
and severe hypo-perfusion, leading to endothelial sufferance 
and thrombomodulin shedding, is complicated by circulating 
thrombin–thrombomodulin complexes culminating in systemic 
protein C activation and fibrinolysis (8, 9).

Several factors drive the system into a vicious circle: (1) on the 
one side, endothelial injury with enhanced vascular permeability 
leads to further loss of intravascular volume, hypovolemia, tissue 
hypoxia, and exacerbated shock and (2) on the other side, resus-
citation-related blood dilution with acidosis and hypothermia 
(the classical iatrogenic triad) further impair vasculo-endothelial 
functions. In sum, massive hemorrhage means perfusion, oxy-
genation, coagulation, and metabolic failures.

PLASMA AS A ReSUSCiTATiOn FLUiD

Plasma Type, Delivery, and Supply
Plasma sources and plasma processing have been developed 
during these last decades (18). Each preparation addresses 

and mitigates particular risks related to transfusion hazards: 
single donor fresh frozen plasma (FFP) vs pooled plasma 
or quarantine FFP vs pathogen-inactivated FFP to diminish 
the risk of transfusion-transmitted infections; FP24 (frozen 
within 24  h after donation) instead of standard FFP (frozen 
within 8 h after donation) to enable HLA testing and remove 
high risk units for TRALI; frozen plasma vs liquid or thawed 
plasma to extend storage duration; lyophilization formulas for 
rapid reconstitution. Study of the variability of coagulation 
factors and natural anticoagulants levels in different plasma 
preparations are summarized elsewhere (26). Of note, the 
factor V and factor VIII, known to be «labile» and critical in 
the evaluation of manufacture practice, show heterogeneous 
decrease during storage, depending on formulas. Several 
studies reveal how processing conditions (whole blood hold-
time, storage duration/temperature before freezing, freezing 
mode, leucodepletion, pathogen inactivation, lyophilization) 
specifically influence coagulation factor levels, microparticles 
content, clot generation capacity and protein composition 
in plasma (27–30) and clotting factor stability after thawing 
(31). In massive hemorrhage management, logistical concerns, 
besides biological aspects such as type of plasma, FFP to PRBC 
ratio or functional monitoring of clot generation, matters as 
well. Time between trauma and transfusion, transport of 
plasma from blood bank to the clinical unit, mode of check-
ing plasma unit before transfusion and provision of thawed/
liquid plasma are most critical aspects in massive transfusion 
protocols (32–34).

Hence, one logistical challenge for blood bankers is 
plasma supply. Benefit from plasma transfusion in massive 
hemorrhage lead to growing use of «universal» but scarce AB 
plasma (35). At the same time, implementation of the «male 
policy» (plasma donation from male donors only) to improve 
the transfusion safety regarding risk of TRALI significantly 
restricts plasma availability. This demand/supply imbalance 
led the American Red Cross to consider the use of group A 
plasma to adult trauma patients (36). Novak et  al. reported 
the experience of 12 trauma centers participating in the 
PROPPR study in managing plasma inventory to meet new 
guidelines issued by the American College of Surgeons in 2013 
for trauma resuscitation (37). Rapid delivery is made possible 
by the selection of group A plasma with low titer anti-B, in 
addition to plasma formulations and thawing systems with 
short turnaround time.

Benefit of Plasma Transfusion: Do 
Coagulation Factors Tell the whole Story?
Since the time Borgman et  al. demonstrated in 2007 that FFP 
transfusion in massive hemorrhage resulted in increased survival 
(3), researcher started to wonder which mechanisms may be 
responsible for this effect. The first hypothesis at hand would have 
been the correction of coagulopthy. However, plasma transfusion 
in the form of FFP cannot replace coagulation factor loss (38). 
Therefore, several publications aimed to investigate the benefit of 
plasma resuscitation on other pathophysiological variables, such 
as endothelial restoration (39–45).
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TABLe 1 | Some recognized functions of the endothelial glycocalyx (48–50, 52, 
69, 70).

