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Abstract: Osteopenia and sarcopenia can cause various senile diseases and are key factors related to
the quality of life in old age. There is need for portable tools and methods that can analyze osteopenia
and sarcopenia risks during daily life, rather than requiring a specialized hospital setting. Gait is a
suitable indicator of musculoskeletal diseases; therefore, we analyzed the gait signal obtained from
an inertial-sensor-based wearable gait device as a tool to manage bone loss and muscle loss in daily
life. To analyze the inertial-sensor-based gait, the inertial signal was classified into seven gait phases,
and descriptive statistical parameters were obtained for each gait phase. Subsequently, explainable
artificial intelligence was utilized to analyze the contribution and importance of descriptive statistical
parameters on osteopenia and sarcopenia. It was found that XGBoost yielded a high accuracy of
88.69% for osteopenia, whereas the random forest approach showed a high accuracy of 93.75% for
sarcopenia. Transfer learning with a ResNet backbone exhibited appropriate performance but showed
lower accuracy than the descriptive statistical parameter-based identification result. The proposed
gait analysis method confirmed high classification accuracy and the statistical significance of gait
factors that can be used for osteopenia and sarcopenia management.

Keywords: osteopenia; sarcopenia; XAI; SHAP; IMU; gait analysis

1. Introduction

Osteopenia and sarcopenia can cause various senile disorders and are key factors
related to the quality of life in old age [1–3]. Gait is a suitable indicator of musculo-skeletal
diseases [4]. With the miniaturization of sensors and the development of intelligent moni-
toring technology, interest in wearable-sensor-based daily health management solutions is
increasing [4,5]. Therefore, portable tools and methods that can analyze osteopenia and
sarcopenia risks in our daily lives, rather than requiring a specialized hospital setting, can
be considered.

Musculoskeletal disorders are increasingly being recognized as conditions that are
associated with significant morbidity, mortality, and healthcare costs [1,2]. Osteopenia is
a cause of fracture and increases the risk of complications, in addition to pain caused by
fractures. Osteoporotic fractures generate costs that reach USD 25 billion, and sarcopenia
generates costs of approximately USD 18 billion [2,6]. Patients with sarcopenia have a
slow gait, reduced muscular endurance, face difficulty in daily living, and frequently need
help from others. Osteoporosis, falls, and fractures can occur easily, whereas the blood
and hormonal buffering action of the muscle are moderated, reducing the basal metabolic
rate, making chronic diseases unmanageable, and increasing the likelihood of aggravating
diabetes and cardiovascular disease [3].
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Osteoporosis is defined by the World Health Organization (WHO) as a medical condi-
tion in which the bone mineral density (BMD) is less than −2.5 standard deviation (SD)
below the mean level for young adults, and for osteopenia it is between −2.5 and −1.0 [7].
Sarcopenia is defined by the European Working Group on Sarcopenia in Older People
(EWGSOP) as the presence of low muscle mass, reduced muscle strength, and physical per-
formance [8]. BMD and muscle mass are diagnosed via dual-energy X-ray absorptiometry
(DEXA) [1], although cannot be measured without expert assistance. Therefore, a system
that can easily manage musculoskeletal diseases in daily life is required.

Human gait involves interactions between the musculoskeletal system and the nervous
system. Thus, gait analysis is effective in identifying neuromusculoskeletal disorders such
as Parkinson’s diseases (PD) [9,10], fall risk [11,12], total hip arthroplasty (THA) [5,13],
and sarcopenia [4]. Traditionally, cameras and force plates have been used as clinical gait
assessment tools; however, these tools are used only in large institutions such as university
hospitals and are difficult to apply in daily life or complex environments because of their
high cost and large space requirements [14]. Given the recent miniaturization and increased
accuracy of sensor technology, inertial measurement units (IMU) are increasingly being
used for gait analysis [4].

Gait analysis methods include statistical comparisons of gait parameters obtained from
control and target groups and a method of analysis of the classification results of the groups
using machine learning. In the analysis of gait for osteopenia, osteoporosis, sarcopenia,
and osteosarcopenia conducted by Intriago [2], the slowest walking speed was observed
in osteosarcopenia: 0.9 m/s in osteopenia–osteoporosis, 0.893 in sarcopenia, and 0.7 in
osteosarcopenia. Choi [15] investigated the correlation between kinetic gait parameters and
femoral BMD of the femoral neck, trochanter, shaft, and total proximal femur. The highest
correlation (r = 0.153, p = 0.014) was observed between the walking speed and femoral
neck BMD among the older female participants. ElDeeb [16] aimed to investigate the gait
characteristics of postmenopausal women with low BMD (n = 17) and to determine the
predictive parameters of BMD. When the normal BMD group and women with low BMD
were compared, the ankle joint showed less push-off (p = 0.000), which seemed to be used
to obtain gait stability. Sung [17] divided 77 older participants (n = 48 female + 29 male)
into normal BMD and low BMD groups using DEXA. The spatial–temporal gait parameters
(speed, stride length, and support times) of both groups were subsequently investigated.
The support times included those of the initial double support, single support, and terminal
double support in the stance phase. The support time was confirmed to have a high ratio of
the main foot (the foot mainly used), the stride length was found to be longer on the main
foot side than on the other side, and the stride length was positively associated with the
single support time on the dominant limb.

Although there are many studies on gait speed for osteopenia and sarcopenia, only
a few studies have analyzed gait parameters such as PD, fall risk, and THA. Recently,
explainable artificial intelligence (XAI) has received considerable attention as a method to
analyze the importance and contribution of parameters. XAI presents predictive results for
machine learning in a human-understandable form [18]. It is primarily used to enhance
the reliability of machine learning results. Low machine learning accuracy results in the
misinterpretation of XAI. The XAI technique detects feature importance and explains the
influence of features on model decisions [19]. Therefore, for the management of osteopenia
and sarcopenia in daily life, this study proposes an algorithm for detecting gait parameters
and identifying patients based on inertia signals and interpreting the results using XAI.

