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Background: RNA methylation modification plays an important role in immune

regulation. m7G RNA methylation is an emerging research hotspot in the RNA

methylation field. However, its role in the tumor immune microenvironment of

kidney renal clear cell carcinoma (KIRC) is still unclear.

Methods: We analyzed the expression profiles of 29 m7G regulators in KIRC,

integrated multiple datasets to identify a novel m7G regulator-mediated

molecular subtype, and developed the m7G score. We evaluated the

immune tumor microenvironments in m7G clusters and analyzed the

correlation of the m7G score with immune cells and drug sensitivity. We

tested the predictive power of the m7G score for prognosis of patients with

KIRC and verified the predictive accuracy of the m7G score by using the

GSE40912 and E-MTAB-1980 datasets. The genes used to develop the m7G

score were verified by qRT-PCR. Finally, we experimentally analyzed the effects

of WDR4 knockdown on KIRC proliferation, migration, invasion, and drug

sensitivity.

Results: We identified three m7G clusters. The expression of m7G regulators

was higher in cluster C than in other clusters. m7G cluster C was related to

immune activation, low tumor purity, good prognosis, and low m7G score.

Cluster B was related to drug metabolism, high tumor purity, poor survival, and

high m7G score. Cluster A was related to purine metabolism. The m7G score

can well-predict the prognosis of patients with KIRC, and its prediction

accuracy based on the m7G score nomogram was very high. Patients with

high m7G scores were more sensitive to rapamycin, gefitinib, sunitinib, and

vinblastine than other patients. Knocking down WDR4 can inhibit the

proliferation, migration, and invasion of 786-0 and Caki-1 cells and increase

sensitivity to sorafenib and sunitinib.

Conclusion: We proposed a novel molecular subtype related to m7G

modification and revealed the immune cell infiltration characteristics of

different subtypes. The developed m7G score can well-predict the prognosis

of patients with KIRC, and our research provides a basis for personalized

treatment of patients with KIRC.
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Introduction

m7G RNA methylation is catalyzed by the

Trm8–Trm82 complex in yeast and by the

METTL1–WDR4 complex in humans under the action of

methyltransferases (A Alexandrov et al., 2002). m7G RNA

methylation can regulate mRNA transcription, miRNA

biological function, tRNA stability, nuclear processing, and

18S rRNA maturation. m7G regulators are prognostic markers

of a variety of cancers. METTL1 andWDR4 are highly expressed

in a variety of tumors, such as liver cancer (Chen D et al., 2021),

intrahepatic cholangiocarcinoma (Dai S et al., 2021), and lung

cancer (Ma et al., 2021), which is related to poor prognosis of

patients. High expression of NSUN2 is associated with poor

prognosis of gastric cancer (Hu J et al., 2021) and esophageal

squamous cell carcinoma (Su et al., 2021). NUDT10 is a reliable

prognostic marker of gastric cancer (Chen Z et al., 2021).

GEMIN5, EIF4E3, and GEMIN5 can specifically bind to the

m7G cap (Bradrick and Gromeier, 2009; Osborne et al., 2013; Xu

et al., 2016). Meanwhile, NUDT16 can remove the m7G cap (Lu

et al., 2011). AGO2 inhibits mRNA translation by binding to the

m7G cap (Kiriakidou et al., 2007). EIF4E binds to the m7G cap to

mediate mRNA translation and can increase the capping

efficiency of coding and noncoding RNAs (Culjkovic-Kraljacic

et al., 2020). EIF4E overexpression can promote cell proliferation

and invasion of renal cell carcinoma (RCC) (Li et al., 2017). The

knockdown of EIF3D can inhibit the progression of RCC by

inducing G2/M arrest (Pan et al., 2016). Current studies only

focused on the role of a single m7G regulator. However, multiple

genes are involved in tumor occurrence, and the prognostic role

of multiple m7G regulators has not been clarified.

Kidney renal clear cell carcinoma (KIRC), the most common

histological subtype of RCC, is characterized by high heterogeneity

and poor prognosis (Hsieh et al., 2017). Immunotherapy has led to

significant progress in the treatment of patients with KIRC, and

immune checkpoint inhibitors have been used as the first-line

treatment of advanced KIRC (Bedke et al., 2021; Braun et al.,

2021). However, some patients still experience spontaneous

regression due to tumor immune escape, and the effect of

immunotherapy still greatly varies across different patients. KIRC

has a high degree of immune infiltration, with T-cell infiltration being

the highest (şenbabaoğlu et al., 2016). CD8+ T-cell infiltration is

associated with poor prognosis of KIRC (Dai Z et al., 2021; Li et al.,

2020). The tumor microenvironment plays an important role in

tumor biology and treatment. Understanding the characteristics of

the tumormicroenvironment under themediation ofm7G is of great

importance for predicting the immunotherapy of patientswithKIRC.