Functions Mechanisms Reference

Barrier and filter Protection from shear (71)
Exchange of water and solutes (48)
Sieve for plasma proteins (57, 59)
Uptake of low density lipoproteins (63, 72)
Repels red blood cells (50)

Cell adhesion 
regulation

Prevents leukocyte adhesion (56–58, 60, 
73)

Prevents platelet adhesion (74)
Anticoagulation Tissue factor pathway inhibitor (48)

Antithrombin (50, 75)
Thrombomodulin (50)

Complement 
regulation

Complement factor H binding (76)

Colloid-osmotic 
gradient

Absorption of albumin and smaller solutes (65, 71)

Mechano-
transducer

Nitric oxyde production (50, 68, 77)

Prostacyclin production (48)
Inter-endothelial 
communication

Regulation of endothelial gap junctions (78, 79)
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enDOTHeLiAL GLYCOCALYX

The endothelial Glycocalyx Structure and 
Function
The endothelial glycocalyx is a thick (about 0.2–3.0 µm in vivo) 
(46, 47), negatively charged carbohydrate-rich layer coating 
the vascular endothelium (48–52). The glycocalyx sensu stricto 
is formed by cell membrane-bound sulfated proteoglycans, 
consisting of a core protein (e.g., transmembrane syndecan, 
membrane-bound glypican, or basement matrix-associated 
perlecan) with glycosaminoglycans side chains (e.g., heparan 
sulfate, hyaluronic acid, and chondroitin sulfate) (53), and 
cell membrane glycoproteins bearing sialoproteins (50, 53). 
Syndecan-1 (CD 138), a heparan sulfate containing proteoglycan, 
is one of the major constituents ensuring endothelial integrity 
(51). Under physiological conditions, positively charged soluble 
components (such as plasma proteins, enzymes, growth factors, 
cytokines, amino acids, and cations) and water are trapped in 
the glycocalyx forming an extended endothelial surface layer. 
The mesh formed by the gylcocalyx contains ~1 to 1.5 l plasma, 
which are in dynamic equilibrium with the flowing blood (48, 
54, 55).

The glycocalyx has several recognized functions (Table  1) 
(49–52). In particular, it forms a physical barrier between 
blood and vessel wall (48, 56–60); it maintains blood fluidity by 
modulating the interactions of the endothelium with blood cells 
and proteins (50, 61–63); it regulates cell adhesion and vascular 
permeability (64); it creates a high intravascular colloid-osmotic 
gradient (65, 66); and it acts as a mechano-transducer, e.g., by 
sensing shear stress and inducing endothelial release of nitric 
oxide (60, 63, 67, 68). As it may be expected from its many func-
tions, the disruption of the glycocalyx leads to several clinically 
relevant pathologies (48, 52, 61). In the following paragraph, we 

will discuss the effect of hemorrhagic shock and type of resuscita-
tion fluid on the glycocalyx.

Hemorrhagic Shock, endothelial 
Glycocalyx, and Resuscitation Fluid
Shedding of endothelial glycocalyx components has been shown 
to occur in response to, e.g., ischemia and hypoxia (80), reactive 
oxygen species (81), inflammation and sepsis (82), and trauma-
related sympatho-adrenal activation (83). As recently reviewed 
by Becker et  al., loss of glycocalyx appears to be mediated by 
“sheddases,” such as matrix metalloproteases, heparanases, 
hyaluronidases, and proteases (60) and to be responsible for 
endothelial inflammatory changes and vascular hyperperme-
ability (51, 64). In hemorrhagic shock, loss of the endothelial 
glycocalyx correlates with a dismal outcome. For instance, human 
studies indicate that in trauma patients with severe bleeding, high 
levels of syndecan-1 on admission (≥40  ng/ml) correlate with 
the extent of tissue damage, laboratory indicators of ATC and, 
in particular, mortality (84–86). Rahbar et al. showed that high 
circulating syndecan-1 levels correlate with increased vascular 
permeability (87). Since plasma-based resuscitation appears to 
exert a beneficial effect on survival (6, 7, 88), the question is 
whether plasma as a resuscitation fluid may have an impact on 
the endothelial glycocalyx and, therefore, potentially on vascular 
integrity and function.

