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Abstract

Modeling long-range DNA dependencies is crucial for understanding genome structure and function
across a wide range of biological contexts. However, effectively capturing these extensive depen-
dencies, which may span millions of base pairs in tasks such as three-dimensional (3D) chromatin
folding prediction, remains a significant challenge. Furthermore, a comprehensive benchmark suite
for evaluating tasks that rely on long-range dependencies is notably absent. To address this gap, we
introduce DNALONGBENCH, a benchmark dataset encompassing five important genomics tasks that
consider long-range dependencies up to 1 million base pairs: enhancer-target gene interaction, ex-
pression quantitative trait loci, 3D genome organization, regulatory sequence activity, and transcrip-
tion initiation signals. To comprehensively assess DNALONGBENCH, we evaluate the performance
of five methods: a task-specific expert model, a convolutional neural network (CNN)-based model,
and three fine-tuned DNA foundation models – HyenaDNA, Caduceus-Ph, and Caduceus-PS. We en-
vision DNALONGBENCH as a standardized resource with the potential to facilitate comprehensive
comparisons and rigorous evaluations of emerging DNA sequence-based deep learning models that
account for long-range dependencies.
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Introduction

Genomic DNA sequences are the blueprint of life, guiding the development of cellular complexities.
Although protein-coding DNA sequences are responsible for diverse biochemical functions within or-
ganisms, most eukaryotic genomes predominantly consist of non-coding sequences interspersed with
protein-coding regions. These non-coding sequences contain a variety of gene regulatory elements,
such as promoters, enhancers, non-coding RNAs, and other functional elements, which orchestrate when
and where genes are activated or silenced. Over the past two decades, large-scale functional genomic
projects, such as the ENCODE project [1], have cataloged extensive collections of putative non-coding
regulatory elements in the human genome. However, our understanding of how these elements regulate
gene expression remains limited. A critical challenge lies in the fact that genomes are dynamically folded
into multi-scale 3D structures within the cell nucleus, resulting in widespread physical DNA-DNA in-
teractions, even between regions located megabases apart [2–4]. Effectively determining which of these
interactions are functionally relevant to cellular processes across diverse biological contexts requires
significant experimental effort.

To address this challenge, the increasing availability of genomic data, such as ChIP-seq [5], ATAC-
seq [6], Hi-C, and its derivatives [7], has spurred the development of supervised deep learning methods
that show great promise in systematically delineating sequence-to-function relationships. For example,
convolutional neural networks (CNNs) and transformer-based methods have demonstrated their effec-
tiveness in characterizing regulatory elements [8–11], predicting spatial proximity between genomic
loci [12, 13], and predicting gene expressions from local sequence contexts [14]. Despite these ad-
vances, capturing dependencies across very long distal DNA elements remains a major computational
challenge due to the scarcity of experimental data and the difficulty in modeling long-range sequence
dependencies [15].

Recently, large language models (LLMs) have revolutionized the field of natural language processing
(NLP), demonstrating remarkable capabilities across a wide spectrum of applications [16–19]. These
models first leverage self-supervised learning techniques to learn intricate patterns from vast amount of
unlabeled text data, followed by fine-tuning tailored to specific tasks. Recognizing structural similarities
between DNA sequences and natural language [20], several DNA foundation models have emerged [21–
23]. However, the utility of these models in addressing meaningful biological questions remains a topic
of debate, leaving a critical question unsolved: Could foundation models pre-trained on genomic DNA
sequences offer a new paradigm shift in understanding the interactions between regulatory elements
and genes? Answering this question requires robust benchmark datasets to evaluate their performance,
identify limitations, and drive future improvements. However, most foundation models pre-trained on
genomic DNA sequences have so far been evaluated only on prediction tasks involving sequences up to
a few thousand base pairs, such as identifying regulatory elements and predicting gene expression [24–
28]. The potential of DNA LLMs to capture long-range interactions between DNA sequences in diverse
biological contexts has not been well evaluated.

