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Abstract

The ubiquitous fungus Aspergillus fumigatus is associated with chronic diseases such as invasive pulmonary aspergillosis in
immunosuppressed patients and allergic bronchopulmonary aspergillosis (ABPA) in patients with cystic fibrosis or severe
asthma. Because of constant exposure to this fungus, it is critical for the host to exercise an immediate and decisive immune
response to clear fungal spores to ward off disease. In this study, we observed that rapidly after infection by A. fumigatus,
alveolar macrophages predominantly express Arginase 1 (Arg1), a key marker of alternatively activated macrophages
(AAMs). The macrophages were also found to express Ym1 and CD206 that are also expressed by AAMs but not NOS2,
which is expressed by classically activated macrophages. The expression of Arg1 was reduced in the absence of the known
signaling axis, IL-4Ra/STAT6, for AAM development. While both Dectin-1 and TLR expressed on the cell surface have been
shown to sense A. fumigatus, fungus-induced Arg1 expression in CD11c+ alveolar macrophages was not dependent on
either Dectin-1 or the adaptor MyD88 that mediates intracellular signaling by most TLRs. Alveolar macrophages from WT
mice efficiently phagocytosed fungal conidia, but those from mice deficient in Dectin-1 showed impaired fungal uptake.
Depletion of macrophages with clodronate-filled liposomes increased fungal burden in infected mice. Collectively, our
studies suggest that alveolar macrophages, which predominantly acquire an AAM phenotype following A. fumigatus
infection, have a protective role in defense against this fungus.
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Introduction

Aspergillus fumigatus is a ubiquitous fungus that is efficiently

cleared by immunocompetent hosts. Inability to efficiently clear

Aspergillus under conditions of immune suppression, which is a

common occurrence in organ transplant patients, induces severe

invasive disease [1]. In patients with cystic fibrosis or severe

asthma fungal clearance is also impaired which causes allergic

bronchopulmonary aspergillosis (ABPA) [1,2]. In the lung,

macrophages and neutrophils are the key cell types involved in

defense against various pathogens including Aspergillus [3].

Macrophages constitute an important and primary line of defense

against any infection. These cells not only serve a role in pathogen

phagocytosis but they can also function as modulators of the

immune response [4]. Development, behavior and functional

properties of macrophages are influenced by various environmen-

tal cues to which these cells are exposed [5,6,7]. Several

phenotypes or classifications of macrophages have been described.

However, they can be best divided into two broad categories.

Classically Activated Macrophages (CAMs) induced by IFN-c are

designated as M1 macrophages [7,8]. Alternatively Activated

Macrophages (AAMs) or M2 macrophages are so designated

because of the ability of IL-4 to enhance expression of mannose

receptor, considered a distinctive feature of these macrophages [9].

While the M1/M2 designation is still used in the literature, the M2

subclass has expanded to include macrophages with diverse

phenotypes and functions [7,8,10].

The most important function of CAMs is engulfment and

destruction of microbial agents. Activated CAMs produce pro-

inflammatory cytokines such as TNFa and IL-6 and also show

marked upregulation of nitric oxide synthase (NOS2) associated

with NO production that together help in the destruction of the

phagocytosed pathogens [7,8,10]. AAMs have been best studied in

the context of infections by helminths [7,8]. However, AAMs have
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been also noticed during infections by intracellular bacteria [11]or

viruses [12,13] and in other disease conditions such as allergic

airways disease in mice [14,15], diabetes [16,17] and cancer

[18,19]. Various markers have been identified for AAMs like

Arginase1 (Arg1), Chi3l3(Ym1), Chi3l4(Ym2), Fizz1(Found in

Inflammatory Zone1) and macrophage mannose receptor

(CD206). However, thus far Arg1 is regarded as the prototype

activation marker for AAMs in murine macrophages [7]. Arg1

expressed by AAMs metabolizes L-Arginine (L-Arg), the common

substrate for both NOS2 and Arg1, to produce orninthine and

urea. Arg1 activation generates polyamines and hydroxyprolines

that help in repair processes after tissue injury caused by parasitic

infections and suppress Th2 effector functions [20,21].

Recently, the function of AAMs was addressed either by

depleting them or by using mouse models deficient in their

signature molecules like Arg1 and Fizz1. Thus, in infections by

Nippostrongylus brasiliensis or Schistosoma mansoni, Arg1- and Fizz1-

expressing AAMs were shown to be suppressors of Th2

inflammation in the lung [21,22,23]. Furthermore, ablation of

Arg1 specifically in macrophages and neutrophils exacerbated

schistosomiasis and the presence of this enzyme was necessary for

downregulating chronic inflammation and suppressing fibrosis

[21]. In contrast, during infections by intracellular pathogens such

as Toxoplasma gondii and Mycobacterium bovis, CAMs were found to

upregulate expression of Arg1 with concomitant suppression of

NO production due to competition for the common substrate L-

Arg [11]. This process interfered with microbial killing since mice

lacking Arg1 showed higher survival rate [11]. CD 4 T cell

memory response that helped clear Heligmosomoides polygyrus was

found to be facilitated by AAMs [24].

In the present study, we explored the nature of the early innate

immune response to Aspergillus fumigatus infection of the lung. We

show that after fungal infection, AAMs expressing Arg1, Ym1 and

CD206 develop in the lung as early as 6 hours after infection. The

expression of Arg1 in BAL CD11c+ cells was only partially

dependent on IL-4Ra/STAT6. Moreover, Arg1 expression was

also not dependent on Dectin-1 or MyD88, pathways associated

with fungal recognition and induction of immune responses

[25,26,27,28,29,30,31,32,33]. However, Dectin-1 was important

for the phagocytosis of Aspergillus conidia. Depletion of

macrophages by clodronate-filled liposomes delayed the clearance

of fungus after infection even though neutrophil numbers

increased upon clodronate treatment. Alveolar macrophages from

WT mice efficiently phagocytosed fungal conidia, but those from

mice deficient in Dectin-1 showed impaired fungal uptake. Since

Arg1, constitutively expressed by neutrophils, was previously

associated with antifungal activity [34], switching on expression of

this enzyme in alveolar macrophages highlights an important

antifungal defense mechanism. Taken together, our data suggest

that rapid induction of Arg1 in alveolar macrophages after A.

fumigatus infection is a key antifungal defense mechanism employed

by the infected host to eliminate the fungus.