Investigations in animal models may help framing a working 
concept (Table 2). Kozar et al. (40) employed a pressure-controlled 
model of hemorrhagic shock. Rats were bled to a mean arterial 
pressure of 30  mmHg for 90  min then resuscitated with either 
lactated Ringer’s solution (LR) or fresh plasma to a mean arterial 
pressure of 80  mmHg. These animals were compared to shams 
(all procedures without bleeding) and positive controls (hemor-
rhagic shock without resuscitation). The authors found that (1) 
hemorrhagic shock is associated with a significant shedding of the 
endothelial glycocalyx, as indicated by circulating syndecan-1 lev-
els, cell surface expression of syndecan-1, and electron microscopy 
imaging; (2) loss of the endothelial syndecan-1 correlates with the 
extent of lung injury, as assessed by alveolar wall thickness, capillary 
congestion, and cellularity; (3) resuscitation with plasma partially 
restores the endothelial glycocalyx while LR cannot, as assessed 
by electron microscopy on post-capillary venules obtained from 
the small bowel mesentery and by syndecan-1 expression in the 
lung; (4) the endothelial glycocalyx appears to be restored within 
3 h after plasma resuscitation; (5) a clinically potential beneficial 
effect of plasma is suggested by the observations that plasma resus-
citation required significantly less volume to maintain the mean 
arterial pressure at 80 mmHg compared to LR, and by the fact that 
plasma reduced lung injury while LR resuscitation increased it 
(40). These observations were expanded by the work of Torres et al. 
(42). In their model, a 40% blood volume hemorrhage was induced 
in rats. After 30 min of shock, animals were resuscitated with LR, 
hydroxyethyl starch (HES) or FFP, and compared to sham and 
hemorrhage without resuscitation. First, the authors confirmed 
that the endothelial glycocalyx is significantly damaged by the 
hemorrhagic shock and can be restored only with FFP, as assessed 
by circulating syndecan-1 levels and glycocalyx thickness. Second, 
a clinically beneficial effect of plasma-based resuscitation was 
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TABLe 2 | Studiesa investigating endothelial integrity through plasma exposition in HS conditions.

Reference experimental models Types of plasma Main results

Pati et al. (39) Studies on HUPECs monolayers (hypoxia-induced permeability) 
with assessment of EC permeability (FITC-Dextran) after FFP 
treatment, comparing FFP stored for 0 vs FFP stored for 5 days

In vivo studies on rat model of HS for testing capacity of FFP 
(comparing FFP stored for 0 vs for 5 days) to restore MAP

Human FFP (ABO blood 
types, same donor or pooled 
from three donors, thawed-
aliquoted-stored at 4°C for 0 or 
5 days before use)

Day 0 FFP inhibits EC permeability; day 5 
FFP demonstrated a diminished capacity to 
inhibit EC permeability

Day 0 FFP, but not day 5 FFP, restores blood 
pressure to baseline

Kozar et al. (40) Studies on a rat model of HS, comparing effect of LR vs fresh 
plasma resuscitation with assessment of endothelial glycocalyx 
on mesenteric vessels (electronic microscopy), relative 
expression level of syndecan-1 (QRT RT PCR) and cell surface 
expression of syndecan-1 (immunostaining) in lung tissue

Fresh plasma (not otherwise 
specified)

Glycocalyx is partially restored by plasma 
resuscitation

Syndecan-1 expression in lung is enhanced 
by plasma

Lung injury is lessened by plasma 
resuscitation

Haywood-Watson 
et al. (86)

Studies on HUVECs monolayers (hypoxia-induced permeability) 
with assessment of VE-cadherin and syndecan-1 expression 
(immunofluorescence), topographical properties (AFM), 
permeability (FITC-Dextran) after LR vs FFP treatment

Patients admitted to ICU for shock, resuscitation with plasma, 
syndecan-1 and cytokines measurements