In this study, first, we performed consistent cluster

analysis on 702 patients with KIRC, identified three m7G

clusters, and studied the characteristics of immune cell

infiltration, function, and survival among different

subtypes. We classified the patients into three gene clusters

in accordance with the differentially expressed genes (DEGs)

among the three m7G clusters. We developed the m7G score

to predict the prognosis of patients and analyzed its

correlation with the tumor microenvironment, mutation,

tumor mutation burden (TMB), and stemness indices.

Finally, we verified the genes used for developing the m7G

score by utilizing clinical samples.

Materials and methods

Data collection and processing

RNA-seqdata [fragments per kilobasemillion (FPKM)] andKIRC

clinical andmutation data were downloaded from the TCGA database

(https://portal.gdc.cancer.gov/). FPKM was converted into transcripts

per kilobase million (TPM). The GSE29609 (Edeline et al., 2012),

GSE40912 (Fachel et al., 2013), and GSE172165 datasets were

downloaded from the GEO database (https://www.ncbi.nlm.nih.gov/

geo/). The E-MTAB-1980 (Sato et al., 2013) dataset was downloaded

from the ArrayExpress database (https://www.ebi.ac.uk/arrayexpress/).

The details of these cohorts are provided in Supplementary Data Sheet

S1. A total of 702 samples were obtained through batch correctionwith

the “sva” package. In the molecular signature database (http://www.

gsea-msigdb.org/gsea), “7-methylguanosine” was used as the search

term to obtain three m7G-related gene sets (GOMF_M7G_5_PPPN_

DIPHOSPHATASE_ACTIVITY, GOMF_RNA_7_

METHYLGUANOSINE_CAP_BINDING, and GOMF_RNA_

CAP_BINDING), and 26 m7G regulators were acquired from these

gene sets. Three m7G regulators were sourced from previous literature

(Tomikawa, 2018). A total of 29m7G regulators were used for analysis

in this research (Supplementary Table S1). The m7GHub (http://180.

208.58.19/m7g/index.html) contains m7G sites, a sequence-based high

accuracy predictor, evaluation of the effects of m7G status mutations,

and gene mutations regulated by m7Gmethylation (Song et al., 2020).

Immune checkpoints with m7G methylation were screened from the

m7GHub database.

Identification of m7G subtypes

The unsupervised clustering analysis of 702 samples was

conducted with the “ConsensusClusterPlus” package. The

correlation between the groups was the lowest, and the

correlation within the groups was the highest. The optimal K

value was selected to obtain different subtypes.

Frontiers in Pharmacology frontiersin.org02

Chen et al. 10.3389/fphar.2022.900006

https://portal.gdc.cancer.gov/
https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/
https://www.ebi.ac.uk/arrayexpress/
http://www.gsea-msigdb.org/gsea
http://www.gsea-msigdb.org/gsea
http://180.208.58.19/m7g/index.html
http://180.208.58.19/m7g/index.html
https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2022.900006


Enrichment analysis of DEGs

The DEGs among m7G subtypes were analyzed using the

“limma” package. |Fold change| > 1 and adjusted p-value <
0.01 were set as the thresholds to identify DEGs. The DEGs were

enriched and analyzed by using Gene Ontology (GO) and Kyoto

Encyclopedia of Genes and Genomes (KEGG) with the

“clusterProfiler” package.

Development of the m7G score

Univariate Cox analysis was performed on the DEGs to obtain

prognostic genes. The prognostic genes were analyzed through

unsupervised clustering with the “ConsensusClusterPlus” package,

and the patients were divided into different gene subtypes. The m7G

score was developed after LASSO regression analysis. Its calculation

formula is as follows:

m7G score � ∑Expi × coef i

Here, Expi and coefi represent the gene expression values and

correlation coefficients, respectively. The score of each patient

was calculated in accordance with the formula, and the patients

were divided into the training and testing groups at the ratio of 1:

1. The patients were divided into the high- and low-risk groups in

accordance with the median value of the training

group. Kaplan–Meier (K–M) analysis was performed on the

high- and low-risk groups with the “survival” and “survminer”

packages. Receiver operator curves (ROC) were drawn with the

“timeROC” package to evaluate the accuracy of the m7G score in

predicting prognosis. A nomogram was constructed with the

“rms” package in combination with clinicopathological variables.

Pathway enrichment analysis

The “c2.cp.kegg.v7.4.symbols” gene set was selected, and the

“GSVA”packagewas used to calculate the differential gene set among

different subtypes. Molecular subtypes were visualized with the

“ggplot2” package. “C2.cp.kegg.v7.5.symbols.gmt” in

GSEA4.1.0 software was selected for analysis, and the other

operation steps in this work were consistent with those in

previous studies (Chen M et al., 2021).