Here, we introduce DNALONGBENCH, the largest collection to date of realistic and biologically
meaningful genomic DNA prediction tasks that require long-range sequence input and involve long-
range dependencies. DNALONGBENCH comprises five different tasks and datasets, each addressing
critical aspects of studying gene regulation across various length scales. The contributions of DNA-
LONGBENCH are threefold:
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• We introduce DNALONGBENCH, a benchmark for long-range DNA prediction tasks spanning
up to 1 million base pairs (bp) across five distinct tasks. To the best of our knowledge, DNA-
LONGBENCH is the most comprehensive benchmark designed specifically for long-range DNA
prediction tasks available to date.

• We evaluate the proposed DNALONGBENCH using three representative models, demonstrating
that while DNA foundation models can capture long-range dependencies to a certain extent, expert
models consistently outperform DNA foundation models across all five tasks.

• The models exhibit varying performance across different tasks, highlighting the diverse challenges
inherent in the DNALONGBENCH prediction tasks and revealing the differing levels of difficulty
associated with each task.

We envision DNALONGBENCH as a valuable resource for evaluating foundation models trained on
DNA sequences, with a particular focus on their ability to model long-range genomic interactions.

Related Work

Existing Benchmark datasets considering long-range DNA sequence

Benchmark datasets specifically designed to evaluate the capabilities of DNA foundation models in cap-
turing long-range DNA dependencies remain underexplored. Most existing benchmarks for DNA foun-
dation models primarily focus on short-range tasks (e.g., sequences spanning thousands of base pairs)
and binary classification. To date, BEND [24] and the Genomics Long-range Benchmark (LRB) [28]
are the only two existing benchmark datasets that include long-range genomic DNA prediction tasks.
BEND comprises two long-range tasks: enhancer annotation and gene finding, both of which involve
classifying regulatory elements. LRB, on the other hand, adapted all tasks from the Enformer [14] pa-
per and curated three datasets focused on gene expression prediction and the effects of variants on gene
expression. However, both BEND and LRB are limited in scope. They focus specifically on identifying
regulatory elements or gene expression-related predictions and overlook other critical long-range DNA
prediction tasks. For instance, neither benchmark includes structure-related predictive tasks requiring
ultra-long sequences, such as contact map prediction and enhancer-target gene prediction. Furthermore,
they lack base-pair-resolution regression tasks for quantitative assays. As a result, a comprehensive
benchmark suite for evaluating a broader range of tasks reliant on long-range dependencies remains ab-
sent. We compare the scope of previous benchmarks for DNA prediction tasks with DNALONGBENCH

in Table 1.

Long-range DNA sequence modeling

Over the last decade, deep learning models for genomics have been dominated by CNNs [29]. While
CNNs excel at extracting local features, their limited local receptive field constrains the flow of infor-
mation between distant genomic elements [14]. To address this limitation, researchers have introduced
dilated convolution and skipped connections to CNN architectures. For example, the Akita model [12]
predicts chromatin contact maps (i.e., chromatin folding) from DNA sequences up to around 1 million
base pairs by leveraging successive dilated convolutional layers and residual connections, enabling in-
formation flow across long distances.

Unlike CNNs, which require multiple successive layers to capture long-range dependencies, trans-
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Benchmark Feature Genomic NT GUE BEND LRB DNALONGBENCHBenchmarks Benchmark

Has Long-range Task × × × ✓ ✓ ✓
Longest Input (bp) 4,707 600 1,000 100k 192k 1M
Has Base-pair-resolution Regression Task × × × × × ✓
Has two-dimensional Task × × × × × ✓
Has Supervised Model Baseline ✓ × × ✓ × ✓
Has Expert Model Baseline × × × ✓ ✓ ✓
Has DNA Foundation Model Baseline × ✓ ✓ ✓ ✓ ✓