2. Related Studies

This section describes research related to gait parameter detection techniques, wearable-
sensor-based patient identification, and XAI. This information should help with the un-
derstanding of the proposed wearable-based gait analysis method for the management of
osteopenia and sarcopenia in daily life. This study proposes an algorithm for detecting gait
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parameters based on inertial signals, identifying patients, and interpreting the results using
XAI for gait analysis.

2.1. Gait Parameter

IMU-based gait analysis is used to identify PD, fall risk, THA, and sarcopenia. Gait
parameters for analysis based on IMU include spatial–temporal parameters (e.g., step
length, stance phase, swing phase, single support, double support, step time, cadence, and
speed), kinematic parameters (the rotational angles of the sagittal, coronal, and transverse
plane of the pelvis, hip, knee, and ankle), and descriptive statistical parameters (such as
the maximum, mean, and standard deviation) of inertial signals for each gait phase. The
results of gait analysis using spatial–temporal parameters can be compared with the results
of other gait analysis tools such as cameras and force plates. However, the disadvantage is
that the motion information acquired by the inertial sensor is reduced, resulting in a low
classification result [4].

Gait events and phases are detected to extract the gait parameters. Taborri [20]
classified gait into two to eight phases. Whittle [21] classified gait into seven phases, and
this is the most widely used classification method. One stride is from a heel strike to the
next heel strike. Gait is broadly classified into a stance phase from heel strike (HS) to
toe off (TO) and a swing phase from TO to the next HS. The stance phase is classified
into the loading response, mid stance, terminal stance, and pre swing phases, and the
swing phase is classified into the initial swing, mid swing, and terminal swing phases.
The spatial–temporal parameters can be obtained by extracting the HS, TO, opposite HS,
opposite TO, and walking distance. HS and TO are detected by the time and frequency
signal processing of the inertial signal. Kim [22] obtained HS and TO with high accuracy
within 0.03 s through time–frequency analysis.

The inertial-sensor-based distance measurement algorithm is widely used as the basis
for the distance measurement algorithm in indoor navigation research, and it is difficult to
accurately measure the distance using only the inertial sensor [23,24]. Kinematic parameters
are obtained by attaching inertial sensors to locations such as the pelvis, hip, knee, and
ankle, but they are difficult to use in daily life due to the number of sensors required.
Descriptive statistics and frequency analysis have been employed to analyze the signal
obtained from the inertial sensor.

2.2. Identifying Patients Based on Inertial Signals

IMU-based gait analysis is used to identify PD, fall risk, THA, and sarcopenia. With
gait-parameter-based disease identification, Caramia [9] classified PD using linear discrimi-
nant analysis (LDA), naïve Bayes (NB), k-nearest neighbor (k-NN), support vector machine
(SVM), SVM radial basis function (RBF), decision tree (DT), and the majority of votes. The
performance of the machine learning technique—SVM with a nonlinear kernel—was the
best. Eskofier [10] analyzed the gait of PD using descriptive statistical parameters such
as the energy maximum, minimum, mean, variance, skewness, and kurtosis of the signal
measured by the inertial sensor and the fast Fourier transform, a frequency analysis method.
Howcroft [11] predicted the risk of falls using accelerometer data and used temporal (ca-
dence and stride time) and descriptive statistics (maximum, mean, and SD of acceleration).
NB, SVM, and neural network (NN) were used as classification methods, and the best
single-sensor model was NN. An advantage of deep learning is that it can detect features
within the algorithm from a raw signal, although Tunca [12] achieved higher accuracy in
long short-term memory (LSTM) when certain parameters (e.g., speed, stride length, cycle
time, stance time, swing time, clearance, stance ratio, and cadence) were used as the inputs,
compared with raw signals.

Teufl [5] classified THA patients using stride length, stride time, cadence, speed, hip,
and pelvis range of motion (ROM) as features of the SVM, and obtained an accuracy of 97%.
Dindorf [13] used local interpretable model-agnostic explanations (LIME) to understand
the features for identifying THA, and found that the sagittal movement of the hip, knee,
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and pelvis, as well as transversal movement of the ankle, were particularly important for
this specific classification task. Kim [4] obtained feature importance using the Shapley
additive explanations (SHAP) approach for spatial–temporal parameters and descriptive
statistical parameters detected from signals measured by inertial sensors on both feet of
ten sarcopenia and control participants. Twenty descriptive statistical parameters of high
importance were used as inputs to classification models such as SVM, RF, and multi –layer
perceptron (MLP); the highest accuracy (95%) was achieved using the SVM model, as
shown in Table 1.

Table 1. Existing studies on disease identification using gait parameters. Abbreviations are as shown
in Table A1.