Immune cell infiltration in KIRC

The “estimate” package was used to run the ESTIMATE

algorithm (Yoshihara et al., 2013), which was utilized to evaluate

the presence of stromal cells and infiltration of immune cells in

tumor samples and infer tumor purity. ssGSEA (Hänzelmann

et al., 2013), CIBERSORT (Newman et al., 2015), and MCP

counter algorithm (Becht et al., 2016) were applied to analyze the

differences of immune cells between different subtypes, and

Spearman’s correlation analysis was performed between the

m7G score and immune cells.

Correlation analysis between the m7G
score and therapeutic drugs

The expression profiles of immune checkpoints in the high-

and low-risk groups were analyzed with the “limma” package,

and the IC50 of chemotherapeutic drugs (rapamycin, gefitinib,

sunitinib, vinblastine, gemcitabine, lapatinib, and sorafenib) in

KIRC was calculated with the “pRRophetic” package. The

association between WDR4 and drug IC50 was analyzed

using data from the GDSC database (https://www.

cancerrxgene.org/).

The DEGs between high- and low-risk groups were divided

into upregulated and downregulated genes and entered into the

cAMP database (https://clue.io/) to obtain potential therapeutic

drugs. The 2D and 3D structures of the drugs were obtained from

the PubChem database (https://pubchem.ncbi.nlm.nih.gov/). A

negative score indicates that the drug can be beneficial for

treatment of patients in the high-risk group.

Scores < −90 were used to identify associated small molecules.

Clinical sample validation

Paired cancer and adjacent tissues were collected from

13 patients with KIRC in our hospital. The informed consent

of the patients and the approval of the ethics committee of

Haikou Hospital, affiliated to Xiangya Medical College of Central

South University were obtained before specimen collection. The

operation steps and calculation methods of quantitative real-time

polymerase chain reaction (qRT-PCR) are shown in our previous

research (Chen et al., 2020). cDNA was amplified with an

Applied Biosystems QuantStudio 5 Real-Time PCR

instrument. Primer sequences are provided in Supplementary

Table S2.

Cell culture and small interfering RNA
transfection

786-0 and Caki-1 cell lines were purchased from the China

Centre for Type Culture Collection (Wuhan, China) and cultured

in an atmosphere of 5% CO2 and 95% air at 37°C. siWDR4 was

designed and synthesized by RiboBio (Guangzhou, China) and

transfected with Lipofectamine 3000 (Thermo Fisher, NY,

United States). At 48 h after transfection, the cells were

collected for functional experiments. Interference efficiency

was detected through qRT-PCR.
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Cell viability assay

A total of 2000 cells were plated in 96-well plates, and 10 µL

of CCK-8 was added to each well. The cells were incubated in an

incubator for 1 h. The wavelength was set at 450 nm. The IC50

values of sunitinib and sorafenib were detected at 24, 48, and

72 h. Drugs were purchased from MedChemExpress

(Monmouth Junction, NJ, United States).

Colony formation assay

Cells at the logarithmic growth stage were collected, and

1000 cells were plated in six-well plates. The cells were cultured

for 10 days, fixed with methanol for 20 min, and stained with

0.1% crystal violet for 15 min. The number of clones that formed

in each well was counted and photographed.

Transwell assay

A total of 600 μL of medium containing 10% serum was

added into the lower chamber of a 24-well plate. Cells were added

into the upper chamber and incubated in the incubator for 24 h.

The liquid in the upper chamber was aspirated dry, and the cells

were fixed with formaldehyde for 20 min and stained with 0.1%

crystal violet for 15 min. After air drying, a microscope was used

for observation and photography. Invasion experiments required

a layer of Matrigel in the upper chamber.

Statistical analysis

Survival analysis was performed through the K–M method.

The Wilcoxon signed-rank test was used to analyze DEGs, and

paired t-test was conducted to analyze gene expression in the

clinical samples. Statistical analysis was performed by using

R4.0.2 and GraphPad Prism 8.0.2. p < 0.05 was considered a

significant difference.

Result

Genetic variations and expression levels of
m7G regulators in KIRC

Among the 29 m7G regulators analyzed in this study,

LARP1 had the highest mutation frequency (Supplementary

Figure S1). We found a significant correlation among

23 genes. METTL1 was negatively correlated with DCPS,

NUDT3, NUDT4, and EIF4E3 and positively correlated with

other genes. Most genes were favorable factors for patients with

KIRC, whereas NUDT11, NUDT10, NSUN2, WDR4, METTL1,

LSM1, and EIF4A1 were risk factors (Figure 1A). We found

significant differences in 24 genes between cancer and normal

tissues in the TCGA–KIRC cohort (Figure 1B). These results

suggested that m7G may play an important role in KIRC.