Table 1: Comparison of existing benchmarks (Genomic Benchmarks [25], NT Benchmark [26], GUE [27],
BEND [24], and LRB [28]) for DNA prediction tasks with DNALONGBENCH. While recent benchmarks have
been proposed for genomics, only BEND and LRB include tasks involving relatively long-range dependencies.
In contrast, DNALONGBENCH offers the most extensive range of long-range tasks, supporting sequences up
to 1 million base pairs. Additionally, it features a greater variety of task types, longer input sequences, and
evaluates the performance of three representative baseline models: supervised, expert, and DNA foundation
models. The supervised baseline represents fully supervised models, such as lightweight CNNs, that do not
involve pre-training.

formers use the attention mechanism, allowing each position in the sequence to directly attend to all
other positions [30]. However, transformers are computational inefficient for long sequences, as the
attention mechanism scales quadratically with sequence length [31]. This makes direct base-to-base at-
tention across extremely long genomic sequences, spanning millions of base pairs, impractical [23, 31].
To address this, hybrid models combining convolutional layers for feature extraction with transformer
modules have been proposed. The Enformer model [14], for instance, integrates convolutional layers
with transformers to predict epigenetic and transcriptional features across long DNA sequences up to
200k bases in length.

Recently, DNA foundation models have emerged as an active area of research [14, 22, 23, 26, 27, 32,
33]. These models, pre-trained on large-scale DNA sequences, show promise across various downstream
genomics tasks [22, 26, 27]. However, transformer-based DNA foundation models typically have rela-
tively short context lengths (up to 4k tokens) due to the computational constraints of the self-attention
mechanism [22, 26]. To address these limitations, researchers are exploring new transformer vari-
ants [34] and alternative architectures beyond transformers [22, 23, 31]. For instance, HyenaDNA [22] is
a non-transformer-based DNA foundation model that uses implicit convolutions, allowing for long con-
text lengths up to 1 million base pairs. It has demonstrated promising performance in long-range species
classification tasks, although the practical applications of this problem remain poorly defined. Simi-
larly, Caduceus [23] is a bi-directional equivalent long-range DNA foundation model built on Mamba
blocks [31]. In this study, we selected HyenaDNA and Caduceus as part of the DNA foundation model
baseline methods for evaluation in DNALONGBENCH, as they are specifically designed for long-range
DNA prediction tasks.

Proposed Dataset: DNALONGBENCH

The selection of suitable long-range DNA prediction tasks for DNALONGBENCH is crucial to ensure
diversity, comprehensiveness, and rigor. To achieve this, we established the following criteria to guide
our task selection process:

Biological Significance: Tasks should be realistic and biologically significant, addressing genomics
problems important for understanding genome structure and function.
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LR Tasks LR Type Input Length Output Shape # Samples Metric

Enhancer-target Gene Binary Classification 450,000 1 2602 AUROC
eQTL Binary Classification 450,000 1 31282 AUROC
Contact Map Binned (2,048bp) 2D Regression 1,048,576 99681 7840 SCC&PCC

Regulatory Sequence Activity Binned (128bp) 1D Regression 196,608 Human: (896, 5313) Human: 38171 PCCMouse: (896, 1643) Mouse: 33521
Transcription Initiation Signal Nucleotide-wise 1D Regression 100,000 (100000, 10) 100000* PCC

Table 2: Overview of the tasks included in DNALONGBENCH. “1D” and “2D” denote one-dimensional and two-
dimensional, respectively. Nucleotide-wise tasks involve predicting a sequence of labels, each corresponding
to individual nucleotides in the input. Sequence-wise tasks require classifying the entire input sequence. In
binned tasks, multiple nucleotides are grouped into bins and share a common label. *: The data for this
task consists of sequences sampled from whole genomes, with 100,000 being the number of samples used
for training our baselines. AUROC: Area Under the Receiver Operating Characteristic curve. PCC: Pearson
correlation coefficient. SCC: stratum-adjusted correlation coefficient.

Long-range Dependencies: Tasks should require modeling long input contexts, spanning hundreds of
kilobase (kb) pairs or more.