FFP (not otherwise specified) Vascular integrity is disrupted by shock but 
mitigated by FFP

FFP hastens syndecan-1 restoration 
compared to LR

Injured patients in shock shed syndecan-1; 
syndecan-1 correlates with specific 
inflammatory cytokines

Torres et al. (42) Studies on a rat HS models comparing effect of LR/HS vs fresh 
plasma resuscitation with studies on blood samples (including 
thromboelastometry) and on endothelium (glycocalyx thickness 
measurements by fluorescent dye-exclusion method)

FFP defined as plasma frozen 
within 6–8 h of collection and 
stored at −20°C, prepared by 
separation form whole blood 
collected on donor rats

Restoration of coagulation function by a 
small-volume resuscitation with FFP in 
contrast to resuscitation with LR/HS groups

Peng et al. (41) Studies on HUPECs monolayers (VEGF-A165-induced 
permeability) with assessment of EC permeability (TEER/ECIS 
and FITC-Dextran) and leukocyte-endothelial binding
Mouse model of HS and trauma comparing effect of LR 
vs FFP resuscitation with in vivo studies (MAP monitoring, 
measurement of syndecan-1 in plasma) and in vitro studies 
on harvested lungs: vascular permeability (intravenous 
fluorescent dye extravasation), infiltration of neutrophils (MPO 
immunofluorescence staining and activity), syndecan-1 
detection (anti-syndecan-1 antibody)

Human FFP used in both 
in vitro and in vivo studies 
(frozen within 8 h after 
donation, kept frozen until the 
day of experiment and used 
within 1–2 h of thaw)

In HUPECs monolayers, FFP compared with 
LR reduces pulmonary endothelial hyper-
permaeability and leukocyte binding

In mouse HS models, FFP and LR similarly 
restore MAP. FFP mitigates lung hyper-
permeability, reduces lung inflammation, 
increases lung syndecan-1, and reduces 
syndecan-1 shedding compared with LR 
resuscitation

Wataha et al. (44) Studies on HUVECs and PECs monolayers (VEGF-A165-
induced permeability) comparing effect of FFP, SD-FFP, SDP 
(controls: LR/HS) with assessment of EC permeability (FITC-
Dextran), WBC binding assay (fluorescent labeling), surface 
adhesion molecules/integrin expression (flow cytometry) and 
VE-cadherin/β-catenin mobilization to cell surface (staining)

Human FFP (frozen at −20°C, 
thawed at 37°C and used on 
day 0–1 of thaw)

SDP defined as pooled 
liquid plasma that has been 
dehydrated by means of spray 
drying and reconstituted citric 
acid and monobasic sodium 
phosphate (SD-FFP being the 
starting material)

FFP, SD-FFP, and SPD equivalently inhibit 
vascular permeability, ensures EC adherens 
junctions integrity and endothelial WBC 
binding

Lack of difference between FFP and SD-FFP 
and between SD-FFP and SDP indicating 
that solvent-detergent treatment and spray 
drying do not affect the ability of plasma 
product to modulate endothelial function

Potter et al. (45) Studies on HUVECs monolayers (VEGF-A165-induced 
permeability), comparing FFP and SDP (controls: LR) by testing 
endothelial permeability (TEER/ECIS), cytokine production in 
EC and gene expression

Mouse model of HS comparing FFP and SDP (controls: LR) 
with in vivo studies (MAP and BE monitoring) and measurement 
of EC adherent junctions stability (immunofluorescence and 
histological staining) on harvested lungs

FFP obtained from human 
donors plasma by apheresis 
collection, used freshly thawed 
(same day of thaw)

SDP from multidonor plasma 
(more than 150 type AB 
donors)

On HUVECs monolayers, FFP and SDP 
decrease endothelial permeability, induce 
similar patterns of gene expression and 
cytokines production in EC

In mouse HS models, SDP and FFP 
equivalently correct MAP and BE, reduce 
pulmonary vascular leak, equivalently inhibit 
leukocyte infiltration and breakdown of 
endothelial adherens and tight junctions