Expression levels of m7G regulators in
KIRC

We combined the TCGA–KIRC, GSE29609, GSE49012, and

E-MTAB-1980 cohorts to obtain a total of 702 samples to further

understand the possible role of m7G in KIRC. Through

unsupervised clustering, the samples were divided into three

subtypes for analysis (Figure 1C). A total of 291, 104, and

307 cases were included in clusters A, B, and C, respectively.

PCA revealed that the m7G regulator can well-distinguish the

samples of each cluster (Figure 1D). Significant differences were

found in overall survival (OS) and disease-free survival (DFS)

among the three subtypes. The survival of cluster C was longer

than that of clusters A and B (Figures 1E,F). m7G regulator

expression was higher in cluster C than in other clusters

(Supplementary Figure S2A).

Pathways between different subtypes

GSVA enrichment analysis showed that immune-related

pathways, such as the RIG-I-like receptor signaling pathway,

the chemokine signaling pathway, the T-cell receptor signaling

pathway, and apoptosis, were significantly active in the m7G

cluster C (Figure 2A). Drug metabolism-related pathways were

significantly active in m7G cluster B, and purine metabolism was

significantly active in m7G cluster A (Figures 2B,C). In addition,

RCC was significantly active in m7G cluster C. GSEA also

demonstrated that immune-related pathways and apoptosis

were enriched in the m7G cluster C. Autophagy was also

significantly enriched in m7G cluster C (Figures 2D–F). These

results can account for better prognosis of m7G cluster C than

that of m7G clusters A and B.

Differences in the immune
microenvironments of the m7G clusters

After scoring the tumor microenvironment by using the

ESTIMATE algorithm, we found differences in stromal scores,

ESTIMATE scores, and tumor purity among m7G clusters A, B,

and C. m7G cluster C had higher stromal and estimate scores and

lower tumor purity than the other groups (Figures 3A–C). We

used ssGSEA to evaluate the degree of immune cell infiltration in

the three groups. Most immune cells differed among the three

subtypes. Activated CD4+ T cells, activated dendritic cells,

CD56 dim natural killer cells, eosinophil, gamma delta T cells,
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mast cells, monocytes, natural killer T cells, natural killer cells,

regulatory T cells, and type 2 T helper cells had higher

distributions in m7G cluster C than in the other clusters,

whereas activated CD8+ T cells, CD56 bright natural killer

cells, immature dendritic cells, and neutrophils had lower

distributions in m7G cluster C than in other clusters

(Figure 3D). In addition, higher expression levels of immune

checkpoints (Figure 3E) and chemokines (Supplementary Figure

S2B) were found in m7G cluster C than in other clusters.

Interestingly, in the m7GHub database, we found that

15 immune checkpoints have m7G methylation modification

(Supplementary Table S3).

Development and validation of the m7G
score

We obtained 80 DEGs among m7G subtypes to explore their

potential biological functions in different subtypes. GO and

KEGG analyses revealed that the DEGs were enriched in

cancer-related pathways, such as the positive regulation of cell

adhesion, the positive regulation of vasculature development, cell

molecules, the PI3K–Akt signaling pathway, and the JAK−STAT

signaling pathway (Supplementary Figures S3A,B). m7G

modification may play a key role in carcinogenesis in KIRC.

A total of 75 prognostic genes were identified through univariate

Cox analysis (Supplementary Table S4). We performed

unsupervised clustering of prognostic genes to obtain three

gene subtypes (Supplementary Figure S3C). Significant

differences in OS and PFS existed among gene clusters A, B,

and C (Figures 4A,B). A total of 702 samples were divided into

the training group (n = 351) and the testing group (n = 351), and

the formula used to develop the m7G score was obtained after

LASSO regression analysis as follows: m7G score = (−0.222 ×

G3BP2) + (0.195 × THBS1) + (−0.224 × BCL2) + (−0.509 ×

PTPRB) + (0.284 × CD36) + (−0.124 × PDK4) + (−0.187 ×

TMEM125). The patients were divided into high- and low-risk

groups in accordance with the median value of the training

group. The prognosis of the patients in the high-risk group was

poorer than that of the low-risk group (Figures 4C–E). The area

under the curve (AUC) showed that the m7G score has good

prediction accuracy (Figures 4F–H). A Sanggi diagram was used

to depict the interrelationships between the m7G cluster, gene

cluster, risk, and patient survival status (Supplementary Figure

S4). Significant differences in m7G scores were found between

gene and m7G subtypes, and the scores of m7G cluster C and

FIGURE 1
Unsupervised clustering analysis of m7G regulators in KIRC. (A) Interaction network of m7G regulators. (B) Expression levels of m7G regulators
in KIRC. (C) Heat maps of the consensus clustering matrix. (D) PCA distinguishing the three subtypes. (E–F) K–M curves of OS and DFS in the three
subtypes. KIRC, kidney renal clear cell carcinoma; OS, overall survival; DFS, disease-free survival; K–M, Kaplan–Meier.
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gene cluster C were lower than those of other clusters

(Figures 4I,J).