Task Difficulty: Tasks should pose significant challenges to current models.

Task Diversity: Tasks should be as diverse as possible, spanning various length scales and including
different task types, such as classification or regression. This diversity also encompasses task dimen-
sionality (1D or 2D) and granularity (binned, nucleotide-wide, or sequence-wide).

As a result, we selected five long-range DNA prediction tasks, each covering various aspects of
important regulatory elements and biological processes within a cell, as illustrated in Fig. 1. An overview
of our dataset is presented in Table 2. The input sequences for all tasks are provided in BED format,
which lists the genome coordinates of the sequences. This format allows for flexible adjustment of
the flanking context without requiring reprocessing. The selected tasks are described in detail in the
following sections.
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gene 
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Figure 1: Illustration of the different categories of downstream tasks included in DNALONGBENCH.
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Enhancer-Target Gene Prediction

In eukaryotic cells, enhancers play a key role in gene regulation by forming enhancer-promoter in-
teractions that activate the transcription of target genes, even those located up to several megabase
pairs away [35]. However, the detailed mechanism by which sequence information encodes enhancer-
promoter interactions remains poorly understood. Predictive methods that incorporate the full sequence
information between enhancers and promoters as input could not only improve the prediction perfor-
mance but also help identify the sequence determinants driving these interactions. To this end, we for-
mulated a task to predict true enhancer-promoter interactions from a list of putative candidates based on
the DNA sequence.

We collected experimentally verified enhancer-promoter interactions in K562 cells from [36–38]. Us-
ing CRISPRi-FlowFISH technique, the authors perturbed thousands of candidate sequences, quantified
their effects on gene expression, and identified both positive and negative enhancer-promoter interac-
tions. We filtered this data by retaining enhancer-promoter pair candidates within 450 kb of the gene
transcription start site (TSS) and applied additional filtering criteria. Model performance was evaluated
using AUROC. We compared models relying solely on sequence information with the expert model,
activity-by-contact (ABC) model [36], which incorporates DNase-seq, H3K27ac ChIP-seq data, and a
Hi-C matrix to prioritize true enhancer-promoter interactions. It should be noted that the ABC model
inherent advantages over sequence-only models due to its more comprehensive input data types. The
primary motivation here is to compare sequence-only models and understand their strengths and limita-
tions.

3D Chromatin Contact Map Prediction

Chromosomes are folded in a well-organized manner within the cell nucleus, affecting various critical
cellular functions such as gene transcription and DNA replication [39, 40]. Developing prediction mod-
els that connect 1D DNA sequences with 2D contact maps enables the identification of key sequence
determinants of 3D chromatin folding, providing valuable insights into the underlying mechanisms of
genome organization [4, 41]. We formulated a 3D chromatin contact map prediction task, defined as a
2D regression task to predict pairwise chromatin interactions between every pair of genomic loci within
a given context window.

These contact frequencies are expressed as 2D contact maps derived from genomic mapping data
such as Hi-C and Micro-C [4]. We used the processed data from Akita [12], which includes chromatin
interaction data from five cell lines: HFF, H1-hESC, GM12878, IMR-90, and HCT116. To increase the
number of cell types, we curated and processed additional Hi-C data for four cell lines: HAP1, Hela,
HepG2, and K562, following the same data processing steps as in the Akita model. Each input sequence,
spanning 1 million base pairs (Mbp), is divided into 512 genomic bins at a resolution of 2kb per bin. For
the final prediction, 32 genomic bins are cropped from each side, resulting in a contact map of 448×448.
Since the contact map is symmetric, predictions are made only for the upper triangular region, with a
diagonal offset of 2. The human genome was split into non-overlapping virtual contigs and randomly
assigned to training, validation, and testing sets with an 8:1:1 ratio. The dataset contains 7,008 training
sequences, 419 validation sequences, and 413 test sequences. Model performance on the held-out test
set was evaluated using the Stratum-Adjusted Correlation Coefficient (SCC) and the Pearson Correlation
Coefficient (PCC).

