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Abstract

Background: The reconstruction of gene regulatory network from time course microarray data can help us
comprehensively understand the biological system and discover the pathogenesis of cancer and other diseases.
But how to correctly and efficiently decifer the gene regulatory network from high-throughput gene expression
data is a big challenge due to the relatively small amount of observations and curse of dimensionality.
Computational biologists have developed many statistical inference and machine learning algorithms to analyze
the microarray data. In the previous studies, the correctness of an inferred regulatory network is manually checked
through comparing with public database or an existing model.

Results: In this work, we present a novel procedure to automatically infer and verify gene regulatory networks
from time series expression data. The dynamic Bayesian network, a statistical inference algorithm, is at first
implemented to infer an optimal network from time series microarray data of S. cerevisiae, then, a weighted
symbolic model checker is applied to automatically verify or falsify the inferred network through checking some
desired temporal logic formulas abstracted from experiments or public database.

Conclusions: Our studies show that the marriage of statistical inference algorithm with model checking technique
provides a more efficient way to automatically infer and verify the gene regulatory network from time series
expression data than previous studies.

Introduction
Advancement of DNA microarray technology and next
generation sequencing technique have revolutionized the
molecular biology, making it possible for biologists to
measure and collect thousands of genes’ expression levels
simultaneously, efficiently and precisely in one experi-
ment. Computational analysis of genome-wide transcrip-
tomics data will help us understand the regulatory
components and mechanisms underlying some diseases.
These explosively growing amount of highdimensional
gene expression data can be divided into two types: static
and time series. The static expression data are assumed
to be independently and identically distributed (IID), and
many statistical inference algorithms [1-8] have been
developed to identify key genetic signatures and signaling

pathways that are frequently altered in some diseases.
Gene regulatory network plays a critical role in the cell’s
proliferation and differentiation, so, a comprehensive
understanding of gene regulatory network (GRN) and
regulatory components will help discover some drug tar-
geted genes in cancer and other diseases. Computational
biologists have proposed a variety of methods, for exam-
ple, the Boolean networks [9] and differential equations
[10], to study the gene regulatory network. Friedman and
other researchers [11,12] developed and applied discrete
and continuous Bayesian networks (BN) with linear
regression and non-parametric regression to infer gene
regulatory networks. The BN approach could identify
the causal relationships between different genes to some
degree. However, it cannot construct cyclic networks and
this method is unable to handle the temporal aspect of
time-series data. But the feedback loops (cyclic pathways)* Correspondence: hgong2@slu.edu
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are prevalent in the gene regulatory networks and signal-
ing pathways.
The time series gene expression data can provide abun-

dant information regarding the dynamic and temporal
behaviors of biological system, which can not be handled
by Bayesian network method. Dynamic Bayesian network
(DBN) [13-16] is a promising alternative which has been
proposed to construct GRN with feedback loops from
time-series expression data. DBN has attracted a lot of
attention from numerous bioinformatics researchers, and
different DBN based approaches and tools were devel-
oped to increase accuracy and reduce computational
time. An extended expectation-maximisation (EM) algo-
rithm [17] was proposed to estimate the parameters in
the DBN model. However, the DBN method has some
limitations, for example, it is very sensitive to the choice
of data discretization. Moreover, the deduction of the
“activation” or “inhibition” relationship between different
genes is not easy and accurate, so, the inferred optimal
network might not be a correct one. Recently, Liang
et al.’s work [18] proposed a network and community
identification (NCI) method to infer multiple signed sub-
networks from gene expression data by incorporating
community structure information.
Without verification or validation, the inferred regula-

tory networks can not help us correctly understand the
mechanism in the cell cycle. Another limitation in the pre-
vious studies is, the correctness or verification of the
inferred networks is manually checked by comparing with
public database (KEGG, GO, GenMAPP, etc) or existing/
known models. This verification procedure is only good
for small and already-known network “inference” and “ver-
ification”. However, the signaling pathway or regulatory
network is complex due to the excessive number of com-
ponents and interactions, it is not realistic and efficient to
use traditional methods to manually verify or analyze large
networks. An intelligent verification technique called
Model Checking [19] has been successfully applied for the
verification of complex systems, including the hardware
(e.g., CPU) and software (aerospace control software) sys-
tems. Recently, we applied this technique to study some
complex biological networks [20-25]. Model Checking is
the process of determining whether or not a given system
M satisfies a desired temporal logic formula ψ, denoted by
M ╞ ψ. Our previous work proposed and applied different
model checking techniques, including statistical model
checking [21,22], synchronous symbolic model checking
[23-25], asynchronous model checking technique [26] and
probabilistic model checking [27], to formally verify some
given stochastic, boolean, and discrete-value models of sig-
naling pathways in the cancer cells. The model checkers
automatically and exhaustively search the state space to
verify some desired temporal logic formula, and it can
check up to 10100 possible states.

