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When analyzing neuron spike trains, it is always the problem of how to set the time bin. Bin width affects much to analyzed results
of such as periodicity of the spike trains. Many approaches have been proposed to determine the bin setting. However, these bins
are fixed through the analysis. In this paper, we propose a randomizing method of bin width and location instead of conventional
fixed bin setting. This technique is applied to analyzing periodicity of interspike interval train. Also the sensitivity of the method

is presented.

1. Introduction

Bin width setting is always a problem, since it affects largely
analyzed results. Neural spike train usually has time-varying
characteristics. Therefore, data length of spike train in
stationary state with the same characteristics is often limited.
That is, the number of stable data is limited, and therefore
there exists limitation in decreasing bin width to analyze
more precisely. The more troublesome problem is that the
results become different by how much to set the bin width or
even the initial position.

Bin size has been determined to optimize some perfor-
mance measure of time histogram [1, 2], time precision [3—
5], information [6], rate estimation [7], and so forth. How-
ever, their bins are fixed after being optimized/determined.
To avoid such troublesome problem, binless analysis meth-
ods are also used [8-10].

In this paper, we propose a method of setting various
random bins. Random bin will be expected to decrease
unfavorable effects up to the level of being neglectable. See
the appendix section for preliminary easy explanation of the
random bin.

2. Automutual Information of
Spike-Interval Train

To analyze a spike train as a time sequence, there exist
mainly 4 methods of (i) spectrum analysis [11] which
includes sideband and therefore may be limited in precise
time analysis, (ii) correlation [12] which reflects only linear
relation, (iii) time histogram [1] whose precision may be
limited by nonstationarity of the train, and (iv) information
measure [6, 12, 13] which is expected to be possible to avoid
such limitations. Automutual information method dealt in
this paper belongs to (iv).

Mutual information (MI) is a measure of expressing
common quantity of information between events A and B,
as described by (1):

P(A,B)

MI(A; B) = ZZP(A B)lo gz[P(A) P(B)][bit]. (1)

More specifically, this is the difference between joint prob-
ability P(A, B) and probability P(A) - P(B) in which A and
B are assumed to be independent events. If A and B are
indeed independent, they have no common information,
and therefore the mutual information is zero. If we take an
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FiGure 1: Example of sorted spike train (Electrode No.16, light stimulated).
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FIGURE 2: Problem of discriminatability in discretizing analog interspike intervals. Almost the same intervals are treated differently by chance

in the fixed bin setting.

inter-spike interval train as A, and one shifted by m intervals
as B, mutual information becomes automutual information
(AMI).

3. Spike Train

Figure 1 shows a spike train obtained from Electrode No.16
of V1 field of a rat with LED light stimulation of 30 ms
duration at every 7sec. This is a sorted data, which means
it is processed by pattern recognition so as to catch only
spikes from a specific neuron. Number of spikes is 1721

between 420 sec. Some enlarged parts of the train are shown
in Figure 1(b).

To investigate the periodic characteristics, we calculated
automutual information between interval-value train (A)
and its shifted train (B) by m intervals.

4. Problem of Fixed Bin

Figure 2 shows how almost the same intervals are classified
into different bins or the same bin almost by chance
depending on where the border of the bins is in the case of
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conventional fixed bin setting. This affects the result of AMI In this paper, to be able to cover wide range of intervals,

calculation. exponential bin setting is adopted differently from Figure 2.
To show this, assume the bin is set as follows: number of ~ The bin is set as

bins is K = 32. The kth bin border (k = 1,2,...,K) is given Bin 1: 0-b(1)

by

Bin 2: b(1)-b(2)

b(k) = 0.01 x 103>*(k=a/K) — 01 x 10(01094x(k=a)  (3) Bin 32: b(31)-b(32).
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Data over b(32) were neglected. Usually we set a =
0 which corresponds to the case of Figure 2(a). In order
to check the problem of the fixed bin in this section, we
compared in cases of a = 0 and a = 0.5. That is, in the latter
case, the Bin borders are shifted by half as Figure 2(b). This
may often happen since spike interval has lower bound by
refractory period, and therefore bin setting at small interval
values is nonsense.