6

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 8, 2025. ; https://doi.org/10.1101/2025.01.06.631595doi: bioRxiv preprint 

https://doi.org/10.1101/2025.01.06.631595
http://creativecommons.org/licenses/by-nc/4.0/


Regulatory Sequence Activity Prediction

Cell type-specific regulatory activities are encoded by the compositions and interactions of functional
DNA segments, such as promoters, enhancers, and insulators, which can regulate genes from distant
genomic locations. Predicting functional signals directly from DNA sequences over large genomic dis-
tances could help identify distal regulatory elements and uncover key sequence features enabling long-
range gene regulation. For this task, we compiled human and mouse genomic tracks from the Enformer
paper [14]. The goal of this task is to predict thousands of epigenomic profiles directly from DNA
sequence spanning up to 100kb. We formulated the task as a multitask regression problem aimed at
predicting epigenetic and transcriptional signals from long DNA sequences alone.

The dataset includes experimentally determined regulatory activity signal tracks and corresponding
DNA sequences from human and mouse genomes. Each input DNA sequence spans 196,608 bp, centered
on the TSS of protein-coding genes. Each input sequence consists of a core region and flanking regions.
The core sequence is 114,688 bp in length, corresponding to 896 bins at a resolution of 128 bp per bin.
The target labels consist of 5,313 human tracks and 1,643 mouse tracks measuring epigenomic marks.
The dataset contains 38,171 human sequences and 33,521 mouse sequences. For the human genome,
the data is split into 34,021 training, 2,213 validation, and 1,937 test sequences. For the mouse genome,
the dataset is split into 29,295 training, 2,209 validation, and 2,017 test sequences. Model performance
was evaluated using Pearson correlation coefficient, calculated by comparing predicted and target signal
tracks. Specifically, the Pearson correlation coefficient was computed for each sample across all positions
and tracks, and the mean was taken across all samples in the test set.

Expression Quantitative Trait Loci (eQTL) Prediction

Expression quantitative trait loci (eQTL) are nucleotide variants that affect the expression of one or more
genes. Deep learning-based approaches for predicting gene expression from DNA sequences have gained
increasing popularity. One practical application of these methods is the identification and interpretation
of eQTLs, a traditionally labor-intensive and time-consuming process when relying on genome-wide
association studies. We designed an eQTL prediction task to provide an efficient approach for evaluating
eQTLs, where the goal is to predict whether a nucleotide variant modulates the expression of a target
gene using DNA sequence alone.

We adapted the eQTL dataset used in Enformer [14]. Positive SNPs were identified using the statis-
tical fine-mapping tool Susie [42]. The original dataset includes positive and matched negative variants
across 48 tissues [14]. For this study, we selected the top nine tissues based on the number of variants.
Within these tissues, eQTL-gene pairs were filtered to retain eQTL candidate loci within 450 kb of the
gene TSS. Genes with fewer than two positive pairs, two negative pairs, or five combined pairs were
excluded. The sequences between variants and promoters were extracted, extending 3 kb downstream of
the gene TSS. To reduce bias caused by putative eQTLs within the interval between an eQTL candidate
and the gene promoter pair, we masked the sequences of all variants within each variant-promoter pair.
The dataset was randomly split into training, validation, and test sets using a stratified sampling approach
with an 8:1:1 ratio. To ensure robustness, at least one positive and one negative pair were included in
both the training and validation sets. Model performance was evaluated using AUROC.
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Transcription Initiation Signal Prediction

Promoters are specialized DNA sequences at the TSS of genes that support the assembly of transcrip-
tion machinery and transcription initiation [43]. Each promoter exhibits a unique profile of transcrip-
tion initiation signals, which may reflect the mechanisms underlying transcription initiation. Solving
the machine-learning task of predicting these profiles from promoter sequences provides insights into
sequence-based regulation of transcription initiation [44]. Using long sequences as input and improv-
ing the information flow between distal elements could enhance predictive accuracy of transcription
initiation signal prediction. We include a task in DNALONGBENCH aimed at predicting transcription
initiation signal profile from DNA sequences. Specifically, the task predicts transcription initiation sig-
nals on both strands for five experimental techniques: FANTOM CAGE, ENCODE CAGE, ENCODE
RAMPAGE, GRO-cap, PRO-cap [44]. Unlike the regulatory sequence activity prediction task, which
predicts sequence coverage at 128 bp genomic bins, this task requires predictions at base-pair resolution,
making it significantly more challenging.