Results

A. fumigatus infection induces the prototypic marker of
Alternatively Activated Macrophages (AAMs) Arginase 1
in the lung

We first compared the innate immune response in the lung to

two very different pathogens, the extracellular bacterium Klebsiella

pneumoniae, and the fungus Aspergillus fumigatus. Mice were either left

uninfected or infected intratracheally with 100 cfu (colony forming

units) of K. pneumoniae or 506106 resting conidia (RC) of A.

fumigatus. Lungs were harvested after 4 days of infection with K.

pneumoniae or 48 hours of infection with A. fumigatus and mRNA

expression for various AAM markers was determined by semi-

quantitative RT-PCR techniques. The expression of Fizz1/Relm-

a, a protein expressed by AAMs, epithelial cells and eosinophils

was increased in the lung in both the infection models (Figure 1A).

Whereas K. pneumoniae infection promoted NOS2 gene expression,

infection by A. fumigatus caused increased Arg1 expression in the

lung (Figure 1A). Since CAMs express NOS2 while AAMs express

Arg1, these results suggested that A. fumigatus infection induces

AAM-type cells. We next infected mice with different numbers of

RC (2.5–506106 per mouse) of A. fumigatus and harvested the lungs

at 48 hours post-infection (p.i.). As shown in Figure S1A, the

expression of genes such as Arg1, Fizz1 and Ym1 increased with

increasing doses of RC while that of NOS2 did not increase much

over that detected in control PBS-treated mice. Arg1, Fizz1 and

Ym1 are genes associated with AAMs while NOS2 is expressed by

CAMs. Further, using the dose of 506106 RC for infection, we

harvested lungs at different times after infection to assess

expression of AAM-associated genes (Figure S1B). Of note, at

48 hours after infection, a low level of Arg1 was noted (data not

shown) in the lungs of Klebsiella-infected mice which disappeared

after 4 days (as shown). While Arg1 was upregulated, NOS2

expression was not detected at any time point (from 24–120 hours)

in the lungs of Aspergillus-infected mice (Figure S1B). Collectively,

the results showed peak expression of AAM-associated genes in the

lung at 48 hours p.i.

We next infected mice with 506106 RC to assess expression of

AAM-associated molecules at both mRNA and protein levels at

time points earlier than 48 hours p.i. to determine whether the

expression of Arg1 but not NOS2 was evident from times very

early after infection. Whole lung tissue was isolated from infected

mice at 6, 12, 24, 48 and 96 hours p.i. and processed for RNA. As

early as 6 hours after infection, the expression of Arg1 and Fizz1

was detected in the infected lungs when compared to uninfected

controls but no induction of NOS2 was noticed (Figure 1B). The

steady state levels of both Arg1 and Fizz1 mRNA peaked at

48 hours p.i. The expression of Arg1 and Fizz1 was 13- and 90-

fold higher in the infected lungs compared to that in uninfected

controls (Figure 1C). Further, the expression of Arg1 decreased

substantially at 96 hours p.i. while that of Fizz1 was reduced but

remained elevated (Figure 1C). Comparatively, the expression of

NOS2, the signature marker for CAMs, did not appreciably

increase in the infected lungs at any of these time points

(Figure 1B,C and Figure S1B).

In addition to investigating the expression of AAM-associated

genes at the mRNA level, we also examined expression of the

corresponding proteins. Arg1 enzyme activity and expression of

YM1 protein were assessed. Arg1 enzyme activity was high at both

48 and 96 hours p.i. (Figure 1D) even though decreased Arg1

mRNA level was noted at the later time point (Figure 1C).

Increased YM1 protein expression was noted at 48 hours p.i.

which decreased at 96 hours after infection (Figure 1E). Beyond

96 hours, expression of both proteins declined (data not shown).

Characterization of bronchoalveolar lavage cells after A.
fumigatus infection

Our next goal was to characterize the major cell types present in

the alveolar space after A. fumigatus infection one or more of which

would potentially express the molecules expressed by alternatively

activated macrophages. Mice were infected with 506106 RC and

BAL cells were isolated from infected and uninfected controls at

various times after infection. Total and differential cell counts

showed an increase in the number of polymorphonuclear

neutrophils (PMNs) and macrophages, cells of the innate immune
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Figure 1. Infection by Aspergillus fumigatus induces markers of Alternatively Activated Macrophages in the lung. (A) Mice were infected
with 100 cfu of K. pneumoniae or 506106 resting conidia (RC) of A. fumigatus given intratracheally and lungs were harvested after 4 days (Klebsiella)
or 48 hours (Aspergillus) of infection for total RNA extraction. RT-PCR was performed to measure mRNA expression of Arg1, Fizz1 and NOS2. The
results shown were generated using RNA from 1 mouse (n = 4) with the PCR products in the different lanes generated with increasing dilutions of
cDNA. b-actin expression was used as an internal control. mRNA expression corresponding to the various genes in infected lungs was compared with
that expressed in the lungs of uninfected mice. Mice were infected with 506106 RC or given PBS intratracheally (uninfected group). The expression of
Arg1, NOS2 and Fizz1 was analyzed by quantitative RT-PCR (B) at 6, 12 and 24 hours (C) at 48 and 96 hours p. i. The fold increase in expression for
each gene is expressed relative to that in uninfected mice using Gus-b expression for normalization. Values shown are mean 6 SEM. (D) Arginase
activity expressed as U/mg protein was measured in protein extracts made from lungs 48 and 96 hours p. i. (E) Immunoblotting of YM1 was
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response that are important for clearing invading pathogens

(Figure 2A). For the next series of experiments we used a lower

dose of 106106 RC rather than a dose of 506106 RC or higher

that is typically used in mortality studies in animals not treated

with immunosuppressive agents [35]. Using the lower dose, at the

whole lung level, a 3-4 fold increase in Arg1 expression over

baseline was noted (Figure S1A). In order to characterize BAL

cells further, cells were recovered from infected and uninfected

controls by high volume BAL and stained for various surface

markers after gating on live CD45+ cells (leukocytes) and analyzed

for various cell types. The results showed that PMNs form the

majority (68.6%) of the BAL-derived cells after 48 hours of

infection as shown by Ly6G expression. However, the majority of

alveolar macrophages (14.6%) remain CD11c+, as was also

observed in the naı̈ve mice (Figure 2B), even though the total

number of CD11c+ cells increased significantly after infection.

While ,0.16106 total cells were recovered by BAL from naı̈ve

mice, 0.56106 cells were obtained from infected mice.

We also distinguished BAL cells based on high and low

autofluorescence corresponding to macrophages and dendritic

cells (DCs) respectively from uninfected and infected mice at

48 hours p.i. The majority (98.5%) of the cells from uninfected

mice were CD11c+autofluorescence high and only1% of the cells

were CD11c+ autofluorescencelow. In infected mice, ,85.7% of

cells were identified as CD11c+ autofluorescence high alveolar

macrophages and 11.4% were CD11c+ autofluorescence low (DCs).