In this work, we proposed a novel inference and verifi-
cation procedure, which marries the dynamic Bayesian
network inference algorithm with a powerful model
checking technique, to analyze time course microarray
data. We will first briefly introduce the dynamic Baye-
sian network inference with Java objects (Banjo) [28]
method developed in Hartemink’s group [29] and apply
it to infer optimal gene regulatory networks from time-
series expression data. Then, we proposed a novel
weighted symbolic model checking technique (weighted
SMV) to automatically verify or falsify the inferred
weighted networks or models through checking some
temporal logic formulas abstracted from experiments.
Finally, we apply Banjo and weighted SMV to analyze
time-series microarray data and reconstruct gene regula-
tory subnetwork of yeast.

Methods
Dynamic Bayesian network inference
Probabilistic graphical model describes each node in
the network by a random variable, and the directed
edge represents a conditional dependence between two
variables. Therefore, gene regulatory network can be
graphically represented by a joint distribution of all
random variables over time. The time series gene
expression (microarray) data, which consists of p genes
measured at n different time points, can be described
by an n × p matrix X. If Xi = (Xi1,..., Xip)

T is defined
as a random variable vector (at time i), then, xi =
(xi1,...,xip)

T corresponds to the values of a vector of p
genes’ expression measured at time i = 1, 2,..., n; that
is, xij represents an observation value of the random
variable Xij (the jth gene’s expression measured at
time i). We adopt some conventions used in Kim
et al.’s work [13].
Since the random variable vector Xi is time depen-

dent, the dynamic Bayesian network [13-15] assumes
the genes’ expression levels measured at time i are
dependent on those at time i − 1 only which is illu-
strated in Figure 1. This assumption is also called first-
order Markov chain. The joint probability distribution
for the n × p random variables (or n vectors of random
variables) can be written as

P (X1, X2, ..., Xn) = P (X1) P(X2|X1)...P(Xn|Xn−1).

We use Par(Xij) to denote the gene j (at time i)’s par-
ents (at time i − 1, an immediate previous time point),
and also assume each gene (node) at time I is influenced
by itself and its parent genes (nodes) at time i − 1 only.
Therefore, the conditional probability distribution can
be expressed as

P(Xi|Xi−1) = P(Xi1|Par(Xi1))...P(Xip|Par(Xip)).
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Figure 2 and Figure 3 show the pseudocode and flow-
chart of the GRN inference and verification with
dynamic Bayesian network learning method (implemen-
ted by Banjo) and weighted model checking technique
(implemented by SMV model checker). First, the time
series microarray data D are discretized into k levels
{l1,..., lk}(k = 2, 3,...) using either quantile (qk ) or inter-
val discretization (in) methods [28]. Second, apply a
Bayesian Dirichlet equivalence (BDe) scoring metric [30]
to evaluate the goodness of each possible network. BDe
scoring metric has been widely used as a criterion or
score function in the regulatory network learning
[13,15]. Then the idea is to find the posterior probability
distribution of the possible networks G:

P(G|D) =
P(G, D)

P(D)
,

P(G, D) =
∫

P(G, D, �)d�

= π(G)
∫

f (D|G, �)π(�|G, �)d�

The BDe score function is based on the assumption that
the microarray data D is a multinomial sample, that is,
D|Θ ∼ Multinomial(Θ). BDe also assumes the parameters
Θ are globally and locally independent and the priors of Θ,
denoted by π(Θ|G, Λ), follow Dirichlet distribution with a
hyperparameter vector Λ, that is, Θ|G ∼ Dirichlet(Λ),
which is a conjugate prior of multinomial distribution.
The optimal network is selected according to the BDe
scores which are dependent on P (G, D). Next, search all
the possible optimal networks. Banjo allows two different
search strategies, including the greedy search and simu-
lated annealing algorithm proposed by Heckerman [31],
which can output top n directed networks with highest
scores, and it can also retain and average some highest

scoring networks to produce a weighted consensus net-
work [28].
Bayesian network inference with Java objects (Banjo)