Reference Parameter Disease Position Classification Accuracy

Caramia 2018 [9]
Step length, step time, stride
time, speed, hip, knee, and

ankle ROM
PD R and L ankle,

knee, hip, chest

LDA, NB, k-NN, SVM,
SVM RBF, DT, majority

of votes
96.88%

Eskofier 2016 [10]

Energy maximum, minimum,
mean, variance, skewness,

kurtosis, fast
Fourier transform

PD Upper limbs AdaBoost, PART,
k-NN, SVM, CNN 90.9%

Howcroft 2017 [11]
Cadence, stride time

maximum, mean, and SD
of acceleration

Faller Head, pelvis, R
and L shank NB, SVM, NN 57%

Tunca 2019 [12]

Stride length, cycle time,
stance time, swing time,
clearance, stance ratio,

cadence, speed

Faller Both feet SVM, RF, MLP,
HMM, LSTM 94.30%

Teufl 2019 [5]
Stride length, stride time,
cadence, speed, hip and

pelvis ROM
THA Hip, thigh,

shank, foot SVM 97%

Dindorf 2020 [13] Various parameters THA Hip, knee,
pelvis, ankle

RF, SVM, SVM
RBF, MLP 100%

Kim 2021 [4] Various parameters Sarcopenia Both feet RF, SVM, MLP,
CNN, BiLSTM 95%

Ours Various parameters Osteopenia
Sarcopenia Both feet RF, SVM, XGBoost,

CNN, BiLSTM, ResNet
88.69%
93.75%

2.3. Explainable Artificial Intelligence

XAI is a method that allows humans to understand the basis of decisions made by
artificial intelligence models [25]. It is primarily used to enhance the reliability of machine
learning results. Low machine learning accuracy results in a misinterpretation of XAI. The
XAI technique detects feature importance and explains the influence of features on model
decisions [19]. LIME and SHAP are often used to explain existing handcraft feature-based
classification algorithms, and layer-wise relevance propagation (LRP) and class activation
mapping (CAM) are used as algorithms to interpret deep learning.

LIME is effective for tabular data, text, and images. However, it is difficult to set the
kernel width in tabular data, and different results are obtained during repeated execution
because the sampling process is performed randomly. SHAP was proposed to consider the
dependency between features. When the dependence between features is high, the SHAP
feature importance is judged to be better than the permutation importance [19]. SHAP is
based on Shaply values from game theory. The main advantages of the SHAP method are
local explanations and consistency in the global model structure. SHAP is used in many
machine learning models as a model-agnostic method.

LRP outputs a heatmap to the input image by tracing back the results of the deep
learning model. Unlike LIME and SHAP, which interpret the model using the sensitivity
analysis technique, LRP [25] is a mixture of relevance propagation and decomposition.
Relevance propagation is a method for calculating the relevance of the contribution of
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the hidden layer to the output after the decomposition process. CAM visualizes model
decisions by computing a weighted linear summation of the last convolutional feature map.
CAM is limited to model architectures where the model must consist of one fully connected
(FC) layer with global average pooling (GAP) [26]. Grad-CAM describes models without
constraints on the model architecture. Gradient-based CAM methods share the problem of
shattered gradients, causing noise saliency maps in the intermediate layer. An LRP-based
Relevance-CAM has been proposed to solve the gradient problem [27].

3. Methods

To analyze the gait of the osteopenia and sarcopenia groups, the patients were iden-
tified using machine learning, and the machine learning model was interpreted using
XAI. The inertial sensor signals and spatial–temporal and descriptive statistical parameters
detected in the proposed algorithm were used as machine learning inputs. By analyzing
the model that obtained high-accuracy identification results, the inertial signal and gait
parameters of the osteopenia and sarcopenia groups were analyzed. The flowchart of
patient identification and gait analysis for osteopenia and sarcopenia is shown in Figure 1.
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3.1. Patient Data Collection

Gait signals of 42 women over 65 years of age were obtained to analyze the gait
characteristics for osteopenia and sarcopenia. Among the 42 subjects, there were 21 patients
with osteopenia and 21 patients without osteopenia. The BMD obtained by measuring
DEXA was compared with that of a healthy young person: when the T-score was −1 SD or
higher, the data were assigned to the control group; when it was lower than −1, the data
were assigned to the osteopenia group. Additionally, 10 sarcopenia and 10 non-sarcopenia
patients were selected among the 42 subjects. Sarcopenia was diagnosed using the skeletal
muscle mass index (SMI, appendicular skeletal muscle mass in kg/height in m2) that was
less than 5.4 kg/m2 (as obtained through DEXA), whereas the grasp strength was less than
18 kg. The group without sarcopenia included participants with SMI of 5.5 or more and
a grasp strength of 19 kg or more. Relevant statistics, including age, height, weight, foot
size, Mini-Mental State Examination (MMSE) [28], the Mores Fall Scale (MFS) [29], SARC-F
questionnaire [30], Berg Balance Scale (BBS) [31] and Timed Up and Go (TUG) scores [32],
grasp power, T-score for DEXA, and SMI, are shown in Table 2.
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Table 2. Group population statistics for osteopenia and sarcopenia groups.

Parameter Osteopenia Non-
Osteopenia

Osteopenia
p-Value Sarcopenia Non-

Sarcopenia
Sarcopenia

p-Value

Age (years) 70.48 ± 2.36 70.33 ± 2.56 0.852 71.10 ± 2.13 69.50 ± 3.14 0.199
Height (cm) 153.65 ± 4.83 152.80 ± 5.93 0.614 150.87 ± 4.66 153.10 ± 4.36 0.283
Weight (kg) 57.75 ± 6.12 59.57 ± 7.12 0.379 53.55 ± 5.62 61.20 ± 5.07 0.005

Feet_size (mm) 236.91 ± 7.66 238.57 ± 6.55 0.453 232.00 ± 5.87 239.50 ± 6.43 0.014
MMSE 27.62 ± 1.77 28.19 ± 1.78 0.303 27.80 ± 1.40 27.30 ± 2.16 0.547

SARC-F 3.19 ± 2.40 3.86 ± 2.15 0.349 2.90 ± 1.52 2.90 ± 2.85 1.000
MFS 23.10±17.92 26.43 ± 16.59 0.535 13.50 ± 12.92 23.50 ± 12.70 0.098
BBS 42.38 ± 8.48 42.19 ± 6.85 0.937 43.10 ± 6.26 41.90 ± 9.47 0.742