For further assessment, we examined the expression of MHC Class

II in these two populations of cells from uninfected and infected

mice. Alveolar macrophages were CD11c+ autofluorescence high

MHC IIlow and DCs were CD11c+ autofluorescence low MHC

IIhigh (Figure 2B). Based on these results, we used autofluores-

cence high CD11c+ cells corresponding to alveolar macrophages for

further experiments.

A. fumigatus infection-induces CD11c+

autofluorescencehigh Arg1- expressing alveolar
macrophages

Next, we sought to determine whether alveolar macrophages

expressed Arg1 but not NOS2 upon infection by A. fumigatus. Mice

were infected with 106106 RC and CD11c+ cells were recovered

by BAL 48 hours p.i. In addition to the increase in the number of

CD11c+ cells in the alveolar space after fungal infection, the

alveolar macrophages in the infected mice also acquired a distinct

morphology and were found to be more vacuolated as compared

to those in naı̈ve mice (Figure 3A). Similar results were obtained in

C57BL/6 mice (data not shown). The CD11c– fraction comprised

mainly PMNs (Figure 3A). To determine the nature of these

macrophages, Arg1 expression was examined in purified CD11c+

cells. Based on their high autofluorescence and morphology, the

cells were uniformly identified as macrophages. As shown in

Figure 3B, a robust increase in Arg1 expression was noted in these

CD11c+ cells suggesting development of AAM-like cells in the

infected lungs.

We assessed expression of other AAM-associated markers in the

CD11c+ cells. Arg1 was the only gene whose expression was

upregulated in the CD11c+ BAL cells from infected mice as

compared to expression in cells isolated from the controls

(Figure 3B). However, Ym1 and CD206, genes also associated

with AAMs [7,8,10], were found to be constitutively expressed in

alveolar macrophages isolated from uninfected mice (Figure 3B).

Fizz1/RELM-a was not detected in these cells whether the cells

were isolated from infected or uninfected mice. It has been

previously shown that the basal levels of expression of Ym1 and

Fizz1 differ in macrophages isolated from different tissues

presumably due to differential stimulation by the microenviron-

ments they reside in [36]. The lack of Fizz1 expression in the

CD11c+ cells suggested that the increased expression of this

molecule observed in the lungs of infected mice was contributed by

tissue resident cells such as epithelial cells and eosinophils [37]. At

this early time point after infection, eosinophil infiltration is quite

low making it unlikely that these cells contributed much to Fizz1

expression in the infected lungs which makes epithelial cells the

likely source of this molecule. The signature marker for CAMs,

NOS2, was barely detectable in the CD11c+ population

(Figure 3B). In the lungs too, NOS2 was not detected at any

time point after infection (Figure 1, panels B and C and Figure S1,

panels A and B). Thus, macrophages expressing Arg1, Ym1 and

CD206 were the dominant alveolar CD11c+ cells early after A.

fumigatus infection.

We also examined the expression of Arg1 and NOS2 by

intracellular staining of CD11c+ cells purified from infected mice

after 48 hours and compared with expression in cells recovered

from uninfected mice. It was clear in these experiments that

Aspergillus infection induces robust Arg1 expression but not

NOS2. Compared to .50% of the cells expressing Arg1 at 48

after infection (Figure 3C), only 2.5% of the cells were found to be

NOS2+ by intracellular staining techniques (Figure 3D). Further,

we also assayed arginase activity in CD11c+ cells isolated by BAL

from infected and uninfected mice. As shown in Figure 3E,

significantly higher arginase activity was evident when cells were

isolated from infected mice, further providing the evidence that

alveolar macrophages after Aspergillus infection have a predom-

inance of alternatively activated phenotype.

CD11c+Arg1-expressing macrophages isolated after A.
fumigatus infection carry fungal load

It was previously shown that the lack of NOS2 expression has

no effect on the killing of fungal conidia by alveolar macrophages

[38]. Since the majority of the alveolar macrophages expressed

Arg1 after fungal infection (Figure 3, panels B and C), we were

curious whether the CD11c+ cells isolated and purified from BAL

fluid had the ability to phagocytose fungal conidia. Mice were

infected with 106106 RC and CD11c+ cells were recovered by

BAL 48 hours p.i. Fungal load was measured by quantitative PCR

of fungal DNA corresponding to fungal 18S rRNA and expressed

as conidia equivalents in CD11c+ cells (Figure 4). The data

suggested that alveolar macrophages, a large fraction of which

expresses Arg1 after fungal infection, can efficiently phagocytose

conidia.

A. fumigatus-induced Arg 1 expression is partially
dependent on IL-4Ra/STAT-6 signaling

AAMs or M2 macrophages can be elicited in vitro in the

presence of Th2 cytokines such as IL-4 and IL-13 [4,39]. The

development and maintenance of AAMs in vivo involve IL-4Ra/

STAT6 signaling, the common signaling pathway for IL-4 and IL-

13 [20,24] and the induction of AAM-specific genes was also

shown to be dependent on this signaling axis [40,41,42]. We

performed using protein extracts made from lungs using anti-YM1 antibody. b-actin expression was examined as loading control and the intensity of
YM1 band was quantified relative to that of b-actin. Data shown are representatives of two independent experiments (n = 4–6 mice in each group).
doi:10.1371/journal.pone.0015943.g001
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Figure 2. Characterization of BAL cells from after A. fumigatus infection. (A) Mice were infected with 506106 RC and BAL cells were collected
at different time points after infection. Total and differential cell counts of BAL cells recovered from uninfected and infected mice were determined

Alveolar Macrophages Mediate Fungal Clearance

PLoS ONE | www.plosone.org 5 January 2011 | Volume 6 | Issue 1 | e15943



therefore explored the validity of this pathway in the expression of

Arg1, the prototypical marker of AAMs, in our study. Mice deficient

in IL-4Ra or STAT6 were infected with 106106 RC along with WT

BALB/c controls. CD11c+ BAL alveolar macrophages were purified

from WT, IL-4Ra-/- and STAT6-/- mice and Arg1 expression was

measured. Arg1 was found to be reduced by ,50% in the BAL

macrophages isolated from IL-4Ra-/- and STAT6 -/- mice as

compared to that in cells from WT mice (Figure 5A). The fact that

Arg1 expression was not completely ablated in cells deficient in

signaling downstream of IL-4Ra suggested that factors other than

STAT6, triggered by fungal surface molecules contribute to the

maximal level of Arg1 expression observed in BAL CD11c+ cells

isolated from WT mice. The expression of other AAM-associated

genes such as Ym1 and CD206 remained unaffected in cells from IL-

4Ra-/- and STAT6-/- mice (Figure 5B). These data also suggested

that the basal level of Ym1 or CD206 expression in alveolar

macrophages is not driven by IL-4Ra/STAT6 signaling. However,

similar to the ability of IL-4 and IL-13 to induce the alternatively

activated phenotype in macrophages in the context of helminth

infections [7], fungus-induced Arg1 was also found to be at least

partially dependent on IL-4Ra/STAT6.