Torres Filho et al. (90) Rat model of HS for studying quantitatively the relationship 
between plasma biomarkers and changes in microvascular 
parameters, including glycocalyx thickness after resuscitation 
with FWB, PRBC, FFP, 5% albumin, or crystalloids (RL, NS, 
and HTS)

FWB (3.2% citrate, stored 
at 4°C, used with 24 h), 
PRBC (used within 48 h), and 
FFP (frozen within 6–8 h of 
collection, stored at −80°C for 
up to 1 year) all from donor rats

Changes in glycocalyx thickness (and 
microvascular permeability) negatively 
(positively) correlated with changes in plasma 
levels of syndecan-1 and heparane sulfate

FWB and FFP, but neither colloid or 
crystalloid resuscitation, support vascular 
stabilization by reconstitution of the 
endothelia glycocalyx after HS

(Continued )
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indicated by the fact that FFP corrected metabolic acidosis signifi-
cantly better than LR and HES, as assessed by pH, base excess, and 
lactate. This was associated with an improved microcirculation and 
a lesser degree of hemodilution by FFP compared to LR and HES 
(42). This latter point was also observed by a recent publication of 
Nelson et al. (89), who demonstrated that resuscitation with FFP 
resulted in a circulating volume expansion equaling the volume of 
blood loss, while circulating volume expansion by Ringer’s acetate 
was less effective.

The pulmonary effects of hemorrhagic shock and resuscitation 
fluids were addressed by Peng et al. (41). They investigated pulmo-
nary endothelial inflammation and hyper-permeability employing 
a coagulopathic mouse model of hemorrhagic shock and trauma. 
Mice were bled to a mean arterial pressure of 35 ± 5 mmHg for 
90 min (93) and subsequently resuscitated over 15 min with either 
LR (at 3× shed blood volume) or FFP (at 1× shed blood volume). 
Resuscitated animals were compared to shams (all procedures 
without shock) and positive controls (hemorrhagic shock without 
resuscitation). Major findings were as follows: (1) lung permeabil-
ity, assessed in vivo by the extravasation of a fluorescent dextrane 
or Evan’s blue, was significantly increased after hemorrhagic 
shock compared to shams, and FFP resuscitation was significantly 
more effective than LR in preventing/correcting shock-induced 
pulmonary hyper-permeability; (2) similarly, lung inflammation, 
assessed by detecting myeloperoxidase which reflects neutrophils 
infiltration, significantly increased after hemorrhagic shock and 
was lessened by FFP resuscitation; (3) shock-induced loss of pul-
monary syndecan-1 was most efficiently prevented by resuscitation 
with FFP. Of note, similar results on pulmonary inflammation and 
permeability were reported by Potter et  al. employing FFP and 
spray-dried plasma (SDP) (45).

A recent publication by Torres Filho et  al. (90) employing 
a rat model of hemorrhagic shock showed that (1) syndecan-1 
and heparan sulfate represent valuable biomarkers of glycocalyx 
shedding and (2) fresh whole blood and FFP support vascular 
stabilization by reconstitution of the endothelial glycocalyx (see 
Table 2).

Syndecan-1 as a Key Mediator of Plasma’s 
effect
A key question is which plasma component may exert a benefi-
cial effect on the glycocalyx. In vitro experiments have shown 
that FFP enhances pulmonary endothelial syndecan-1 expres-
sion in a time- and dose-dependent manner (94). A key role for 
syndecan-1 is supported by in vivo experiments as well. Utilizing 
the model of trauma-hemorragic shock described by Peng (41), 
Wu et  al. investigated the pulmonary response to the type of 
resuscitation fluid (FFP vs LR) in wild-type and Syndecan gene 
knock-out (Sdc1−/−) mice (94). They found that the inability to 
synthesize syndecan-1 abrogated the protective effect observed 
with plasma. In particular, they demonstrated that in absence 
of syndecan-1 synthesis: (1) the ability of FFP to mitigate the 
increase in lung permeability induced by hemorrhagic shock 
was abrogated; (2) FFP lost its ability to dampen the shock-
induced increase of pulmonary neutrophil infiltration; and (3) 
FFP lost its protective effect on histopathologic signs of lung 
injury. Similar results have been reported by Ban et al. with an 
animal model of gut injury and inflammation after hemorrhagic 
shock (95).