3m TUG 10.96 ± 1.64 11.50 ± 2.87 0.464 11.71 ± 1.62 9.85 ± 1.92 0.031
Grasp_right (kg) 17.29 ± 5.42 18.77 ± 4.71 0.351 14.42 ± 3.65 22.57 ± 2.73 0.000
Grasp_left (kg) 17.61 ± 4.67 18.04 ± 4.40 0.761 14.15 ± 3.97 22.17 ± 3.02 0.000
T_score (DEXA) −1.85 ± 0.74 0.69 ± 1.49 0.000 −0.49 ± 2.08 −0.64 ± 2.03 0.872

SMI(ASM/height) 5.37 ± 0.55 5.38 ± 0.65 0.961 4.58 ± 0.32 5.93 ± 0.35 0.000

The limitations of this study were that the physiological and psychological variables
of the participants could not be controlled, the age range of the participants could not be
expanded, the study was conducted on women only, and the treadmill gait experiment
with fall risk factors for older adults was excluded, and only the preferred speed through
walking on flat ground was measured.

All participants wore the same sneaker model and walked the 27 m corridor four
times in a straight line. The gait data were acquired from the right and left insoles using
IMU, as shown in Figure 2. The IMU settings included an acceleration sensitivity of 8G, a
gyro sensitivity of 1000◦/s, and a sampling frequency of 100 Hz [4].
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Additionally, 20 participants measured 9 m gait simultaneously with the clinical
standard system and the proposed inertial system to verify the proposed device and
algorithm. The clinical system consisted of ten cameras (Vicon, Oxford Metrics, Oxford,
UK) and four force plates (Advanced Mechanical Technology, MA, USA). Data analysis
was performed using the Vicon Polygon 3.5.2. Ethics approval was obtained from the
Chungnam National University Hospital Institutional Review Board before conducting
this study (File No: CNUH 2019-06-042).

3.2. Gait Signals and Parameters

Gait is a motion in which both feet alternately repeat the stance and swing phases, and
the event points of gait that separate the stance and swing phases are called HS and TO. HS
is at the start of the stance phase, and TO is at the start of the swing phase. The gait data
obtained from the IMU sensor were 6-axis signals that included the xyz-axis acceleration
and angular velocity signal. When the measured sensor data were separated based on
HS and normalized to 100 samples, they exhibited periodic characteristics, as shown in
Figure 3. The characteristics of the gait signal differ from person to person, and for IMU
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gait analysis, the spatial–temporal parameter was detected from the gait signal, and the gait
signals were expressed as descriptive statistical parameters and analyzed. Additionally,
patients were classified using raw data as inputs for deep learning without detecting the
parameters; then, the gait signals were analyzed by interpreting the deep learning results.
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The spatial–temporal parameters were extracted from the inertial signals using the
proposed algorithm [4]. Twenty-four spatial–temporal parameters were detected: stance
phase time right, stance phase time left, swing phase time right, swing phase time left,
stance phase percent right, stance phase percent left, double support first phase time right,
double support first phase time left, double support second phase time right, double
support second phase time left, single support phase time right, single support phase
time left, double support first phase percent right, double support first phase percent left,
double support second phase percent right, double support second phase percent left,
single support phase percent right, single support phase percent left, stride length right,
stride length left, stance phase time SI, swing phase time SI, stance phase percent SI, and
cadence. The definitions are summarized in Table 3.

After detecting HS and TO, the opposite HS, opposite TO, cadence, stance phase (time),
swing phase (time), single support phase (time), and double support phase (time) could be
obtained by arithmetic calculations. Secondary parameters, such as balance of difference
between the right and left foot, were also collected through comparative analysis of both
feet. Stride was detected through a distance estimation algorithm based on zero-velocity
detection (zero-velocity update) using an extended Kalman filter [23,24].

To obtain descriptive statistical parameters, the six-axis gait signal was classified into
seven phases, as proposed by Whittle. The detection of HS, TO, heel rise (HR), feet adjacent
(FA), and tibia vertical (TV) is required to classify seven phases; it was detected using
the method proposed in a previous study [4]. Ten descriptive statistical parameters were
obtained from signals classified into seven phases, and the descriptive statistical parameters
were max., min., SD, AbSum, root-mean-square (RMS), kurtosis, skewness, MMgr, DMM,
and Mdif. A total of 840 descriptive statistical parameters (both feet (2) × sensor signal (6)
× gait phase (7) × (10 parameters)) were detected.
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Table 3. Definition of gait parameters.

Gait Parameters Definition

Spatial–temporal parameters
Cadence Number of steps acquired per minute

Stance phase (time) Percent (time) starting with HS and ending with TO of the same foot
Swing phase (time) Percent (time) starting with TO and ending with HS of the same foot

Single support phase (time) Percent (time) when only one foot is on the ground
Double support phase (time) Percent (time) when both feet are on the ground

Stride length Distance starting with HS and ending with next HS of the same foot
Symmetry indices (SI) Absolute values of (right—left)/(0.5 × ( right + left )

Descriptive statistical parameters
Max Greatest values
Min Least or smallest values
SD Standard deviation of values

AbSum Absolute sum of values
Root-mean-square (RMS) Arithmetic mean of the squares of a set of values

Kurtosis Assesses whether the tails of a given distribution contain extreme values

Skewness A measure of the asymmetry of the probability distribution of a real-valued random variable
about its mean

MMgr Gradient from maximum value to minimum value
DMM Difference between maximum value and minimum value
Mdif Maximum for the difference between two successive values

3.3. Patient Identification

To identify patients using the inertial gait signal and the proposed gait parameters,
osteopenia and sarcopenia groups were classified through various models such as RF,
XGBoost (Extreme Gradient Boosting), SVM, and deep learning models.