[28] can also compute the influence score (weight) [32] on
each edge of the inferred optimal network. The value of
influence score describes the relative magnitude of interac-
tions, and its sign identifies the activation (a positive value)
or inhibition (a negative value) relationship between two
nodes (genes). The estimation of influence score [32] is
dependent on the values of the conditional probability

θijk(t) = P(Xti = k|Par(Xti) = j),

which is the probability that gene Xti takes a value of k
given its parent gene Par(Xti) takes a value of j; the cumu-

lative distribution function Fijk(t) =
∑k

l=0
θijl(t) , which

describes the probability that gene Xti takes a value less
than or equal to k given its parent gene takes a value of j;
and a predefined voting system. If there is a high probabil-
ity for the gene Xti to take a larger value given its parent’s
value increases, then, the voting system [32] in the Banjo
will increase the positive vote by one; else, the negative
vote will increase by one. If the influence score is close to
0, the sign of the edge can not be identified. Banjo can
automatically implement the dynamic Bayesian network
inference algorithm to search for high-scoring probabilistic
graphical models, output the optimal networks and calcu-
late the (signed) influence scores or weights. The inter-
ested reader could refer to [28,32] for details.
The dynamic Bayesian network implemented with

Banjo can infer the high-scoring gene regulatory net-
works based on the BDe metrics, however, this algo-
rithm is sensitive to the data discretization methods.

Figure 1 Illustration of gene regulatory network (A) and dynamic Bayesian network (B). The gene regulatory network is composed of a
feedback loop. Arrows represent activation, and circlehead arrows denote inhibition. The random variable Xij represents a gene j measured at
time i.
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Moreover, in many cases, the inferred optimal network
might not be a correct one based on different scoring
functions. Which model is closest to the truth in the
biological system? Previous studies validate the inferred
network through manually comparing with the public
database or known models. The manual verification
method is not realistic for the large or unknown net-
work verification. The most innovative aspect of the
proposed procedure in Figure 2 is the marriage of
dynamic Bayesian network inference algorithm with for-
mal verification technique, called weighted symbolic
model checking (Part 2 of pseudocode in Figure 2),

which can automatically verify the network through
checking some temporal logic formulas abstracted from
the experiments or public database. Next, we will intro-
duce a powerful model checking technique and apply it
to formally verify the inferred regulatory networks.

Weighted symbolic model checking
A network or model can be described as a Kripke struc-
ture [19,20] M = (S, s0, R, L), representing a finite-state
concurrent system with the initial state s0 ∈ S, states
transition relation R , and a labeling function L. Given a
model or concurrent system, we expect it to satisfy

Figure 2 Pseudocode of gene regulatory network inference and formal verification. Part I describes the dynamic Bayesian network
inference method implemeted by Banjo; part II describes the formal verification implemented by weighted symbolic model checker.
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some desired property. So, model checking, a formal
verification technique [19], is the process of determining
whether or not a given model M satisfies the desired
property, which is expressed as a temporal logic formula
ψ, denoted by M ╞ ψ. During formal verification, model
checkers can search the state space of concurrent sys-
tem exhaustively to find all states that satisfy the for-
mula ψ. If the property is satisfied, model checker will
output “True"; else, it will output “False” with a counter-
example sequence that falsifies ψ. Model checking of
hardware and software systems has been very successful
in the past three decades. Recently, we proposed differ-
ent (probabilistic, statistical, symbolic, synchronous and
asynchronous) model checkers to formally investigate
the complex signal transduction networks in the cancer
cells [20-24,26].
The desired properties describing some existing wet

lab experimental results or phenomena are expressed in
a high-level, expressive language - Computation Tree
Logic (CTL) formula ψ. On the computation tree, the
root represents an initial state, the branches and leaves
represent all possible sequences of state transitions
(paths) from the root [19]. CTL formula ψ is composed
of path quantifiers which describes the branching struc-
ture in the computation tree: A (for all paths), E (there
exists some path); temporal operators describing proper-
ties on a path through the tree: X (next time), F (in the
future), G (globally), U (until), R (release); and Boolean
logic connectives (| (or), & (and), ® (implies)). In the