Dectin-1 and MyD88 involvement in Arg1 expression and
fungal clearance

Given that Arg1 expression was not completely dependent on the

IL-4Ra/STAT6 signaling pathway, we were curious whether

pattern recognition receptors on the macrophages contributed to

the expression of these molecules in infected mice. In this regard,

Dectin-1, the pattern recognition receptor that binds b-glucan

expressed on fungal cell walls [29,31,43] and MyD88, the essential

adaptor molecule for signaling downstream of most TLRs [44],

were the key candidates. Dectin-1 has been shown to be important

for antifungal defense [32,33,35,45] and MyD88 is also utilized

once conidia germinate to hyphae [25,29,46]. An important role for

Dectin-1 in uptake of b-glucan-expressing zymosans in phagosomes

of macrophages was demonstrated and Dectin-1 was shown to

augment TLR/MyD88-induced pro-inflammatory cytokines in the

zymosan-exposed macrophages [47]. We first examined Arg1

expression in BAL CD11c+ cells isolated from WT, Dectin-1-/- and

MyD88-/- mice. As shown in Figure 6A, Aspergillus- induced Arg1

expression in alveolar macrophages was independent of these

signaling pathways. The expression of other AAM-associated genes

such as Ym1 and CD206 remained unaffected in cells from Dectin-

1-/- and MyD88-/- mice (Figure 6A). We next investigated fungal

burden in WT, Dectin-1-/- and MyD88-/- mice at 48 hours p.i. As

shown in Figure 6B, fungal burden was 2-3-fold more in the lungs of

both Dectin-1-/- and MyD88-/- mice.

With the observation that Dectin-1 and MyD88 deficiency

results in higher fungal burden in the lung when compared to wild

type mice, we further investigated phagocytosis of fungal conidia

by alveolar macrophages isolated from WT, Dectin-1-/- and

MyD88-/- mice using FITC-labeled live conidia. We examined the

presence of phagocytosed conidia in live cells from WT, Dectin-

1-/- and MyD88-/- mice by confocal microscopy. While alveolar

macrophages isolated from either WT or MyD88-/- showed

presence of FITC-conidia inside the cells (Figure 6C), fewer

macrophages from Dectin-1-deficient mice showed labeled conidia

inside the cells in line with previous observations establishing a role

for Dectin-1 in phagocytosis by sensing b-glucan [47]. Although

Dectin-1 has been directly associated with phagocytosis [47], the

slightly lower efficiency of the MyD88-deficient cells in phagocy-

tosis as compared to WT cells may have been due to the inability

of Dectin-1 to collaborate with the TLR pathway in the MyD88-

deficient cells. These data showed that unlike IL-4Ra/STAT6,

Dectin-1 and TLR/MyD88 do not regulate Arg1 expression but

nonetheless play an important role in fungal clearance given their

function in sensing fungus-expressed molecules and phagocytosis

and induction of inflammatory responses [47].

Depletion of macrophages decrease pulmonary
clearance of A. fumigatus

Since our investigations showed that Aspergillus infection

promotes the development of Arg1-expressing alveolar macro-

phages and at none of the time points we could detect NOS2, we

asked whether these cells were important in fungal clearance in the

infected host. One of the strategies used to deplete macrophages is

making use of clodronate-loaded liposomes that selectively deplete

monocytes, macrophages but not lymphocytes or neutrophils

[48,49]. Although alveolar dendritic cells (DCs) (but not interstitial

DCs) are also at least partially depleted by clodronate-liposomes

[50], this was not of concern to us for two reasons. First,

macrophages are significantly more numerous and the key

phagocytic cells in the alveolar space in naı̈ve mice and second,

our objective was to determine effects on fungal burden and not

adaptive immune responses. Clodronate-loaded liposomes or

control PBS-filled liposomes were administered intratracheally

48 hours prior to fungus infection and mice were subsequently

infected with 5 fold more RC (50 million), a high fungal dose that

is used in mortality studies [35]. When compared with PBS-

liposome group, mice that received clodronate-liposomes showed

reduced numbers of macrophages (Figure 7A) both at 48 and

96 hours after fungus infection. Further, we measured the total

and differential counts in the BAL cells in these two groups. We

observed an impressive increase in total cell counts in the

clodronate group at both time points due to compensatory

increase in PMNs which caused a higher PMN/macrophage ratio

due to depletion of macrophages but increase in PMNs (Figure 7B).

Fungal burden was compared between PBS-liposome and

clodronate-liposome groups as well as in infected mice without

liposome administration (additional control) at 72 and 96 hours

p.i. As shown in Figure 7, panels C and D, when clodronate–

liposomes were administered prior to intratracheal administration

of 506106 RC, fungal burden was significantly higher at 72 and

96 hours p.i. showing that alveolar macrophages in fungus-

infected mice are important for reducing fungal burden in the

lungs. Remarkably, the increased numbers of PMNs were unable

to control fungal burden.

Taken together, these results showed that alveolar macrophag-

es, the majority of which assume an alternative phenotype with the

induction of Arg1 in response to Aspergillus infection with no

detectable expression of NOS2, play an important role in

pathogen clearance immediately after fungal infection.

from stained cytospin slides. Macs: macrophages; PMNs: neutrophils; Eos: eosinophils and Lymphs: lymphocytes. Values shown are mean6SEM. (B)
Representative flow cytometry plots showing different cell types in the BAL fluid by staining for various cell surface markers. Cells are gated on live
CD45+ cells (leukocytes) and analyzed for CD3, CD19, Ly6G or CD11c expression. Numbers represent the percentages of specific cell types in the
CD45+ population. Characterization of CD11c+ cells in the BAL fluid from uninfected or infected mice at 48 h p.i. based on autofluorescence and MHC
II expression. Flow cytometry plots show that CD11c+ cells can be divided into highly autofluorescent macrophages (gate 1) and low autofluorescent
DCs (gate 2). MHC II expression in each population was examined. Numbers represent the percentages of cells in gated populations (n = 4 mice per
group).
doi:10.1371/journal.pone.0015943.g002
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Discussion