We used processed labeled data from the Puffin work [44]. Predictions were generated for entire
test chromosomes (chr8 and chr9) using a sliding window step size of 50 kb, with the center 50 kb
of each 100 kb prediction being evaluated. Regions within 1 kb of unknown bases or within 25 kb of
chromosome ends were excluded. Model performance was evaluated using Pearson’s correlation.

Additional details on data processing and data access are provided in the Supplemental Information.

Experiments

In this section, we conduct a comprehensive performance comparison by evaluating three distinct types
of models: a lightweight convolutional neural network, existing expert models that have demonstrated
state-of-the-art results, and two types of recent DNA foundation models – HyeynaDNA [22] and Ca-
duceus [23] – distinguished by their support to reverse complement DNA during the training process.

Representative Models

We explore the performance of the following three types of models:

(1) CNN: We evaluate the lightweight convolutional neural network [45], known for its simplicity and
robust performance across various DNA-related tasks. Detailed model implementations for each task are
provided in Supplemental Information.

(2) Expert Model: We assess the current state-of-the-art models for each specific long-range DNA
prediction task, collectively referred to as the expert model. Specifically, we use:

• The Activity-by-Contact (ABC) model [36] for the enhancer-promoter interaction prediction.
• Enformer [14] for the eQTL prediction and regulatory sequence activity prediction.
• Akita [12] for contact map prediction.
• Puffin-D [44] for transcription initiation signal prediction.

Additional details about each expert model are provided in Supplemental Information.

(3) DNA Foundation Model: We selected three long-range DNA foundation models – HyenaDNA
(medium-450k) and Caduceus (Ph and PS) – for evaluation. Due to limited computing resources, we
were unable to fine-tune HyenaDNA-large-1m and Evo (7B) [21]. The detailed fine-tuning strategies for
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Models ETGP CMP

K562 HFF H1hESC GM12878 IMR90 HCT116 Avg

Expert Model 0.926 0.258 0.247 0.227 0.210 0.210 0.230
CNN 0.797 0.025 0.024 0.010 0.013 0.001 0.015
HyenaDNA 0.828 0.139 0.122 0.099 0.097 0.118 0.115
Caduceus-Ph 0.826 0.153 0.130 0.101 0.138 0.145 0.133
Caduceus-PS 0.821 0.142 0.123 0.097 0.132 0.139 0.127

Table 3: AUROC for enhancer-target gene prediction (ETGP) task and SCC scores for the contact map predic-
tion (CMP) task. K562, HFF, H1hESC, GM12878, IMR90, and HCT116 represent different human cell types.
The highest scores are highlighted in bold. “Avg” means the average score across different cell types. Notably,
the Expert Model achieves the best performance on both ETGP and CMP tasks.

Models RSAP TISP

Human Mouse Avg FC EC ER GC PC Avg

Expert Model 0.669 0.479 0.574 0.808 0.710 0.749 0.624 0.774 0.733
CNN 0.538 0.323 0.431 0.029 0.038 0.043 0.037 0.066 0.042
HyenaDNA 0.298 0.396 0.347 0.138 0.124 0.118 0.112 0.168 0.132
Caduceus-Ph 0.301 0.400 0.349 0.114 0.088 0.088 0.097 0.154 0.109
Caduceus-PS 0.301 0.387 0.344 0.113 0.088 0.090 0.102 0.156 0.108

Table 4: Pearson correlation scores for the regulatory sequence activity prediction (RSAP) task and the tran-
scription initiation signal prediction (TISP) task. FANTOM CAGE (FC), ENCODE CAGE (EC), ENCODE RAM-
PAGE (ER), GRO-cap (GC), and PRO-cap (PC) represent the experimental techniques used in the TISP task.
“Avg” means the average scores. The highest scores are highlighted in bold. Notably, the Expert Model signifi-
cantly outperforms both the CNN and DNA foundation models.