CTL formula, the temporal operator must be immedi-
ately preceded by a path quantifier [19]. Similar to our
previous work [19,20,26], we will use (AX, EX, AG, EG,
AF, EF) to construct CTL formulas for the verification
of gene regulatory network. For example, AG� means �
is globally true on all paths; EF� means � holds at some
state in the future on some path. More interesting CTL
operators and formulas have been discussed in Clarke et
al.’s book [19].
Given a Kripke structure M , the state formula and

path formula are represented by ψ and � respectively in
CTL syntax, and a path π is defined as an infinite
sequence of states, π = s0, s1,..., where s0 is an initial
state. We use πi to denote the suffix of π starting at
state si, and M, π ╞ � denotes the path π satisfies the
path formula �. The semantics of CTL have been
defined in [19], below (Table 1) we list some semantics
that are used in this work:
The interested readers could refer to the book [19]

and our recent work [20] for details regarding the syn-
tax and semantics of CTL logic.
Symbolic Model Verifier (SMV) [33] is a popular for-

mal verification tool encoded by ordered binary decision
diagram [34], and the state transition relation is impli-
citly represented by a Boolean function. SMV can verify
(output “True”) or falsify (output “False” with a counter-
example) a desired CTL formula ψ through automati-
cally and exhaustively searching the state transition
system M. Our recent studies [20,23-25,27] proposed

Figure 3 Flowchart of gene regulatory network inference from time series microarray data and formal verification. The dynamic
Bayesian network inference (A1-A4) is implemented by Banjo, and the inferred network’s verification (B1-B3) is implemented by the weighted
symbolic model verifier (SMV).
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both synchronous and asynchronous symbolic model
checkers to study the Boolean and discrete value models
of signaling pathways. These studies are based on the
unweighted model checking, that is, the interaction
between two nodes is represented by an unweighted
edge.
Next, we will propose a weighted symbolic model

checking method (Part 2 of pseudocode in Figure 2)
which is an extension of the unweighted model checker.
Figure 4 illustrates some weighted SMV model checking

code and CTL formulas for the verification of gene reg-
ulatory network given in Figure 1. The grammar of
SMV code is similar to the unweighted SMV program
[20,26], and both start with “MODULE MAIN”. All the
variables are declared with the keyword “VAR”, and
initialized with “init” under the keyword “ASSIGN”.
However, in the weighted SMV code, the state transition
update of each variable (e.g., X3) is not only dependent
on its parents’ states (e.g., X1, X2), but also influenced
by the strength of interactions, that is, the influence

Table 1

M, s ╞ ! ψ iff M, s ╞ ψ does not hold;

M, s ╞ ψ1 &ψ2 iff M, s ╞ ψ1 and M, s ╞ ψ2;

M, s ╞ ψ1 | ψ2 iff M, s ╞ ψ1 or M, s ╞ ψ2;

M, π ╞ Xψ iff M, π1 ╞ ψ;

M, π ╞ Fψ iff there exists a k ≥ 0, such that M, πk ╞ ψ;

M, π ╞ Gψ iff for all k ≥ 0, M, πk ╞ ψ;

M, s ╞ A� iff for every path π from s, M, π ╞ �;

M, s ╞ E� iff there exists a path π from s, such that, M, π ╞ �,

Figure 4 Illustration of weighted symbolic model checking of the regulatory network in Fig. 1. The state transition update is dependent
on the modified influence score (weight wi) calculated by Banjo.
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score or weight (e.g., w1, w2). The value of influence
score calculated by Banjo [32] ranges from −1 to 1,
which describes the sign and magnitude of interaction
between two genes. Since the weighted SMV model
checker does not allow floating point numbers, all the
influence scores will be converted to integers (modified
weights) first before formal verification. The CTL for-
mula which abstracts the experimental phenomenon or
public database is encoded with the keyword “SPEC”.
For example, the statement “SPEC AG(X2 = 1 ® AF
(X4 = −1))” means, overexpressed X2 will eventually
inhibit X4’s expression on all paths. The weighted SMV
model checker will automatically verify all the CTL for-
mulas (encoded by SPEC), and find the best model
which satisfies all or most of the properties based on
existing experimental evidence.