In immunocompetent healthy individuals, inhaled spores of A.

fumigatus are rapidly cleared off in which innate immunity is

believed to be sufficient for clearing the fungus [3]. However, in

immunocompromised patients, inhaled conidia germinate and

invade the parenchyma. In patients with cystic fibrosis or severe

asthma, impaired fungal clearance induces allergic disease termed

allergic bronchopulmonary aspergillosis (ABPA). Efficient and

prompt fungal clearance is therefore of utmost importance to

prevent fungus-induced disease. However, the mechanisms

underlying fungal clearance are not well understood. Our study

for the first time shows an important role of alveolar macrophages

in fungal recognition and clearance immediately after fungal

infection. Fungal infection rapidly induced Arg1 expression in

alveolar macrophages, which was also true for tissue macrophages

(not shown). Besides Arg1, the alveolar macrophages in fungus-

infected mice were also found to express other AAM-associated

molecules such as Ym1 and CD206. Arg1 induction upon fungal

infection was partially dependent on the IL-4Ra/STAT6 signaling

axis. The b-glucan receptor, Dectin-1, was found to play an

important role in the phagocytosis of Aspergillus by alveolar

macrophages and its absence increased fungal burden in the lungs

of the infected mice. Lack of MyD88, the adaptor downstream of

most TLRs, known to recognize Aspergillus and cooperate with

Dectin-1 for the induction of inflammatory responses [47], also

impaired fungal clearance although neither Dectin-1 nor MyD88

contributed to Arg1 expression in the infected macrophages.

Depletion of alveolar macrophages increased fungal burden in the

lungs of mice despite of increased influx of neutrophils in the

alveolar space. Figure 8 illustrates the key findings in our study.

Macrophages constitute one of the most important cells of

innate immunity with versatile functions. Recently, heterogeneity

in macrophage phenotype and function has been well recognized

similar to that noted for T cells [7]. Macrophages have been

subdivided into two broad categories, M1 and M2. M1

macrophages express NOS2 and reactive oxygen and nitrogen

intermediates and are IL-12high and IL-10low. M2 macrophages

express Arg1 along with a host of other molecules such as Ym1

and Fizz1 and are IL-12low and IL-10high. Depending on context,

variability in expression of these molecules is increasingly being

noted and the M2 category has been broadened to include all

additional subtypes [8,51]. Classical or M1 macrophages are

crucial for killing pathogens and tumor cells [7,52]. M2

macrophages/AAMs have been associated with both adverse

and beneficial effects in interactions of the host with various

pathogens. For example, a recent study showed that Arg1, the key

enzyme expressed by AAMs, can be detrimental during infections

by intracellular pathogens such as T. gondii and M. bovis [11]. In

this study, Arg1, which uses the same substrate, L-Arg, as NOS2,

was found to help survival of the intracellular pathogens due to a

decrease in NO production [11]. However, in the context of worm

infections, where AAMs have been studied the most, these cells

have been largely associated with beneficial effects in the infected

host. For example, recent studies have highlighted an important

role for Fizz1 expressed by AAMs in suppressing Th2 responses

and downregulating inflammation and fibrosis in mice infected

with S. mansoni [22,23] and Arg1 was also associated with similar

suppressive functions [21]. The protective role of AAMs in

schistosomiasis was also shown to involve downregulation of

harmful Th1 inflammatory responses and AAM induction was

essential for survival [53]. Clodronate-mediated removal of

macrophages with AAM phenotype in the intestines of mice

infected with N. brasieliensis impaired smooth muscle contractility

and increase in thickness and worm expulsion [20,54]. In the case

of infection by the worm Brugia malayi, absence of AAMs resulted

in increased neutrophilia and reduced eosinophilia [55]. In this

regard, the AAMs were shown to phagocytose apoptotic

neutrophils. Thus, at the present time there exists a significant

body of literature on AAM characterization and function in the

context of chronic infections, particularly in the context of

helminth infections, and for the most part this type of host

response has been found to be beneficial. However, fewer studies

have studied these cells early after infection. In the RSV infection

study, AAMs expressing Th2 cytokines were detected around 4

days p.i. [13]. Compared to that observed in WT mice, infection

Figure 3. Identification of CD11c+Arg1-expressing alveolar macrophages after A. fumigatus infection. (A) Mice were infected with
106106 RC and cells in the BAL fluid were recovered from uninfected and infected mice. Stained cytospins of CD11c+ and CD11c- fractions 48 hours
p.i. CD11c+ macrophages before and after infection exhibited different morphology when compared to those isolated from naı̈ve controls. (B) mRNA
expression of AAM markers measured by quantitative (left panel) and semi-quantitative RT-PCR (right panel) in BAL CD11c+ cells isolated 48 hours p.i.
The fold increase shown is relative to genes expressed in CD11c+cells from the uninfected group after normalization to Gus-b. Values shown are
mean6SEM. For semi-quantitative RT-PCR, b-actin expression was used as an internal control. Data shown were generated using RNA from 1 mouse
(n = 4) with the PCR products in the different lanes generated with increasing dilutions of cDNA. The experiment was repeated three times with
similar results. (C) Arg1 and (D) NOS2 expression in the BAL CD11c+ cells was examined at 48 hours p.i. by flow cytometry using intracellular staining
techniques. Gray (filled) and black (open) histograms denote staining with isotype control and specific anti-Arg1 or anti-NOS2 antibody respectively
(n = 4–6 mice in each group). The frequency of Arg1 expression in uninfected and infected cells was 2.2% and 52% respectively while that of NOS2
was 0.68% and 2.54% in the same cells. (E) Arginase activity expressed as U/mg protein was measured in protein extracts made from CD11c+ cells
isolated by BAL from PBS-treated uninfected controls or fungus-infected mice at 48 hours p.i.
doi:10.1371/journal.pone.0015943.g003

Figure 4. CD11c+Arg1 expressing AAMs isolated after A.
fumigatus infection carry fungal load. Mice were infected with
106106 RC and CD11c+ cells were isolated by BAL from PBS-treated
uninfected controls or fungus-infected mice at 48 hours p.i. Fungal
uptake in the BAL CD11c+ cells was assessed by quantitative PCR of
DNA corresponding to fungal 18S rRNA and expressed as Conidia
Equivalents/lung (n = 4 mice in each group). Values shown are
mean6SEM.
doi:10.1371/journal.pone.0015943.g004
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of IL-4Ra-/- mice by RSV that impaired AAM development

caused worse lung pathology and thus a protective role of these

cells was suggested [13].