Figure 3 shows two results of AMI calculation for the data
of Figure 1 with shifted bin positions by half as shown in
Figure 2. Their shapes are rather different. For example, at
m = 40 curve of a = 0.5 has a peak, but a = 0 has not
been as shown by a black ellipse. We can see that it is almost
impossible to extract period components from the spike train
by the fixed bin setting as it is.

5. Randomized Bin Setting

In order to suppress such instability, after having tried
some methods including fluctuating initial position a of (2)
and classifying an interval value into not one but adjacent
two bins with weights, we decided finally to adopt a bin
randomizing method, though it needs more computation
time than the former.

First, 32 uniform random numbers between [0, 32) are
generated, rearranged in order from small to large, and they
are substituted for k of (2). In a preliminary experiment,
K was set 8, while it was set 32 in the main experiment,
which was also extended to 128. Then we calculate one-trial
AMI. Also start counting how many times one-trial AMI
becomes the maximum at each m among, for example, 64
interval differences. This is a one trial with a random bin
setting. We repeated these trials N = 5,000 to 500,000 times
and averaged to obtain final AMI. At the same time, we
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also obtained normalized frequency of AMI becoming the
maximum at each m.

This method will be explained in Figure 4; that is,
fixed bin method (a) has some biased characteristics. If we
generate random set of bin borders {b(k)} as method (b),
bias effects will be decreased by repeating many times.

In addition to the original data set (i) of spike trains
from rat V1 field, we also prepared (ii) interval shuffled train
(Shuf3/Shuf8) among successive 3 intervals or 8 intervals
with sequentially shifting interval one by one and (iii) one
repeated Shuf8 operation 2048 times (Shuf8—2048) or 256
times (Shuf8-256). Further we prepared (iv) three different
randomly generated trains only having the same number
of spikes with the original train but not the same interval
distribution.

6. Experimental Results

6.1. Preliminary Experiment. Before starting the main exper-
iment, we tried with a small size of K = 8 and N = 5,000.
Examples of normalized frequency that fell into bins in three
trials for original train shown in Figure 1 are shown in
Figure 5.

Figure 6 shows changes of AMI and its frequency of
taking local maximum at each interval difference m when
shuffling the spike train. Generally speaking, by shuffling the
train, AMI values do not decrease suddenly but gradually,
since some rate of interval pairs moves in the same way with
keeping the same relative interval difference. Large values
of AMI and consequently large frequency of taking local
maximum of Original train are often decreased by shuffling
more as shown by black ellipses in Figure 6. Inversely,
since total values of normalized frequency are 1, other new
periodic components of AMI emerge/increase by shuffling,
and consequently the rate of taking local maximum is also
increased as shown by purple ellipses, though not completely.

Figure 7 shows an obtained scatter plot of AMI versus
frequency of AMI value took local maximum for original
train shown in Figure 1, its Shuf8, Shuf8-256, and Random
trains. AMI curve has such characteristics that (i) AMI of
original train usually takes the maximum at m = 1, since
if a spike detected that time moves to front, preceding
interval value is shortened and succeeding one is elongated;
that is they have negative correlation relationship (low
independency), and (ii) curve is sometimes inclined subtly.
To cope to these at this stage, we took a local-maximum
judgment separately at ranges of 1-4, 5-8, 9-16, 17-32, and
33-64 instead of maximum judgment at full range of 1-64.
Therefore we see 4 outlier points of Original data most at
right and 3 around horizontal axis in Figure 7. We can also
see that Shuf8 points are almost overlapping on the Original
ones, Shuf8-256 points are shifted to lower AMI values,
and Random points shifted more. These are well separated.
That is, the AMI with random bin method can well extract
temporal information of the spike train.