We conducted external validation to prove the

applicability of the m7G score. The m7G score still had

good prediction performance on the GSE40912 and

E-MTAB-1980 datasets. The prognosis of the patients in

the low-risk group was better than that of the patients in

the high-risk group. AUC analysis showed that the m7G score

FIGURE 2
Enrichment analysis among different subtypes. (A) Pathway enrichment analysis between m7G clusters B and C. (B) Pathway enrichment
analysis between m7G clusters A and C. (C) Pathway enrichment analysis between m7G clusters A and B. (D–F) Gene enrichment analysis among
different subtypes.
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has a high prediction accuracy (Figures 5A,B). In addition,

the m7G score had good predictive performance for DFS in

the TCGA–KIRC cohort. A significant difference was found

between high- and low-risk groups, and the survival of the

patients in the low-risk group was better than that of the

patients in the high-risk group (Figure 5C). The

nomogram that was constructed in combination with

clinicopathological variables can well-predict the survival

of patients. The 1-, 3-, and 5-year AUCs reached 0.887,

0.883, and 0.857, respectively, with high prediction

accuracy (Figures 5D,E).

TME characteristics in the high- and low-
risk groups

By using the CIBERSORT algorithm, we found that the

m7G score was negatively correlated with resting dendritic

cells, M1 macrophages, and gamma delta T cells

(Supplementary Figure S5A) and positively correlated with

M0 macrophages, M2 macrophages, and neutrophils

(Supplementary Figure S5B). The ssGSEA algorithm

showed that aDCs, CD8+ T cells, macrophages, Tfh,

Th1 cells, and Th2 cells had higher scores in the high-risk

group than in the low-risk group. Moreover, iDCs, mast cells,

and neutrophils had higher scores in the low-risk group than

in the high-risk group (Figure 6A). The scores of APC co-

stimulation, CCR, check-point, cytolytic activity,

inflammation promotion, para-inflammation, and T cell

co-stimulation were higher in the high-risk group than in

the low-risk group, whereas the scores of MHC-class Ⅰ and
type-Ⅱ IFN response were higher in the low-risk group than

in the high-risk group (Figure 6B). We used the ESTIMATE

algorithm to score the tumor microenvironment and found

differences among stromal, immune, and estimate scores.

The estimate score of the high-risk group was higher than

that of the low-risk group (Figure 6C). The MCP counter

algorithm showed that the m7G score was positively

correlated with B lineage and fibroblasts and negatively

correlated with NK cells, monocytic lineage, myeloid

dendritic cells, neutrophils, and endothelial cells

(Figure 6D).

FIGURE 3
Differences in the immune microenvironment among different subtypes. (A–C) Differences in stromal and ESTIMATE scores and tumor purity
among different subtypes. (D) Differences in immune cell infiltration among different subtypes based on ssGSEA. (E) Differences in immune
checkpoint expression among different subtypes.
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Correlation analysis of the m7G score with
mutation, TMB and stem cell index

The mutation frequency of VHL was highest in the two groups,

and the mutation frequency of mTOR was higher in the high-risk

group (Figures 6E,F). The m7G score was positively correlated with

stemness indices and TMB (Figures 6G,H). The higher TMB of the

high-risk group than that of the low-risk group (Figure 6I) suggested

that immunotherapy was more effective in high-risk patients than in

low-risk patients.

Functional mechanism analysis of high-
and low-risk groups

GSEA revealed that immune- and metabolism-related

pathways were significantly enriched in the low-risk groups,

such as the B-cell receptor signaling pathway, the T-cell

receptor signaling pathway, the chemokine signaling pathway,

endocytosis, fatty acid metabolism, fructose and mannose

metabolism, glycolysis, gluconeogenesis, histidine metabolism,

and pyruvate metabolism (Supplementary Figure S6A).

FIGURE 4
Development and validation of the m7G score. (A,B) K–M analysis of OS and DFS among different gene subtypes. (C–E) K–M survival analysis
between high- and low-risk groups in the training and testing groups and the entire group. (F–H) ROC curve evaluating the prediction accuracy of
the m7G score in the training and testing groups and the entire group. (I,J) Risk scores of different genes andm7G clusters. K–M, Kaplan–Meier; OS,
overall survival; DFS, disease-free survival; ROC, receiver operator curve.
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Correlation analysis between the m7G
score and therapeutic drugs

We found that checkpoints significantly differed between

the high- and low-risk groups, and the expression of

PDCD1 was higher in the high-risk group than in the low-

risk group (Figure 7A). The two groups also had significantly

different chemokine and chemokine receptor expression

profiles (Supplementary Figure S6B). Rapamycin, gefitinib,

sunitinib, and vinblastine had lower IC50 values in the high-

risk group than in the low-risk group (Figures 7B–E), and

gemcitabine, lapatinib, and sorafenib had higher IC50 values

in the high-risk group than in the low-risk group

(Figures 7F–H).