In our study, the experiments performed to address the relevance

of alveolar macrophages in Aspergillus infection suggest a protective

role of these cells in the context of fungal infection although we

could not address the specific role of the Arg1-expressing AAM-type

population due to our inability to selectively deplete them. Fungus-

induced Arg1 expression in alveolar macrophages was also rapidly

induced as early as 6 hours after infection and at none of the time

points tested did we detect appreciable NOS2 expression unlike in

mice infected with K. pneumoniae that showed brisk NOS2 expression

(Figure 1). The decline of Arg1 mRNA levels after 96 hours of

infection was in toe with fungal clearance. Furthermore, in

phagocytosis assays, macrophages isolated from WT mice showed

significantly higher phagocytosis as compared to those from Dectin-

1-deficient mice (Figure 6). In the in vivo setting, we also detected

fungal DNA corresponding to 18S rRNA in CD11c+ cells isolated

from infected mice (Figure 4). Finally, depletion of alveolar

macrophages using clodronate-liposomes increased fungal burden

in the lung at multiple time points (Figure 7). Collectively, these

results suggest that a population of alveolar macrophages with a

predominance of alternatively activated phenotype is beneficial in

rapid clearance of fungi from infected lungs.

The induction of various AAM-associated genes such as Arg1,

Ym1 and Fizz1 in the majority of studies has been found to require

the IL-4Ra/STAT6 signaling axis [12,54,56,57,58]. However,

exceptions have been noted as during infection by T. gondii or M.

bovis where TLR-mediated signaling is required [11] or during

development of trypanosomiasis where IL-10-mediated mecha-

nisms were invoked [59]. We show that Arg1 expression is reduced

but not eliminated in IL-4Ra-/- or STAT6-/- mice (Figures 5). It is

possible that functional cooperation between IL-4Ra/STAT6 and

additional pathways promotes maximal Arg1 expression in

alveolar macrophages after infection with A. fumigatus. In studies

of infection by Fasciola hepatica and S. mansoni, the secreted

antioxidant, peroxiredoxin (Prx), was shown to induce Ym1-

expressing AAMs, which enhanced the secretion of IL-4, IL-5 and

IL-13 from naı̈ve CD4+T cells [60]. However, any such possibility

in our study remains to be determined. Cell surface molecules such

as Dectin-1 and TLRs are integral to fungal recognition; however

the role of these molecules in the induction of markers commonly

associated with the AAM phenotype such as Arg1 has not been

previously studied. Our data show that unlike IL-4Ra/STAT6,

Dectin-1 or MyD88 do not contribute to Arg1 expression

suggesting a division of labor between different cell surface

molecules with respect to pathogen recognition and uptake and

induction of intracellular molecules such as Arg1.

Figure 5. IL-4Ra/STAT6 partly controls Arg1 expression in alveolar macrophages isolated from A. fumigatus-infected mice. WT, IL-
4Ra-/- and Stat6-/- mice were infected with 106106 RC and CD11c+ cells were isolated by BAL at 48 hours p.i. (A) Quantitative RT-PCR was performed
to measure Arg1 mRNA expression in CD11c+ cells from infected WT, IL-4Ra-/- and Stat6-/- at 48 hours p.i. and the fold increase shown are relative to
that in CD11c+ cells from uninfected group. Values shown are mean6SEM (B) Semi-quantitative RT-PCR analysis of expression of indicated genes
CD11c+ cells isolated from uninfected and infected mice. The data were obtained using RNA isolated from the cells of one mouse with the bands in
the 3 lanes in each group depicting PCR products obtained with increasing dilution of cDNA. Similar results were obtained in two independent
experiments (n = 4–6 mice in each group).
doi:10.1371/journal.pone.0015943.g005
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Figure 6. Dectin-1- or MyD88-deficiency in alveolar macrophages does not affect Arginase1 expression but impairs fungal
clearance. (A) WT, Dectin-1-/- and MyD88-/- mice were infected with 106106 RC and CD11c+ cells were isolated by BAL at 48 hours p.i. Quantitative
RT-PCR was performed to measure Arg1 mRNA expression in CD11c+ cells from infected WT, Dectin-1-/- and MyD88-/- and the fold increase shown are
relative to that in CD11c+ cells from uninfected group. Values shown are mean6SEM (B) Fungal burden expressed as CFU per lung was measured in
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The localization of Dectin-1 to phagosomes and its important role

in phagocytosis of zymosan particles expressing b-glucan, the ligand

of Dectin-1, was previously shown [47]. This study also showed the

collaborative efforts of Dectin-1, exerted via its ITAM (immunor-

eceptor tyrosine-based activation) motif and TLR2 via MyD88

signaling in macrophages in both phagocytosis and expression of pro-

inflammatory cytokines and reactive oxygen species [47]. As many

subsequent studies have shown, fungal pathogens like Aspergillus,

Pneumocystis and Candida utilize TLRs and Dectin-1 to infect

macrophages and neutrophils [25,29,31,32,33,35,43,45,46,51].

Therefore, we believe that the increased burden noticed in the

Dectin-1-/- and MyD88-/- mice after 48 hours of A. fumigatus infection

is due to the lack of the collaborative effort between the two signaling

pathways in the infected macrophages. Given that lack of MyD88 did

not significantly impair fungal uptake by the alveolar macrophages

but still increased fungal burden, it is likely that in the absence of

MyD88, inadequate production of proinflammatory cytokines that

are required to kill phagocytosed microbes accounts for the delay in

fungal clearance in these mice.

So, how might Arg1 induced by Aspergillus cause increased

fungal clearance? In the H. polygyrus infection study, AAMs were

associated with impairment of larval parasite health and mobility

and worm expulsion that was dependent on Arginase expression

[24]. Similarly, Arg1 was found to be crucial for suppression of

Th2 responses in mice infected with S. mansoni [21]. How Arg1

might contribute to the suppressive functions of AAMs at early or

late time points after infection is currently not understood.