RF is a decision tree ensemble classifier that combines multiple single classifiers to
obtain the result of each classification model either through majority vote or weighted
average [33]. RF lowers the risk of overfitting by using some data and features from the
training data. XGBoost is a decision tree ensemble model and improves the performance of
the gradient boosting machine in terms of speed. Boosting models increase accuracy by
iteratively updating the parameters of the previous classifier to reduce the slope of the loss
function, thereby generating a robust classifier [33]. SVM is a binary classifier that aims
to determine the optimal separation hyperplane that maximizes the margin between two
classes. Kernel functions are used to map data to a higher-dimensional space; thus, an SVM
can compute nonlinear decision boundaries [4].

The representative deep-learning-based models were convolutional neural network
(CNN) and LSTM. A CNN is composed of one or more convolutional, pooling, FC, and
dense layers. CNNs exhibit high performance in detecting and classifying features in
images. Unlike LSTM, which only has forward hidden layers, BiLSTM has both forward
and backward hidden layers. Therefore, it learns both before and after information and
demonstrates high performance in time-series data. As a CNN backbone, ResNet exhibits
excellent classification accuracy [34]. ResNet uses skip connections (or short connections)
to pass the input from the previous layer to the next layer. This skip connection solves the
gradient loss/burst problem, enabling deep neural networks. ResNet uses 18, 34, 50, 101,
and 152 layers depending on the depth, and there are structural differences in approximately
50 layers. In particular, ResNet is a popular architecture despite the existence of other
models that have improved performance in various fields. Moreover, it is a representative
CNN architecture for which many supporting materials are available [34,35].

Transfer learning is applied as a solution to address the difficulty of training a model
based on small datasets. In transfer learning, data similar to the target data are learned
in advance and a specific layer is frozen, such that only the layer which is not frozen
when learning the target data is learned [36]. Specific data characteristics can be overfitted,
because patient identification is a binary classification. Therefore, person identification is
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pre-trained because high-resolution features can be detected by comparing and analyzing
the gaits of multiple people.

3.4. Gait Analysis

The gait signals and parameters were analyzed using statistical methods and XAI
techniques that interpret machine learning results. The independent t-test was used as a
statistical method to compare the spatial–temporal parameters and descriptive statistical
parameters. To improve the reliability of the machine-learning-based analysis method, a
higher accuracy should first be obtained. Therefore, the osteopenia and sarcopenia groups
were classified through various models, such as RF, XGBoost, SVM, and deep learning
models. The CNN and LSTM models were used as the deep learning models.

Spatial–temporal parameters and 100 descriptive statistical parameters with low
p-values of the t-test were used as inputs for RF, XGBoost, and SVM. The following
RF parameters were used: number of trees = 50, max_depth = 30, and number of fea-
tures = square root of the gait parameters. The XGBoost parameters were booster = gbtree,
objective = binary:logistic, eta = 0.018, max_depth = 15, gamma = 0.009, subsample = 0.98,
and colsample_bytree = 0.86. SVM explored the linear and RBF kernels, and the parameters
were gamma = 1.0 and C = 5.0.

The 12 axes of acceleration and angular velocity signals obtained from both feet were
applied to the deep learning models. We proposed a low-layer-based CNN and BiLSTM
model and applied ResNet50. As the input of the deep learning model, a stride based on HS
was detected and normalized to 100 samples using spline interpolation because the signal
was collected at 100 Hz [4]. ResNet50 is reduced in size by pooling as the layers progress.
The ResNet50 backbone cannot be used with an input of shape 12, and removing pooling
lowers the accuracy. Therefore, the input shape (36,100) was generated by amplifying the
signal of 12 axes threefold because the input size of ResNet50 must be 12 or more, and the
kernel size was 3. The layers of each model are shown in Table 4. The parameters of the
deep learning model were as follows: learning rate = 0.0005, training epoch = 100, batch
size = 16, loss = CrossEntropyLoss, optimizer = Adam, and activation function = Rectified
Linear Unit.

Table 4. Instantiation of deep learning model.

CNN BiLSTM ResNet50

Input None, 100, 36, 1 Input None, 100, 36, 1 Input None, 100, 36, 1

Conv1 3 × 3, 5
2 × 1 max pooling, BiLSTM1 5 Conv1

7 × 7, 64
stride 2

3 × 3 max pooling, stride 2

Conv2 3 × 3, 5
2 × 1 max pooling, BiLSTM2 10 Conv2

 1 × 1, 64
3 × 3, 64

1 × 1, 256

× 3

Conv3 3×3, 20 Dropout 0.5 Conv3
 1 × 1, 128

3 × 3, 128
1 × 1, 512

× 4

Dropout 0.5 FC, Dense Conv4
 1 × 1, 256

3 × 3, 256
1 × 1, 1024

× 6

FC, Dense Conv5
 1 × 1, 512

3 × 3, 512
1 × 1, 2048

× 3

GAP, FC

XGBoost can calculate the built-in importance (Gini importance) and permutation
importance using the learned model. Permutation importance measures the increase or
decrease in prediction error compared with the original data when the feature data are
transformed [19]. Permutation importance does not consider the correlation between
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features; therefore, SHAP was proposed as a method to consider the dependency between
features. In particular, the SHAP feature importance is considered to be better than the
permutation importance because gait parameters have a high dependence on the features.
The Gini, permutation, and SHAP importance of the spatial–temporal and descriptive
statistical parameters were calculated to obtain important parameters of osteopenia and
sarcopenia, and the results of deep learning were analyzed using LRP, Grad-CAM, and
Relevance-CAM.