Plasma: Coagulation Factors or Other 
Components?
Intriguingly, a major plasma component that may play a role in 
preserving endothelial integrity appears to be albumin. While 
loss of circulating albumin correlated with loss of the glycocalyx 
and increased fluid extravasation (96), albumin supplementation 
attenuated glycocalyx shedding and reduced interstitial edema in a 
guinea pig heart model of cold ischemia (97). Kheirabadi et al. (98) 
studied the role of albumin in a model of uncontrolled hemorrhage. 
Rabbits were subjected to a splenic injury. Ten minutes after injury, 
at a mean arterial pressure less than 40 mmHg, the rabbits received 
equal volumes (15  ml/kg) of rabbit plasma, HES, or 5% human 
albumin, targeting a mean arterial pressure of 65  mmHg. The 
authors observed that: (1) onset of resuscitation initiated additional 

Reference experimental models Types of plasma Main results

Diebel et al. (91) HUVEC lined microfluidics model for studying endothelial cell 
activation/injury and glycocalyx barrier function after simulation 
of HS by treatment with epinephrine and hypoxia reoxygenation

5% human plasma perfused 
immediately following treatment 
or after a 3 h delay

“Early” plasma mitigates glycocalyx 
degradation and inflammatory prothrombotic 
endothelial response

Pati et al. (92) Studies on HUVECs monolayers (VEGF-A165-induced 
permeability), comparing FFP and LP (controls: LR or no 
treatment) by testing EC permeability (FITC-Dextran), EC 
resistance (TEER/ECIS), VE-cadherin/β-catenin mobilization to 
cell surface (staining), leukocyte-binding (fluorescent labeling)

Mouse model of HS comparing FFP and LP (controls: LR or 
no treatment) with assessment of inflammation (MPO staining), 
vascular permeability (dye extravasation) and tissue edema 
(wet-to-dry weight ratio)

Human FFP (male donors O+) 
thawed and used freshly (day 
0 of thaw)

LP defined as lyophilized 
plasma (male O+) reconstituted 
in buffer

On HUVECs monolayers, FFP and 
LP decrease endothelial permeability, 
preserve EC adherens junctions, attenuate 
EC-leukocyte-binding

In mouse HS models, LP and FFP reduce 
pulmonary vascular permeability, edema, 
and inflammation

AFM, atomic force microscopy; BE, base excess; EC, endothelial cell; ECIS, electric cell-substrate impedance system; FFP, fresh frozen plasma; FITC, fluorescein isothiocyanate-
conjugated; FWB, fresh whole blood; HES, hydroxyethyl starch; HS, hemorrhagic shock; HTS, hypertonic (3%) sodium chloride; HUPEC, human pulmonary endothelial cell; HUVEC, 
human umbilical vein endothelial cell; LP, lyophilized plasma; LR, lactated ringers; MAP, mean arterial pressure; NS, normal saline; PEC, pulmonary endothelial cells; PRBC, packed 
red blood cells; QRT RT PCR, quantitative real-time reverse-transcription polymerase chain reaction; SD, solvent detergent; SDP, spray-dried plasma; TEER, trans-endothelial 
electrical resistance; VE-cadherin, vascular endothelial cadherin; WBC, white blood cell.
aStudies identified by searching the terms “glycocalyx, haemorrhagic shock, plasma” on PubMed and secondary references.
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bleeding and total blood loss did not differ among the three groups; 
(2) thromboelastography revealed a faster and stronger clot forma-
tion in the plasma and albumin groups compared to HES; (3) shock 
indices were increased in all three groups but less in the albumin 
one; (4) the albumin group had the highest survival rate (8 out of 
9 rabbits) compared to plasma and HES (both 4/10), and positive 
controls (1/9). This apparent beneficial role of albumin, if confirmed 
in further studies, may be related to its ability to attenuate neutro-
phil adhesion to the endothelium and other anti-inflammatory 
properties, its scavenging and buffering capacity, its potential to 
enhance nitric oxide production and stabilize glycocalyx (50, 60, 
99). However, a recent publication showed that a four-factor pro-
thrombin complex concentrate (containing vitamin K-dependent 
coagulation factors and several other plasma proteins) and FFP but 
not albumin inhibit vascular permeability in an in vivo mice model 
(100). Thus far, it is not known which soluble factor present in the 
factor concentrate might be responsible for its beneficial effect (100).