Models eQTLP

CCF WB Thyroid SNSES SSELL MS NT AT AS Avg

Expert Model 0.639 0.689 0.612 0.710 0.700 0.621 0.683 0.741 0.736 0.681
CNN 0.547 0.577 0.487 0.499 0.499 0.502 0.516 0.576 0.551 0.528
HyenaDNA 0.584 0.512 0.529 0.471 0.544 0.487 0.511 0.479 0.513 0.514
Caduceus-Ph 0.597 0.594 0.527 0.586 0.574 0.538 0.588 0.547 0.541 0.565
Caduceus-PS 0.549 0.542 0.547 0.529 0.541 0.523 0.552 0.536 0.519 0.537

Table 5: AUROC scores for the expression quantitative trait loci prediction (eQTLP) task across different cell
types. The cell types are abbreviated as follows: CCF for Cells_Cultured_fibroblasts, WB for Whole_Blood,
SNSES for Skin_Not_Sun_Exposed_Suprapubic, SSELL for Skin_Sun_Exposed_Lower_leg, MS for Muscle
Skeletal, NT for Nerve Tibial, AT for Artery_Tibial, and AS for Adipose_Subcutaneous. The highest scores
are highlighted in bold. “Avg” represents the average score across all cell types. Notably, the Expert Model
achieves the best performance across all cell types.

each task are provided in the Supplemental Information.

Benchmarking Results

The main results are reported in Tables 3, 4, and 5. Additional metrics are provided in Table S1.

The Expert Model achieves the highest scores on all tasks. Specifically, the Expert Model achieves an
average score of 0.733 on the transcription initiation signal prediction task (TISP), significantly surpass-
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ing CNN’s 0.042, HyenaDNA’s 0.132, Caduceus-Ph’s 0.109, and Caduceus-PS’s 0.108. This disparity
may stem from the challenge posed by multi-channel regression on long DNA contexts, which make
fine-tuning of DNA foundation models less stable and less capable of capturing sparse real-valued sig-
nals. In the remaining four tasks, the Expert Model still outperforms both CNN and DNA foundation
models, though the margin is less pronounced. For instance, Caduceus-Ph’s performance on the contact
map prediction task (CMP) is only slightly lower than the Expert Model and much better than CNN.
Overall, these observations confirm the Expert Model’s superior ability to capture long-range dependen-
cies, a capability where CNN falls short and DNA foundation models demonstrate good performance in
certain tasks.

The regulatory sequence activity prediction presents greater challenges. In contrast to the other
four tasks, where the Expert Model or DNA foundation models achieve reasonable performance, the
regulatory sequence activity prediction task proves significantly more difficult. The highest average
Pearson correlation score achieved in this task is 0.574 by the Expert Model (Enformer), indicating
only a moderate positive correlation. This result underscores the challenge of capturing long-range
dependencies in regulatory sequence activity prediction and highlights the varying levels of task difficulty
in DNALONGBENCH.

Figure 2: Comparisons of HyenaDNA, Caduceus (Ph), and the Expert Model (Akita) on the 2D contact map
prediction task across 409,600 bp with a bin size of 2,048 bp. The columns show contact maps predicted
by HyenaDNA, Caduceus, Akita model, alongside the ground truth contact map for two genomic regions: (a)
chr6:145,205,248-145,614,848 and (b) chr3:139,341,824-139,751,424. Colors represent the intensity of con-
tact frequency between paired loci. Pearson correlation coefficient (PCC) and stratum-adjusted correlation
coefficient (SCC) metrics are shown beneath each contact map to indicate prediction performance relative to
the ground truth.
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Analysis: Diving Deep into DNALONGBENCH

In this section, we provide further analysis to gain insights into how long-range dependencies are cap-
tured in our proposed DNALONGBENCH.