6.2. Prefinal Experiment. To improve the result, we expanded
number of bins to K = 32 and number of trials to
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N = 40,000. When increasing K 4 times, since the proba-
bility of intervals falling into a bin decreases to 1/4, it may be
reasonable also to increase N in this case 8 times. Examples
of normalized frequency that fell into bins in four trials for

original train shown in Figure1l are shown in Figure 8.
Figure 9 shows scatter plot of the obtained AMI versus
frequency of AMI value took the local maximum of the
Original train shown in Figure 1 with its Shuf8, Shuf8-256
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times, and three different Random trains. We can see that
compared with Figure 7 the scatter plot converged more.
Note that random trains have some divergence within trains.

6.3. Main Experiment. Increasing the number of trials more
to N = 500,000, we obtained almost the same results as
N = 40,000 but more improved than N = 5,000,K = 8
(8Bins). These are shown in Figure 10. We can see that N
seems to have reached plateau already at 40,000. In this case,
by suppressing the AMI value at m = 1 to 0, we could
determine more fairly the maximum of AMI value through
all ranges of 64 interval differences. Then, we could obtain a
final scatter plot of Figure 11, where we can see clear one-to-
one correspondence between AMI and maximum-detection
frequency than Figure 9.
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AMI curves in Figure 10(a) seem rather flat. Contrary to
this, rate curve of AMI taking the maximum in Figure 10(b)
appears more sensitive or too much sensitive to the periodic-
ity. Essentially, however, they have the same information.

7. Sensitivity Check

7.1. By Test Train Only. The average of inter-spike interval
of the train No.16 of Figurel was 7 = (measuring
time)/(number of spikes) = 0.244 sec. We generated a base
train with constant interval of 0.244 sec. That is, the base
train is

B:(tl>t2)~~~)tl721):(T)T)---)T)- (3)

Then, test trains were generated by adding periodic compo-
nent such that

t,=04+s)t ifn=Pxii=123,

(4)

T otherwise,

where P is a period of the test component and s is its
amplitude.

Figure 12(a) shows obtained AMIs for test trains with
P = 27. It shows sharp peaks at m = 27, just corresponding
to P as well as the 2nd peaks twice at interval difference
m = 54. Figure 12(b) shows their peak values at m = 27 with
extending range of s more than (a). This is a sensitivity of the
proposed method.
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7.2. Test Train Added to Real Train. Figure 13 shows the
results of test train with several amplitudes added to No.16
train. Test train is

t,=st ifn=Pxiwherei=1,2,3,...

(5)

0 otherwise,

where periodicity P = 27. We can see that in the Original
train there exists low periodic component at m = 27. Then by
adding test train with amplitude of more than 30% of average
interval 7, periodic component appears; that is in No.16
train, there exist many periodic components with amplitude
of several ten % of 7.
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with improving the maximum detection by suppressing AMI of
m = 1. Electrode No.16, light stimulated.

8. Low Periodicity Train

The train from Electrode No.16 with light stimulation shown
above is the one mostly showing its deep structure in the
sense that AMI values of Shuf8—2048 are clearly lower than
that of Org. This means that characteristics including period-
icity are disturbed by interval shuffling. However, this is not
always the case. An example of results of commonly typical
(ordinary) train of nonstimulated spontaneous response of
No.2 Electrode is shown in Figure 14 where characteristics of
shuffled train (Shuf8, Shuf8-256) are not so different from
original one (Org) but have larger AMI values than that of
artificially generated Random trains. Number of spikes in
this No.2 train is 729.

9. Extension to 128 Bins

We tried to extend the number of bins to 128 for some cases,
though computation time takes several times compared with
K = 32 cases. Figure 15 shows two examples of rate of spike
intervals fell into the random bins. Figure 16 shows AMI, and
Figure 17 shows the normalized frequency of AMI took the
maximum of the spike train from the Electrode No.2 with
the light stimulations and K = 128, N = 20,000. We can
see in this case that peak of AMI showing periodicity is sharp
at P = 28, and it disappears after interval shuffling and in
random sequence.