Metabolism of L-Arg by Arg1, the major arginase activity in the

body [61], generates L-ornithine and urea. L-ornithine is

metabolized by ornithine decarboxylase to the polyamine

putrescine, which is further converted to other polyamines. L-

ornithine is also metabolized in the mitochondria via successive

steps to L-proline, which is essential for the synthesis of many

structural proteins, including collagen [62]. Competition of Arg1-

expressing macrophages with myofibroblasts for the substrate L-

Arg causing less collagen production by the myofibroblasts has

been suggested as one possible mechanism for suppression of

fibrosis by AAMs induced after infection by S. mansoni [21]. In our

study, none of these mechanisms is relevant since we have studied

fungal clearance at an early time point before the induction of

adaptive immunity. However, one important consideration is

competition for L-Arg between the germinating fungal spores and

the AAMs. The Aspergillus species, A. nidulans, was shown to

utilize L-Arg as a source for nitrogen and carbon employing

arginase enzymes [63,64]. It is likely that Arg1-expressing

macrophages competitively deprive the fungus of L-Arg and

compromise spore viability. Interestingly, in human neutrophils,

L-Arg depletion by Arg1 localized to phagolysosomes was

recognized as a novel mechanism of anti-fungal activity against

Candida albicans [34]. It is a well recognized phenomenon that

myeloid cells deplete phagosomes of critical nutrients required for

survival of phagocytosed microbes [65]. The microbes, in turn, try

to compensate by upregulating expression of genes to adapt to the

host microenvironment. The fungi C. albicans and Saccharomyces

cerevisiae were shown to upregulate expression of genes associated

with Arginine biosynthesis in human neutrophils [66]. Taken

together, the finding of a role for Arg1 constitutively expressed in

human neutrophils in defense against C. albicans [34], the

dependence on L-Arg by fungi as an essential nutrient source

[63,64], and our collective data of the role of alveolar macrophages

with AAM phenotype in Aspergillus uptake and clearance provide

logical explanations for why the host would attempt to rapidly

induce Arg1 in the infected lung macrophages. Since Aspergillus is a

ubiquitous pathogen and the host has to fight this battle with the

fungus continuously, it makes more sense to express Arg1 rather

than NOS2 to deplete L-Arg since constant generation of NO via

NOS2 activity would be deleterious to lung health. Thus, alveolar

macrophages with prevalence of AAMs following A. fumigatus

infection play an important role in innate immune response.

Materials and Methods

Ethics statement
All animal work was conducted in accordance with guidelines

issued by the Institutional Animal Care and Use Committee of the

University of Pittsburgh and our approved protocol ID is 1005244.

The Institutional Animal Care and Use Committee of the

University of Pittsburgh is in compliance with Public Health

Service (PHS) Policy on Humane Care and Use of Laboratory

Animals when using live, vertebrate animals. PHS Policy

incorporates U.S. Government Principles, the Guide for the Care

and Use of Laboratory Animals, and the Report of the American

Veterinary Medical Association (AVMA) Panel on Euthanasia.

Mice were bred and maintained in the Department of Laboratory

Animal Resources (DLAR) at the University of Pittsburgh. Mice

were maintained in pathogen free environment and kept in sterile

filtered top cages, maintained on 12 h dark/light cycle.

Mice
Male 6–8 weeks old BALB/c IL-4Ra-/- and STAT6-/- mice

were purchased from the Jackson Laboratories. MyD88-/- [44]

and Dectin-1-/- mice [32] on the BALB/c background were bred

at the animal facility at the University of Pittsburgh.

Infection by A. fumigatus
A. fumigatus isolate 13073 (American Type Culture Collection)

was grown on Potato Dextrose Agar (PDA) media for 5–7 days at

37uC in a culture flask. Conidia were harvested with 50 ml of

sterile PBS containing 0.1% Tween-20. The harvested conidia

were then passed through sterile 40 mm strainer and counted on a

hemacytometer. Mice were infected with 10–506106 resting

conidia (RC) suspended in 50 ml of sterile PBS and administered

intratracheally after anaesthetizing mice with isofluorane.

BAL
Cells were collected by bronchioalveolar Lavage (BAL) from

naı̈ve and infected mice after high volume lavage with 1ml 1x PBS

successively 10 times. BAL cells were subjected to CD11c

purification using magnetic beads (Miltenyi Biotech) against

mouse-specific CD11c described previously [67,68,69]. Cytospins

of cells were stained with Hema-3 reagents (Fisher Scientific)

according to the manufacturer’s recommendations.

lungs harvested from WT, Dectin-1-/- and MyD88-/- mice at 48 hours p.i. Values shown are mean6SEM. Data shown are representative of two
independent experiments (n = 6-8 mice in each group). (C) Phagocytosis of FITC-labeled A. fumigatus conidia by CD11c+ alveolar macrophages as
examined by confocal microscopy. Images show overlay of FITC (green for conidia) and Hoechst stain (blue for nuclei) and Cell tracker (red for cell
cytoplasm). The upper panel shows images captured at 60X in single optical plane and the lower panel shows 3X digital zoom images. Quantification
of conidia present intracellularly was done using Metamorph and results are expressed as percentage of cells with FITC-conidia. Labeled conidia were
easily identified in the macrophages isolated from both WT and MyD88-deficient mice but were rare in cells isolated from Dectin-1-/- mice.
doi:10.1371/journal.pone.0015943.g006
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Clodronate-Liposome mediated depletion of alveolar
macrophages

Macrophages were depleted using liposomes containing clo-

dronate. Clodronate was incorporated into liposomes as described

previously [49]. Mice were given 100 ml (25 mg/mouse) of PBS-

liposome or clodronate-liposome intratracheally 48 hour prior to

administration of A. fumigatus infection after anesthetizing the mice

with the isofluorane.

RT-PCR and Real time quantitative PCR
Total RNA was isolated from whole lung samples or from

purified cell populations at various times following A. fumigatus

Figure 7. Clodronate-mediated depletion of alveolar macrophages increases A. fumigatus burden in the lung. Mice were treated with
clodronate-filled liposomes or PBS-liposomes intratracheally at 48 hours prior to A. fumigatus infection and then infected with 506106 RC. (A)
Cytospins of cells present in BAL fluid recovered from PBS-liposome or clodronate-liposome treated mice at 48 and 96 hours p.i. (B) Total and
differential cell counts of BAL-derived cells from PBS-liposome and clodronate-liposome treated mice at 48 and 96 hours p.i. Results shown are
mean6SEM. (C and D) Fungal burden was assessed by quantitative PCR of DNA corresponding to fungal 18S rRNA and expressed as Conidia
Equivalents/lung. The experiment was repeated twice with similar results (n = 4–8 mice in each group). Values shown are mean6SEM.
doi:10.1371/journal.pone.0015943.g007

Alveolar Macrophages Mediate Fungal Clearance

PLoS ONE | www.plosone.org 12 January 2011 | Volume 6 | Issue 1 | e15943



infection. RNA was isolated from TRIzol (Invitrogen Life

Technologies) suspended samples using RNeasy Mini kit from

Qiagen. The purified RNA was subsequently used for cDNA

preparation using a Reverse Transcriptase-PCR kit (Applied

Biosystems). The following mouse-specific oligodeoxynucleotides

were used for RT-PCR analysis: Arginase1- FP 59ATG GAA

GAG ACC TTC AGC TAC 39, RP 59GCT GTC TTC CCA

AGA GTT GGG 39;Chi3l3- FP 59 GGG CAT ACC TTT ATC

CTG AG 39,RP 59 CCA CTG AAG TCA TCC ATG TC 39;

NOS2 – FP 59CCCTTCCGAAGTTTCTGGCAGC 39, RP59-

GCGTGTCAGAGCCTCGTGGCTTTGG 39; Fizz-1 FP 59

TCC CAG TGA ATA CTG ATG AGA 39, RP 59 CCA CTC

TGG ATC TCC CAA GA 39, CD206- FP 59 GCA AAT GGA

GCC GTC TGT GC 39, RP 59 CTC GTG GAT CTC CGT

GAC AC 39, b-actin FP 59 TGGAATCCTGTGGCATCCAT-

GAAAC 39, RP 59TAAAACGCAGCTCAGTAACAGTCCG 39.