Case Study: Can long-range dependency be captured?

To intuitively demonstrate the presence of extensive long-range dependencies exist across millions of
base pairs and their capture by machine learning methods, we present two examples in Fig. 2 and more
examples in Fig. S1. Specifically, in Fig. 2a-b, we visualize the contact maps predicted by HyenaDNA,
Caduceus-Ph, and the Expert Model (Akita), alongside the ground truth contact maps for two genomic
regions spanning around 400 kb. From these contact maps, we observe the presence of large-scale
domains (e.g., blocks in the contact map) and long-range interactions (e.g., dots in the contact map)
spanning over 300 kb. Notably, the contact maps predicted by Akita align more closely with the ground
truth, confirming its superior ability to capture long-range interactions. In contrast, the DNA foundation
models show limited capacity for predicting domain structures. This is particularly evident in Fig. 2b,
where only Akita accurately predicts the three blocks. These examples highlight DNALONGBENCH’s
valuable in evaluating models for capturing long-range genome structure and function and provide a
foundation for future developments in DNA foundation models.

Base pair-resolution prediction of transcription initiation signal

We visualized transcription initiation signals predicted by different models for one of the test chromo-
somes, chr8 (Fig. 3). Predictions from the Expert model, Puffin-D, closely align with the ground truth,
accurately capturing peaks in transcription initiation signal intensity across both large and small ge-
nomic regions. By constrast, DNA foundation models tend to underpredict signal intensities or miss
certain peaks. In the zoomed-in view (right side of the figure), Puffin-D continues to align well with the
ground truth, demonstrating strong performance even at high resolution. In contrast, the DNA foundation
models show broader, less precise signals. These findings suggest that base pair-resolution regression

Figure 3: Comparisons of HyenaDNA, Caduceus_Ph, Caduceus_PS, and Expert Model (Puffin-D) on the
transcription initiation signal prediction task of chromosome 8. The genomic track on the left displays the
ground truth signals (top) alongside predictions from Puffin-D, HyenaDNA, and the two Caduceus models. The
x-axis represents genomic coordinates, while the y-axis indicates signal density. A zoomed-in view of a 1,000
bp region centered at the TSS of the gene ZC2HC1A is shown on the right.
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tasks remain challenging for DNA foundation models.

Conclusion

In this paper, we introduce DNALONGBENCH, a benchmark suite comprising five important genomics
tasks involving long-range dependencies: enhancer-target gene interaction, eQTL, 3D genome orga-
nization, regulatory sequence activity, and transcription initiation signal. We evaluated three baseline
methods: a task-specific expert model, a fully supervised CNN-based model, and three fine-tuned DNA
foundation models, HyenaDNA, Caduceus-Ph and Caduceus-PS. The benchmarking results consistently
demonstrated that expert models achieved the highest scores across all tasks. Additionally, our analysis
revealed that long-range dependencies could be captured across hundreds of thousands of base pairs,
underscoring the importance of context length for downstream performance. However, the results also
highlight that current DNA foundation models are less effective than expert models in capturing long-
range dependencies. Nevertheless, we believe that DNALONGBENCH will serve as a valuable resource
for facilitating comprehensive comparisons and rigorous evaluations of emerging DNA sequence-based
deep learning models that account for long-range dependencies.

One limitation of this study is the exclusion of transformer-based DNA foundation models, such as
DNABERT-1, DNABERT-2, and Nucleotide Transformer, due to the computational challenges posed by
training them on long-range tasks. The quadratic cost of the self-attention mechanism renders such tasks
infeasible for these models. Exploring strategies to extend the context length of transformer-based mod-
els and effectively fine-tune them for long-range tasks remains an important avenue for future research,
albeit beyond the scope of this study.
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