Results and discussion
In this section, we will apply the dynamic Bayesian net-
work inference and weighted symbolic model checking
methods proposed in Figure 2 to infer and verify gene
regulatory subnetworks from time series microarray data
of yeast.
The time series microarray data of Saccharomyces cer-

evisiae collected by Spellman et al. [35] has been studied
by many researchers using different inference algo-
rithms. The data were measured and collected from the
yeast cultures synchronized by three independent meth-
ods: alpha factor arrest, elutriation, and arrest of a
cdc15 temperature-sensitive mutant, which contain 16,
25 and 14 time points. A full description and complete
data sets are available at [36]. The Banjo setting code,
microarray data and weighted SMV code developed for
this work are available at [37].
We will first infer and verify a small network of

MAPK signaling pathway which plays an important role
in the cell cycle. We focused on the subnetwok around
Fus3 which contains 8 genes (Ste20, Ste11, Ste7, Fus3,
Dig1/2, Ste12, Far1, Msg5), while, Dig1/2 denotes the
mean value of Dig1 and Dig2 in our analysis. Figure 5
shows an inferred optimal network which is composed
of 6 genes based on i2 interval discretization (two dis-
crete states) method in Banjo. The weighted symbolic
model checker will be applied to formally verify or fal-
sify this optimal network.
In Table 2 we summarize four CTL formulas

abstracted from experiments and KEGG that MAPK
pathway should satisfy. All the genes can take three pos-
sible states: inhibited (−1), normal (0), or activated (1),
and they are initially set to be either 0 or −1 with a
probability. Formula P1 is checking, if Fus3 is activated,
Dig1/2 will be inhibited immediately in the next step
(AX) on all paths. Our studies infer and verify that Fus3
is a direct inhibitor of Dig1/2. P2 means, it is globally

true (AG) that Ste11 (MAPKKK)’s activation will imme-
diately activate its downstream gene Ste7 (MAPKK) on
all paths. P3 and P4 are checking whether or not Msg5
or Ste7’s activation will finally inhibit or promote the
transcription of Fus3 or Far1, cell cycle regulatory
genes, respectively. The weighted SMV verified the for-
mulas P1 and P3, but falsified P2 and P4. That is, the
inferred network does not satisfy all the desired proper-
ties. So, this optimal network candidate inferred by
Banjo is falsified by the weighted SMV model checker,
which is also confirmed by the KEGG database. If some
property is falsified, SMV model checker will also out-
put a counterexample to demonstrate why this network
is wrong, and help us refine the inferred network.
Next, we will apply our methods to infer and verify a

cell cycle subnetwork (including the genes: ste20, ste11,
ste7, msg5, ste12, dig12, fus3, far1, cdc6, cdc7, cdc20,
cdc28, cdc45, cdc46, cdc54, cln1/2, cln3, clb5/6, mcm2/
3/6, swi4/6). Partial pathway has been registered in
KEGG. Similar to MAPK pathway inference, we will use
the mean values for some genes from the same family
(e.g., mcm2, mcm3, mcm6) in the data analysis. Figure 6

Figure 5 An optimal subnetwork of MAPK pathway inferred by
Banjo. The optimal network is inferred based on i2 interval
discretization method. The directed and circlehead arrows represent
activation and inhibition respectively, the value on each edge is
influence score or weight describing the interaction between two
nodes.

Table 2. List of CTL formulas related to MAPK pathway in
Figure 5 and verification results

CTL Formula Result

P1 Fus3 = 1 ® AX(Dig1/2 = -1) True

P2 AG(Ste11 = 1 ® AX(Ste7 = 1)) False

P3 Msg5 = 1 ® AF(Fus3 = -1 & Far1 = -1 & Dig1/2 = 1) True

P4 AG((Ste7 = 1 ® AF(Fus3 = 1)) & (Fus3 = 1 ® AF
(Ste7 = 1)))