As of coagulation factors, despite a current of thought sup-
porting the use of fibrinogen in massive bleeding, we are not 
aware of publications investigating its impact on glycocalyx 
and endothelial functions. A recent work observed a U-shaped 
association between initial fibrinogen concentration in major 
bleeding and in-hospital mortality, with similar rates of increased 
mortality for fibrinogen levels <1 g/l and >4 g/l (101). A possible 
explanation for the negative effect of higher fibrinogen levels is 
offered by in vitro data, suggesting that fibrin promotes endothe-
lial transmigration of neutrophils and inflammation (102).

As of other plasma proteins, adiponectin is an interesting 
candidate (103). Adiponectin is produced in adipocytes and has 
been shown to have anti-inflammatory properties and to prevent 
cytokine-induced endothelial cell hyper-permeability (104–106). 
Employing a mouse model, Deng et al. demonstrated that (1) hem-
orrhagic shock leads to a significant decrease of adiponectin levels 
and a disruption of the lung vascular barrier function; (2) plasma 
resuscitation improves adiponectin levels and reverses lung injury; 
(3) the beneficial effect of plasma-based resuscitation is abolished 
by immunodepletion of adiponectin; and (4) it is restored when 
plasma was replenished with adiponectin (103). These findings 
suggest that adiponectin may be an important component con-
tributing to a vasoprotective effect of plasma-based resuscitation.

In sum, several animal studies suggest that early use of 
plasma in hemorrhagic shock may exert a clinically significant 

beneficial effect by preserving or even restoring the glycocalyx 
layer and, therefore, maintaining critical endothelial functions. 
This appears to be due to the ability of a plasma component to 
lessen endothelial inflammatory response, possibly by limiting 
neutrophil adhesion. As of today, it is not known which plasma 
components are responsible for these effects, which impact 
plasma processing may exert on them, and which might be the 
dose–effect relationship.

Human Studies
From a clinical point of view, the key question is whether early 
resuscitation of hemorrhagic shock with plasma is truly able to 
improve vasculo-endothelial function and survival. As a proof 
of principle, a small study in non-bleeding critically ill patients 
demonstrated that plasma transfusion decreased syndecan-1 
and factor VIII levels, suggesting an endothelial stabilizing effect 
(107). To our knowledge, the only human study prospectively 
investigating the effect of early plasma-based resuscitation in 
humans is the COMBAT study (108). In this prospective rand-
omized trial, casualties are treated with 2 units of FFP (thawed in 
the ambulance) vs conventional crystalloids as initial pre-hospital 
resuscitation. The study aims to verify whether a “plasma first” 
resuscitation strategy might be able to (1) attenuate acute trau-
matic coagulopathy; (2) improve metabolic recovery; (3) decrease 
blood component transfusion; (4) reduce the incidence of acute 
lung injury and multiple organ failure; (5) decrease mortality at 
24 h or 28 days. According to www.clinicaltrials.gov, the study 
has been closed after having enrolled 144 patients as per protocol. 
Results are eagerly awaited.

In conclusion, plasma as early resuscitation fluid for massive 
hemorrhage appears to exert beneficial effects improving patient 
survival. Experimental data suggest that this may be related to 
its ability to preserve endothelial glycocalyx structure and func-
tion. We think that these fascinating data shall be confirmed 
in prospective randomized clinical trials and the mechanisms 
underlying these effects shall be revealed in order to develop 
more targeted treatments.
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