4. Results
4.1. Patient Identification

The identification results of 21 osteopenia and 21 non-osteopenia subjects showed the
highest accuracy in SVM when 24 spatial–temporal parameters were used as inputs, but
showed an accuracy of less than 65%. The descriptive statistics parameter obtained the
highest accuracy of 68.45% in XGBoost by using 100 parameters with a low p-value as an
input, as a result of an independent t-test. For training and testing, 21 cross-validations
were performed on 21 subjects, and the average was obtained. Using an inertial sensor as
an input for deep learning, ResNet showed the highest accuracy among CNN, BiLSTM,
and ResNet. The results of applying transfer learning to the ResNet model showed lower
accuracy than when no transfer learning was applied. However, when performing transfer
learning, it was shown that the accuracy increased when features were extracted, including
the test subject. This implies that ResNet was pre-trained for human identification using the
data of 42 patients, and the patient identification was cross-validated for 21 patients. The
osteopenia group obtained the highest recognition result in the transfer learning ResNet.

The identification results of 10 sarcopenia and 10 non-sarcopenia cases were over 70%
accurate in terms of the spatial–temporal parameters, and the accuracy in case of sarcopenia
was better than that in osteopenia. When the descriptive statistics parameter was used
as the RF input, the highest accuracy was obtained, and the deep learning method of the
inertial sensor input did not yield satisfactory identification results. Therefore, analysis of
the results of XAI based on parameters is more reliable than the analysis of results based
on deep learning. The patient identification results of machine learning are presented in
Tables 5 and 6.

Table 5. Identification result of RF, XGBoost, and SVM (accuracy, precision, recall and F1-score).

Groups Parameters Models Accuracy Precision Recall F1-Score

Osteopenia

Spatial–temporal (24)
RF 0.494 0.476 0.370 0.393

XGBoost 0.476 0.476 0.376 0.406
SVM 0.637 0.619 0.511 0.544

Descriptive statistical (100)
RF 0.649 0.655 0.612 0.607

XGBoost 0.684 0.690 0.680 0.650
SVM 0.607 0.678 0.590 0.604

Sarcopenia

Spatial–temporal (24)
RF 0.802 0.825 0.775 0.775

XGBoost 0.752 0.725 0.667 0.677
SVM 0.775 0.603 0.775 0.658

Descriptive statistical (100)
RF 0.675 0.675 0.632 0.631

XGBoost 0.603 0.675 0.557 0.591
SVM 0.637 0.704 0.657 0.644
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Table 6. Identification result of CNN, BiLSTM, and ResNet (accuracy, precision, recall and F1-score).

Groups Models Accuracy Precision Recall F1-Score

Osteopenia

CNN 0.696 0.690 0.735 0.670
BiLSTM 0.619 0.570 0.610 0.571
ResNet 0.767 0.672 0.726 0.676

ResNet(transfer) 0.786 0.869 0.747 0.787

Sarcopenia

CNN 0.600 0.437 0.525 0.447
BiLSTM 0.425 0.300 0.350 0.299
ResNet 0.612 0.337 0.500 0.394

ResNet(transfer) 0.700 0.612 0.636 0.606

4.2. Importance of Descriptive Statistical Parameter

The order of Gini, permutation, and SHAP importance was obtained for the descrip-
tive statistical parameters of osteopenia and sarcopenia. When using highly important
parameters such as RF, XGBoost, and SVM inputs, SHAP obtained the highest identification
rate; however, when using the inner 20 important parameters as inputs, more identification
results than the 100 descriptive statistical parameters were obtained. Tables 7 and 8 showed
the classification results as the number of parameters increased, and the average accuracy
was obtained by performing 21 cross-validations for osteopenia and 10 cross-validations
for sarcopenia. According to the result of each cross-validation, SHAP-based feature
importance has different values. For example, osteopenia was trained with 40 datasets
(20 osteopenia datasets and 20 non-osteopenia datasets) and tested with two datasets
(1 osteopenia dataset and 1 non-osteopenia dataset) during 21 cross-validations. As a result
of the training, the Shapley values were obtained based on the training data of 40 people,
and the Shapley values were obtained in different orders. Table 9 shows the average results
for 20 high-order Shapley values generated during 21 cross-validations. In osteopenia, the
Shapley value is relatively high in the upper parameter and less than 0.1 from the 10th
parameter. In sarcopenia, the difference in the Shapley value between the parameters is
small. The parameter numbers of descriptive statistical parameters are shown in Table 10.
The results of learning RF, XGBoost, and SVM with 20 parameters with high importance
in Table 9 are shown in Table 11. Osteopenia obtained an accuracy of 88.69% in XGBoost
using the top 4 parameters as inputs, and sarcopenia obtained an accuracy of 93.75% in RF
using the top 18 parameters as inputs.

Table 7. Osteopenia identification results according to the number of important parameters (accu-
racy, %).