False
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shows two inferred candidates of “optimal” subnetworks
based on interval (i2, Figure 6A) and quantile (q2, Fig-
ure 6B) discretization methods. The difference between
these two “optimal” networks demonstrates that this
inference algorithm is very sensitive to the choice of
data discretization methods. Both figures in Figure 6 are
weighted and directed, however, some weights on the
Figure 6B are 0s, which means that, Banjo can not iden-
tify the signs (activation or inhibition) of these interac-
tions. Next we will apply weighted SMV to verify the
optimal network shown in Figure 6A.
Table 3 summarizes the verification results of some

desired temporal logic formulas (Q1-Q4 are same as P1-
P4 in Table 2) for the inferred i2 “optimal” network in
Figure 6A. In the yeast, SWI4 regulates the transcription
of Cln1 (property Q6), and Cdc28 is a downstream gene
regulated by the MAPK pathway (Q7) [38]. SMV model
checker verified Q6 but falsified Q7, which indicates a
misconnection between Cdc28 and MAPK pathway dur-
ing the network inference made by Banjo. Property Q9,
which describes an oscillation behavior in the yeast, is
also verified to be true by SMV model checker. So, 6
out of 9 properties are satisfied by the inferred network.

Since the microarray data contains a small number of
time points and a lot of measurement noise, we can not
expect the inferred “optimal” networks to be completely
correct. However, the model checking technique in this
work can help identify the best optimal network which
satisfies all or most temporal logic properties from all
the possible candidates of inferred networks.

Conclusions
A comprehensive understanding of the signaling pathways
or gene regulatory networks will advance our knowledge
in molecular biology. Network reconstruction from high-
dimensional microarray data can help researchers to inves-
tigate the crosstalk of different pathways and develop
effective multi-gene targeted treatments for some diseases,
e.g., cancer and neurodegenerative diseases. Previous stu-
dies develop different statistical inference algorithms
[13,14,39] to reconstruct gene regulatory network from
time series expression data. The validation of inferred net-
works is implemented manually by comparing with public
database or existing models, and, normally, a quantitative
comparison is used to evaluate the superiority of a new
approach [40,41]. In this work, we proposed a novel

Figure 6 Two optimal subnetworks of cell cycle inferred by Banjo. (A) and (B) are inferred optimal networks based on the i2 interval
discretization and q2 quantile discretization methods respectively.

Table 3 CTL formulas related to cell cycle subnetwork in Figure 6A and verification results

CTL Formula Result

Q1: Fus3 = 1 ® AX(Dig1/2 = −1) True

Q2: AG(Ste11 = 1 ® AX(Ste7 = 1)) False

Q3: Msg5 = 1 ® AF(Fus3 < 0 & Far1 < 0 & Dig1/2 = 1) True

Q4: AG((Ste7 = 1 ® AF(Fus3 = 1)) & (Fus3 = 1 ® AF(Ste7 = 1))) False

Q5: AG((Swi4/6 = 1 ® AF(Cdc6 ≥ 0))) True

Q6: AG((Swi4/6 = 1 ® AF(Cln12 ≥ 0))) True

Q7: AG((Cdc45 = 1 | Msg5 = 1 ® EF(Cdc28 = 1 & Mcm2/3/6 ≥ 0))) False

Q8: EG((Swi4/6 = 1 ® EF(Cdc28 ≤ 0))) True

Q9: AG((Mcm2/3/6 = 1 ® AF(Cln12 = 1)) & (Cln12 = 1 ® AF(Mcm2/3/6 ≤ 0))) True
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procedure, which integrates the dynamic Bayesian network
inference algorithm with formal verification technique
implemented by Banjo and weighted SMV model checker
respectively, to analyze time series gene expression data.
The dynamic Bayesian network inference algorithm imple-
mented by Banjo could infer optimal networks of highest
scores with directed and weighted edges, however, this
method is sensitive to the choice of data discretization
methods. The weighted symbolic model checker will
exhaustively search the state space to verify or falsify these
network candidates through checking some desired tem-
poral logic formulas. Compared with previous studies, the
proposed procedure can automatically infer, verify or fal-
sify a biological network based on existing experiments, so
it has advantages in the large network inference and verifi-
cation. The goodness of the verified network will be
dependent on not only the learning scores, but also the
number of verified temporal logic formulas. One of the
key issues in the model checking procedure is the quantity
and also quality of the desired temporal logic formulas,
which can be abstracted directly from existing experimen-
tal results or public database. The more temporal proper-
ties we have, the more constrains we can impose on the
inferred network candidates. Currently, the inferred regu-
latory networks are manually encoded into SMV program
for model checking. Our future work will build a bioinfor-
matics infrastructure which integrates statistical inference
algorithms with different model checkers in a unified fra-
mework to automatically infer, encode network candidates
into SMV program, and formally verify the inferred gene
regulatory networks to select the best models.
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