FIGURE 5
External validation and nomogram construction of the m7G score. (A,B) K–M analysis and ROC curve of the m7G score for the GSE40912 and
E-MTAB-1980 datasets. (C) K–M analysis of the DFS of the TCGA–KIRC cohort. (D) Nomogram combining clinicopathological variables and risk
score. (E) ROC curve was used to evaluate the accuracy of the normogram in predicting survival. K–M, Kaplan–Meier; DFS, disease-free survival;
ROC, receiver operator curve; KIRC, kidney renal clear cell carcinoma.
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FIGURE 6
Relationship between the m7G score and tumor immune microenvironment. (A,B) ssGSEA of the correlation of the m7G score with immune
cells and immune function. (C) ESTIMATE algorithm analysis of the correlation of the m7G score with immune cells and immune function. (D) MCP
counter algorithm analysis of the correlation between the m7G score and immune cells. (E,F) Mutation characteristics of the high- and low-risk
groups. (G)Correlation analysis between them7G score and stemness indices. (H,I)Correlation analysis between them7G score and TMB. TMB,
tumor mutation burden.
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Furthermore, we used the cAMP database to explore

potential small-molecule drugs for the therapy of patients

with KIRC. The top 10 compounds with the strongest

negative correlation with the patients in the high-risk

group are shown in Table 1. Among these compounds,

ZSTK-474, PI-103, and PI-828 are PI3K inhibitors. The 2D

and 3D structures of the three compounds are shown in

Figures 7I–K.

Validation in clinical samples

We validated the expression profiles of the genes that were used

to develop them7G score in paired cancer and normal tissues. CD36,

THBS1, and PDK4 were highly expressed in cancer tissues, whereas

PTPRB, G3BP2, and TMEM125 were lowly expressed in cancer

tissues (Figures 8A–F). However, we found no difference in the

expression of BCL2 between cancer and normal tissues (Figure 8G).

FIGURE 7
Correlation analysis between the m7G score and therapeutic drugs. (A) Expression profiles of checkpoints in the high- and low-risk groups.
(B–H) Correlation analysis between the m7G score and IC50 of rapamycin, gefitinib, sunitinib, vinblastine, gemcitabine, lapatinib, and sorafenib. The
2D and 3D structures of (I) ZSTK-474, (J) PI-103, and (K) PI-828.
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TABLE 1 Ten most negatively correlated small-molecule compounds screened from the CMap database.

Score CMap name Target MOA

−96.37 Calyculin PPP1CA, PPP1CC, and PPP2CA Protein phosphatase inhibitor

−96.48 TG-101348 JAK2, FLT3, BRD4, JAK1, JAK3, RET, TYK2 FLT3 inhibitor, JAK inhibitor

−96.93 AZD-7762 CHEK1, and CHEK2 CHK inhibitor

−97.18 CS-110266 SLC6A3 Dopamine receptor agonist

−97.42 PI-828 PI3K inhibitor

−97.6 PI-103 PIK3CA, PIK3CG, MTOR, PIK3CB, PIK3CD, and PRKDC MTOR inhibitor, PI3K inhibitor

−97.71 RO-90-7501 APP Beta amyloid inhibitor

−97.77 Naftopidil ADRA1A and ADRA1D Adrenergic receptor antagonist

−97.8 PJ-34 EEF2, PARP1, PARP15, and PARP3 PARP inhibitor

−98.41 ZSTK-474 PIK3CG, PIK3CA, PIK3CB, and PIK3CD PI3K inhibitor

MOA: Mechanisms of action.

FIGURE 8
Validation in clinical samples. (A–G) Expression of CD36, THBS1, PDK4, PTPRB, G3BP2, TMEM125, and BCL2 in cancer and normal tissues.
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FIGURE 9
Effects of WDR4 on the biological function and drug resistance of KIRC cells. (A) Expression of WDR4 in sunitinib-resistant cell lines. (B–C)
Detection of WDR4 knockdown efficiency. (D) Effects of WDR4 knockdown on KIRC cell proliferation and drug sensitivity. (E) Effect of
WDR4 knockdown on the colony formation ability of KIRC cells. (F) Effects of knockdown of WDR4 on the migration and invasion of KIRC cells. SR:
sunitinib-resistant.
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Effects ofWDR4 on the biological function
and drug resistance of KIRC cells

In the GSE172165 dataset, WDR4 was significantly

upregulated in the sunitinib-resistant Caki-1 cell line

(Figure 9A). The anticancer drugs with the highest correlation

with WDR4 in the GDSC database are shown in Table 2.