10. Discussion

In the calculation of AMI, P(A,B) is estimated from the target
data. As a result, it works as a learning effect. Consider an
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ultimate case with only two intervals #; and f, from three
spikes, where we can estimate the future t, (generally f,1,,)
perfectly with mutual information log, K if we know t;(¢,).
Therefore, the smaller number of spikes we have, the more
we can estimate future, and the higher mutual information
we have between the present and future. Inversely, the larger
number of spikes we have, the smaller level of the average
AMI values we obtain. Figure 18 shows the relation between
AMI level and number of spikes in a train of our experiments.
There may be some theoretical relationship between these.
However, we have not analyzed enough yet. Instead in the
experiment, we expanded Kvalues up to 128 and can see that
we can obtain higher AMI level which means we are able to
estimate more accurate future interval values by increasing K
value. However, it is also true that since the number of spikes
is limited, we cannot increase K value unlimitedly to estimate

well P(A,B).
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From viewpoint of circuit theory, each periodicity corre-
sponds to a specific circuit excited by a trigger input. Then, by
analyzing the interspike interval sequence, it may be possible
to get known the participating circuit shape or structure.
Through such analysis, it may become possible to analyze the
information storage and communication mechanisms in the
brain.
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Problem of the proposed method is computation time.
Presently software is written in Basic interpreter language
(BASICw32), and it takes 8 hours with 2.4 GHz i5 CPU of
note PC to calculate 40k trials when K = 32 for train data
with 1721 intervals. This may be possible to reduce to one
severalth by using compiler language.

11. Conclusion

Sizes and positions of time bins have been usually fixed. It
often causes effect to precision and stability of the results.
In this paper, we proposed a bin randomizing method
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to avoid such troubles. As an analyzing method, we used
automutual information, which has merits of (i) detectability
of even non-monotonic relation than correlation (ii) since
the AMI is calculated based on not the absolute time but the
appearance order and independence relationship between
train intervals, it can cope with nonstationarity such as
expand and contract of the spike interval combined with
the flexibility of randomized bin, and it has more (iii) direct
precise analysis than spectrum analysis and able to cope with
nonstationarity.

Demerit of the proposed method is the long computation
time. However, as a postprocessing of the spike train, these
are not severe demerits.
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It is shown that there exists an almost one-to-one mono-
tonic relation between AMI value and rate of AMI value,
takes the maximum through many trials of random bin
generation.

Though mainly we treated a problem of obtaining
automutual information, the proposed method of random
bin can also apply not only to the spike analysis but also to
other problems of other fields.
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Appendix

A. Preliminary Explanation of
Random Bin Proposing

If the codes for communication are generated repeatedly by
circulating pulses in a loop circuit, we can observe a sequence
with a period. Then two time intervals separated with some
number p of intervals will differ in their lengths reflecting
local appearance patterns in the code such as 11, 101,10
01, and 10001 as well as subtle physical transmission-time
differences between different cell connections. Therefore, if
we calculate mutual information between time lengths of
the two intervals, we may be able to estimate the period
of the code. Conventionally in this calculation, time bin
size is first fixed, and analogue time lengths of intervals are
next quantized according to this fixed bin size as shown
in Figure 19 upper part. Typically bin size (width) is set to
around time fluctuation (uncertainty) of spike position or
small so as no more one spike falls in a bin. However, the bin
size determined beforehand affects the results considerably.
Therefore, we cannot trust any more the results obtained
through this fixed bin size.

To cope with this problem, we propose here a method
of discretizing analogue time intervals by random time-bins
as shown in Figure 19 lower part for calculating the mutual
information in each trial. These time bins are different trial
by trial. Some time, the time bins are well determined and
can discriminate different time intervals, and some time not.
As an average, the mutual information will show the true
mutual information not affected by the bin or each bin size.

Finally, the mutual information between interval n and
interval n+m is shown as an automutual information (AMI)
graph by changing m (interval difference).
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