Class ML
Number of Parameters

2 3 4 5 6 7 8 9 10 20 100

Gini
RF 70.83 70.23 64.88 72.02 68.45 63.69 61.30 60.11 60.71 61.30 64.88

XGBoost 66.66 67.85 64.88 71.42 68.45 64.28 65.47 61.30 65.47 67.26 68.45
SVM 64.28 64.88 64.88 64.28 61.30 61.30 59.52 55.35 57.73 58.33 60.71

Permutation
RF 73.21 70.83 69.64 67.26 64.28 68.45 70.23 69.04 67.26 67.26 64.88

XGBoost 69.64 70.83 70.23 68.42 64.88 65.47 67.26 66.70 67.26 70.23 68.45
SVM 65.47 68.45 66.07 64.28 66.66 66.66 64.28 64.88 64.88 60.71 60.71

SHAP
RF 73.80 76.19 70.23 63.69 63.09 63.69 63.09 63.69 57.73 60.11 64.88

XGBoost 70.23 75 74.40 73.21 66.66 67.85 63.69 59.52 56.54 68.45 68.45
SVM 71.42 71.42 67.26 61.30 58.33 58.33 57.14 55.95 57.14 62.5 60.71
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Table 8. Sarcopenia identification results according to the number of important parameters (accu-
racy, %).

Class ML
Number of Parameters

2 3 4 5 10 15 16 17 18 20 100

Gini
RF 50 58.75 62.5 65 68.75 67.5 68.75 71.25 71.25 62.5 67.5

XGBoost 52.5 57.5 65 66.25 62.5 58.75 58.75 58.75 58.75 58.75 60
SVM 52.5 58.75 66.25 65 72.5 57.5 56.25 56.25 58.75 60 63.75

Permutation
RF 62.5 60 56.25 53.75 57.5 67.5 55 60 70 62.5 67.5

XGBoost 60 60 55 58.75 65 63.75 68.75 65 66.25 67.5 60
SVM 61.25 60 60 55 65 66.25 66.25 68.75 63.75 60 63.75

SHAP
RF 56.25 60 57.5 65 67.5 62.5 72.5 73.75 68.75 67.5 67.5

XGBoost 46.25 63.75 62.5 65 65 63.75 63.75 65 66.25 63.75 60
SVM 58.75 67.5 60 61.25 675 66.25 68.75 62.5 60 58.75 63.75

Table 9. Feature importance and Shapley values of descriptive statistical parameters.

Class Important Parameter 1 2 3 4 5 6 7 8 9 10

Osteopenia Parameters 247 114 87 218 816 206 291 21 169 667
Shapley value 0.97 0.28 0.27 0.2 0.18 0.17 0.16 0.13 0.1 0.09

Sarcopenia Parameters 430 524 51 9 270 457 231 387 3 97
Shapley value 0.66 0.28 0.25 0.22 0.17 0.16 0.15 0.13 0.13 0.13

Class Important Parameter 11 12 13 14 15 16 17 18 19 20

Osteopenia Parameters 774 117 45 802 312 23 542 242 554 422
Shapley value 0.09 0.08 0.08 0.07 0.07 0.07 0.07 0.06 0.06 0.06

Sarcopenia Parameters 5 67 521 690 607 704 380 469 8 257
Shapley value 0.13 0.12 0.11 0.09 0.09 0.08 0.08 0.08 0.08 0.07

Table 10. Seven-phase descriptive statistical parameters.

Right Left

Parameter Max Min SD AbSum RMS Ku Ske MMgr DMM Mdif Max Min SD AbSum RMS Ku Ske MMgr DMM Mdif

Loading
response

AccX 1 2 3 4 5 6 7 8 9 10 421 422 423 424 425 426 427 428 429 430
AccY 11 12 13 14 15 16 17 18 19 20 431 432 433 434 435 436 437 438 439 440
AccZ 21 22 23 24 25 26 27 28 29 30 441 442 443 444 445 446 447 448 449 450

GyroX 31 32 33 34 35 36 37 38 39 40 451 452 453 454 455 456 457 458 459 460
GyroY 41 42 43 44 45 46 47 48 49 50 461 462 463 464 465 466 467 468 469 470
GyroZ 51 52 53 54 55 56 57 58 59 60 471 472 473 474 475 476 477 478 479 480

Mid
stance

AccX 61 62 63 64 65 66 67 68 69 70 481 482 483 484 485 486 487 488 489 490
AccY 71 72 73 74 75 76 77 78 79 80 491 492 493 494 495 496 497 498 499 500
AccZ 81 82 83 84 85 86 87 88 89 90 501 502 503 504 505 506 507 508 509 510

GyroX 91 92 93 94 95 96 97 98 99 100 511 512 513 514 515 516 517 518 519 520
GyroY 101 102 103 104 105 106 107 108 109 110 521 522 523 524 525 526 527 528 529 530
GyroZ 111 112 113 114 115 116 117 118 119 120 531 532 533 534 535 536 537 538 539 540

Terminal
stance

AccX 121 122 123 124 125 126 127 128 129 130 541 542 543 544 545 546 547 548 549 550
AccY 131 132 133 134 135 136 137 138 139 140 551 552 553 554 555 556 557 558 559 560
AccZ 141 142 143 144 145 146 147 148 149 150 561 562 563 564 565 566 567 568 569 570

GyroX 151 152 153 154 155 156 157 158 159 160 571 572 573 574 575 576 577 578 579 580
GyroY 161 162 163 164 165 166 167 168 169 170 581 582 583 584 585 586 587 588 589 590
GyroZ 171 172 173 174 175 176 177 178 179 180 591 592 593 594 595 596 597 598 599 600

Pre
swing

AccX 181 182 183 184 185 186 187 188 189 190 601 602 603 604 605 606 607 608 609 610
AccY 191 192 193 194 195 196 197 198 199 200 611 612 613 614 615 616 617 618 619 620
AccZ 201 202 203 204 205 206 207 208 209 210 621 622 623 624 625 626 627 628 629 630

GyroX 211 212 213 214 215 216 217 218 219 220 631 632 633 634 635 636 637 638 639 640
GyroY 221 222 223 224 225 226 227 228 229 230 641 642 643 644 645 646 647 648 649 650
GyroZ 231 232 233 234 235 236 237 238 239 240 651 652 653 654 655 656 657 658 659 660

Initial
swing

AccX 241 242 243 244 245 246 247 248 249 250 661 662 663 664 665 666 667 668 669 670
AccY 251 252 253 254 255 256 257 258 259 260 671 672 673 674 675 676 677 678 679 680
AccZ 261 262 263 264 265 266 267 268 269 270 681 682 683 684 685 686 687 688 689 690

GyroX 271 272 273 274 275 276 277 278 279 280 691 692 693 694 695 696 697 698 699 700
GyroY 281 282 283 284 285 286 287 288 289 290 701 702 703 704 705 706 707 708 709 710
GyroZ 291 292 293 294 295 296 297 298 299 300 711 712 713 714 715 716 717 718 719 720
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Table 10. Cont.