WDR4 was positively correlated with the IC50 values of

lapatinib, erlotinib, entinostat, and sorafenib. We further

experimentally verified the effect of WDR4 on sensitivity to

sunitinib and sorafenib, which are common chemotherapeutic

drugs for KIRC. We used siRNA to knock down WDR4 in 786-

0 and Caki-1 cells. The qRT-PCR results showed that

interference with WDR4 significantly reduced the expression

of WDR4 (Figures 9B,C). The knockdown of WDR4 decreased

the cell viability and the IC50 values of sunitinib and sorafenib in

786-0 and Caki-1 cells (Figure 9D). Colony-formation assays

demonstrated that the knockdown of WDR4 significantly

inhibited the proliferation of 786-0 and Caki-1 cells

(Figure 9E). The Transwell assay illustrated that knocking

down WDR4 could significantly inhibit the migration and

invasion of 786-0 and Caki-1 cells (Figure 9F). These results

suggested that WDR4 may be a potential therapeutic target in

patients with KIRC and sunitinib and sorafenib resistance.

Discussion

KIRC is highly heterogeneous, and the evaluation of its

prognosis is dependent on TNM staging (Pichler et al., 2013).

Reliable biomarkers for predicting the prognosis of KIRC are

lacking. Molecular subtype predictors can be used to predict

prognosis and response to immunotherapy and provide a basis

for the precise treatment of patients with cancer. Exploring the

molecular regulatory mechanisms of different subtypes has

become a research hotspot in the field of cancer. m6A is the

most common RNA methylation modification, and the

molecular subtype based on m6A regulators can well-predict

the efficacy of immunotherapy and evaluate the prognosis of

patients (Shen et al., 2020; Zhang et al., 2020; Zhong et al., 2021).

5mC, another type of methylation modification, can also well-

predict the prognosis of patients (Hu Y et al., 2021).

In our research, we found that most m7G regulators were

favorable factors for KIRC, whereas NUDT11, NUDT10,

NSUN2, WDR4, METTL1, LSM1, and EIF4A1 were risk

factors. These genes all play an oncogenic role in cancer

(Chen Z et al., 2021; Grisanzio et al., 2012; Hu J et al., 2021;

Little et al., 2016; Wang et al., 2021; Xia et al., 2021; Ying et al.,

2021; Zhao et al., 2021). Pan-cancer analysis showed that

WDR4 and METTL1 were closely related to cancer immune

infiltration and were immunotherapy targets in patients, and the

high expression of KIRC was associated with poor prognosis of

patients (Gao et al., 2022; Zeng et al., 2021). On the basis of the

29 m7G regulators, we divided the 702 patients with KIRC into

three subtypes. We found significant differences in the OS and

DFS between subtypes and that the prognosis of m7G cluster C

was better than that of other clusters. m7G cluster C is related to

immune activation pathways, such as RIG-I-like receptor,

chemokine, and T-cell receptor signaling pathways. Cluster B

is related to drug metabolism-related pathways, and cluster A is

related to purine metabolism. Tumor purity and CD8+ T cell

infiltration were lower in the m7G cluster C than in other

clusters. In RCC, CD8+ T cells were mostly disabled and

promoted immune escape. Studies have shown that in

contrast to that in most solid tumors, the high infiltration of

CD8+ T cells in RCC predicts poor survival outcomes (Fridman

et al., 2017). These results can explain why m7G cluster C had

better prognosis than other clusters. Checkpoint inhibitors have

been approved for the first-line treatment of KIRC. In our study,

most checkpoints were more highly expressed in m7G cluster C

than in other clusters, thereby suggesting that m7G cluster Cmay

benefit more from checkpoint inhibitor therapy than other

clusters. DEGs among different m7G subtypes were enriched

in cancer-related pathways, such as the positive regulation of cell

adhesion, the positive regulation of vasculature development, cell

molecule adhesion, the PI3K–Akt signaling pathway, and the

AKT–STAT signaling pathway. PI3K–Akt signaling pathway

activation can promote the metastasis and progression of RCC

(Du et al., 2021; Lin et al., 2021; Zhu et al., 2020). We divided the

patients into three gene types in accordance with the three m7G

subtypes and found significant differences in OS and PFS among the

subtypes. We developed a newm7G score and validated the genes in

clinical samples. CD36, PDK4, and THBS1 were highly expressed in

cancer tissues, and G3BP2, PTPRB, and TMEM125 were lowly

expressed in cancer tissues. However, we found no difference in

the expression of BCL2 between cancer and normal tissues, likely due

to our small sample size. The high expression of CD36, THBS1, and

PDK4 in cancer is related to poor prognosis and promotes tumor

progression (Guda et al., 2018; Huang et al., 2017; Kim et al., 2019;

Liu et al., 2021; Liu et al., 2020; Xu et al., 2019; Zhou et al., 2009).