For semi-quantitative analyses, all reactions involved 30 PCR cycles.

After amplification, the samples were separated on 2% molecular

biology grade agarose gels containing ethidium bromide and bands

were visualized and photographed using UV transillumination. For

quantitative (real time) RT-PCR, specific TaqMAN gene expression

assays were obtained from Applied Biosystems which included those

for Arginase1 (Mm01190441_g1), Chi3l3 (Mm00657889_mH),

Fizz1 (Mm00443109_m1), NOS2 (Mm00440488_m1), Gus-b
(Mm00446953_m1), CD206 (Mm01329362_m1) and Real time

RT-PCR was performed on cDNA using TaqMAN assay. Reactions

were run in a real time PCR system (ABI 7900 HT; Applied

Biosystems). The results were analyzed using SDS 2.2.2 software and

samples were normalized to Gus-b. Fold induction was calculated

over PBS treated or untreated controls unless otherwise indicated.

Western blotting
Non-denaturing cell lysis buffer containing 1% Triton (Cell

Signaling) was used to prepare total lung extracts. Western blotting

techniques were used to analyze equal amounts of protein as

described previously [67]. Membranes were probed with mono-

clonal antibodies against YM1 (Stem Cell Technology) at a 1/

1000 dilution. After stripping, the blots were probed with anti-b-

actin (Jackson laboratory) to confirm equal protein loading. The

intensity of the YM1 signal was quantified relative to that of b-

actin using image J software.

Fungal Burden
Fungal burden was calculated by isolating DNA from infected

lung tissue using Epicentre Yeast DNA isolation kit. Real time

PCR was done with DNA as the template using Aspergillus-

specific oligonucleotides and the results were analyzed according

to a previously described method [70]. Fungal burden was

expressed as Conidia Equivalents/lung (CE/lung). Fungal burden

was also measured by plating lung homogenates on PDA plates

and colonies were counted. Fungal burden was expressed as

colony forming units/lung (CFU/lung).

Arginase Activity
For assay of arginase activity, total lung or cell extracts were

made using 1x cell lysis buffer (Cell Signaling). Arginase activity

was measured using the DARG-200 kit (Bioassay Systems). Protein

concentration was measured using the BCA kit (BioRad

Laboratories) and arginase activity was expressed as U/mg

Protein.

Intracellular staining and flow cytometric analysis
Staining for cell surface expression of CD45, CD3, CD19,

CD11c, Ly6G, and MHC II was carried out using specific

antibodies as described previously [67]. Intracellular staining was

done according to the manufacturer’s suggestions (Cytofix/

Cytoperm, BD Pharmingen). For Arg1 staining, purified mouse

anti-Arg-1 antibody (BD Biosciences) was used followed by donkey

Alexa fluor 555 (Invitrogen)-conjugated anti-mouse secondary

antibody. Mouse IgG (Santa Cruz) was used as isotype control.

NOS2 staining was done with purified polyclonal rabbit anti-

mouse NOS2 antibody (BD Biosciences) with rabbit IgG as isotype

control, followed by Alexa fluor 647 (Invitrogen)-conjugated goat

anti-rabbit secondary antibody. Samples were analyzed in a FACS

Calibur flow cytometer (BD Immunocytometry Systems) and the

data were analyzed using the FlowJo software (Tree Star).

Labeling of conidia and Phagocytosis Assay
Live conidia were labeled with FITC (Sigma) according to

previously described methods [71]. For the phagocytosis assay,

alveolar macrophages were isolated from BAL and were cultured

in complete RPMI media. Alveolar macrophages were incubated

with FITC-labeled conidia for 4 hours at 37uC. At the end of the

incubation period, phagocytosis was stopped by washing the

macrophages with cold PBS and fixing cells with 4% PFA. Cells

were collected and percent phagocytosis was analyzed by flow

cytometry. To locate FITC-labeled conidia phagocytosed by

macrophages, live cell imaging was done using a Nikon A1

Confocal on a Nikon Ti-E live cell microscope and data was

analyzed with NIS-Elements imaging software. Cell tracker (Red

CMPTX, Invitrogen) was used to stain cell cytoplasm and nuclei

were stained with Hoechst.

Figure 8. Alveolar macropjages expressing Arginase 1 domi-
nate after A. fumigatus infection and role in fungal clearance.
Infection by A. fumigatus rapidly induces Arg1 expression in alveolar
macrophages. Arg1 expression is partly dependent on the IL-4Ra/STAT6
signaling axis. Furthermore, Arg1 expression is independent of Dectin-1
and MyD88 signaling pathways. Clodronate-mediated depletion of
alveolar macrophages prior to fungal infection results in increased
fungal burden in the lungs.
doi:10.1371/journal.pone.0015943.g008
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Statistical analyses
All statistical analyses were carried out using Graph Pad Prism

software (Version 4). Student’s unpaired two-tailed t-test was used

for all statistical analyses. Differences between groups were

considered significant when P,0.05.

Supporting Information

Figure S1 Kinetics of gene expression in the lungs of

Aspergillus-infected mice. (A) Mice were infected with various

doses of RC or given PBS intratracheally and lungs were harvested

after 48 hours of infection for total RNA extraction. Quantitative

RT-PCR was performed to measure mRNA expression corre-

sponding to various AAM markers. (B) Mice were infected with

506106 RC or given PBS intratracheally and lungs were harvested

after various time points for total RNA extraction. Quantitative

RT-PCR was performed to measure mRNA expression corre-

sponding to various AAM-expressed genes. The fold increase was

calculated relative to gene expression from PBS treated group after

normalization to Gus-b (data are mean6SEM).

(TIF)
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