G3BP2 and PTPRB are lowly expressed in cancer and are reliable

markers for prognosis of patients (Qi et al., 2016;Wei et al., 2015). In

addition, single-cell transcriptomes showed that PTPRB was

expressed in the endothelial cells of normal kidney tissue (Young

et al., 2018).

TABLE 2 Four most correlated anticancer drugs screened from the
GDSC database.

Gene Drug Cor Label p Value

WDR4 Lapatinib 0.587 Positive 0.000336

WDR4 Erlotinib 0.545 Positive 0.000863

WDR4 Entinostat 0.531 Positive 0.001175

WDR4 Sorafenib 0.526 Positive 0.001310

GDSC: Genomics of drug sensitivity in cancer.
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A total of 702 patients were divided into training and testing

groups. The m7G score can well-predict the prognosis of the

patients in the training and testing groups and the entire group

with high prediction accuracy. The m7G score was externally

validated with the GSE40912 and E-MTAB-1980 datasets and

still had a good predictive performance. Therefore, the m7G

score can be used as an effective biomarker for prediction of the

prognosis of patients with KIRC and is helpful in clinical

treatment decision-making. In addition, for improving the

prediction of the prognosis of patients, we combined the

TNM stage, grade, and age to construct a nomogram. This

approach improved the predictive performance of the m7G

score. At the same time, we found that cluster C of the

immune activation subtype had a low m7G score. The tumor

microenvironment plays an important role in the development of

cancer. The main function of M1 macrophages is to promote

antigen presentation, secrete immune-activating factors, and play

an antitumor role (Chanmee et al., 2014; Hu et al., 2016). M2-like

macrophage polarization can promote the formation of an

immunosuppressive microenvironment in glioma (Xu et al.,

2021). NELF in CD8+ T cells acts on the enhancers and

promoters of TCF1 target genes to exert antitumor immunity

(Wu et al., 2022). The absence of a role of CD8+ T cells in KIRC is

related to poor prognosis (Dai S et al., 2021). Fibroblasts can

inhibit cancer immunity, promote cancer progression, and make

patients resistant to immunotherapy, which is related to poor

prognosis (Peltier et al., 2022). Our results were consistent with

these findings. The m7G score was negatively correlated with

M1macrophages. M2macrophages, CD8+ T cells, and fibroblasts

were more abundant in the high-risk group than in the low-risk

group. These immune cells were associated with the poor

prognosis of patients with KIRC (Davidsson et al., 2020;

Komohara et al., 2011; Li et al., 2020; Nakayama et al., 2018;

Xie et al., 2021; You et al., 2021).

TMB is a reliable prognostic marker in patients with cancer,

and high TMB predicts a poor prognosis (Song et al., 2022; Yang

et al., 2022). High stemness indices suggest a poor prognosis and

a high degree of malignancy in cancer (Zheng et al., 2021). The

m7G score was positively correlated with TMB and stemness

indices. The low-risk group was closely related to the immune

activation pathway, which plays a role in inhibiting cancer. These

results can be used to explain why the prognosis of patients with

high scores is poorer than that of patients in the low-risk

group. Studies have shown that the VHL mutation is the most

commonmutation in KIRC (Au et al., 2021). Consistent with our

results, the frequency of the VHL mutation was highest in the

high- and low-risk groups. Sunitinib is the first-line treatment for

patients with metastatic KIRC. We found that high-risk patients

were sensitive to rapamycin, gefitinib, sunitinib, and vinblastine

but resistant to gemcitabine, lapatinib, and sorafenib. These

findings provide a basis for personalized treatment of patients

with KIRC. In addition, we found that the knockdown of

WDR4 could inhibit the proliferation, migration, and invasion

of 786-0 and Caki-1 cells and increase the drug sensitivity of

sunitinib and sorafenib.WDR4 is a potential therapeutic target in

patients with KIRC.

Our study has limitations. First, we only validated the

m7G score with a small sample. Therefore, we need to

validate this index with a large clinical cohort. Second,

there is a lack of validation of the immunotherapy cohort,

and the prediction of the m7G score for KIRC

immunotherapy is limited.

Conclusion

This study proposed a new m7G modification-related

molecular subtype and illustrated the immune cell infiltration

characteristics of different subtypes. The developed m7G score

can well-predict the prognosis of patients with KIRC and provide

a basis for their personalized treatment.
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