Right Left

Parameter Max Min SD AbSum RMS Ku Ske MMgr DMM Mdif Max Min SD AbSum RMS Ku Ske MMgr DMM Mdif

Mid
swing

AccX 301 30 303 304 305 306 307 308 309 310 721 722 723 724 725 726 727 728 729 730
AccY 311 312 313 314 315 316 317 318 319 320 731 732 733 734 735 736 737 738 739 740
AccZ 321 322 323 324 325 326 327 328 329 330 741 742 743 744 745 746 747 748 749 750

GyroX 331 332 333 334 335 336 337 338 339 340 751 752 753 754 755 756 757 758 759 760
GyroY 341 342 343 344 345 346 347 348 349 350 761 762 763 764 765 766 767 768 769 770
GyroZ 351 352 353 354 355 356 357 358 359 360 771 772 773 774 775 776 777 778 779 780

Terminal
swing

AccX 361 362 363 364 365 366 367 368 369 370 781 782 783 784 785 786 787 788 789 790
AccY 371 372 373 374 375 376 377 378 379 380 791 792 793 794 795 796 797 798 799 800
AccZ 381 382 383 384 385 386 387 388 389 390 801 802 803 804 805 806 807 808 809 810

GyroX 391 392 393 394 395 396 397 398 399 400 811 812 813 814 815 816 817 818 819 820
GyroY 401 402 403 404 405 406 407 408 409 410 821 822 823 824 825 826 827 828 829 830
GyroZ 411 412 413 414 415 416 417 418 419 420 831 832 833 834 835 836 837 838 839 840

Table 11. Osteopenia and sarcopenia identification results with the 20 parameters from Table 9
(accuracy, %).

Class Important Parameter 1 2 3 4 5 6 7 8 9 10

Osteopenia
RF x 75 85.11 85.71 78.57 82.14 80.95 81.54 77.97 76.78

XGBoost x 72.02 80.95 88.69 87.69 87.5 85.11 82.73 81.54 83.33
SVM x 74.40 75 75.59 83.92 82.73 80.95 81.54 80.35 78.57

Sarcopenia
RF x 85 82.5 83.75 85 85 86.25 82.5 8 82.5

XGBoost x 80 72.5 78.75 76.25 73.75 75 71.25 73.75 71.25
SVM x 81.25 80 82.5 81.25 82.5 86.25 86.25 87.5 81.25

Class Important Parameter 11 12 13 14 15 16 17 18 19 20

Osteopenia
RF 77.38 72.61 78.57 74.40 79.16 82.14 79.76 73.80 82.14 82.73

XGBoost 76.78 76.78 76.19 77.97 80.95 81.54 77.38 74.40 73.80 74.40
SVM 76.19 77.97 74.40 72.61 75.59 76.78 76.19 77.97 79.16 74.40

Sarcopenia
RF 81.25 83.75 86.25 88.75 86.25 87.5 91.25 93.75 86.25 92.5

XGBoost 71.52 75 71.25 70 71.25 75. 72.5 72.5 71.25 72.5
SVM 80 83.75 86.25 83.75 86.25 81.25 83.75 78.75 78.75 78.75

4.3. Gait Analysis

In the spatial–temporal parameters of the osteopenia group, the stance phase percent-
age decreased, double support percentage (time) decreased, and single support percentage
increased. The sarcopenia group showed an increase in the value of the SI parameter
compared with the non-sarcopenia group, implying that the difference between both feet
was large. Except for the SI parameter, the p-value did not have a statistical significance
of less than 0.001. Table 12 shows the mean and Shapley values of the spatial–temporal
parameters; * indicates that the p-value is less than 0.025, and ** indicates that the p-value is
less than 0.001.

From the result of the SHAP plot of osteopenia, as the value of the single support
phase percent left (parameter 18) increased, the risk of osteopenia increased, as indicated by
the positive SHAP value. As the value decreased, the risk also decreased, with the SHAP
value being negative. When the single support phase percent left value increased, the risk
increased linearly, and the osteopenia risk was low, at 39 or lower, and the risk increased
at 42 or higher. A low double support first phase percent (parameter 13 and 14) increased
the risk of osteopenia, with a decreased risk above 9 and an increased risk below 9. A low
value of double support first phase time left (parameter 8) increased the risk, a high value
decreased the risk of osteopenia, and a double support first phase time left lower than
0.075 led to an increase in risk. A low value of the stance phase percent right (parameter 5)
increased the risk.

As a result of the SHAP plot of sarcopenia, the risk of sarcopenia increased when the
double support first phase time left (parameter 8) had a very low value (less than 0.07).
Stance phase percent left (parameter 6) increased the risk above 60 and decreased below 60,
but did not show linearity. The risk increased when the value of the stance phase time SI
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(parameter 21) increased, and the risk was high at 0.35 or higher, although it was low at less
than 0.35. SHAP plots of the spatial–temporal parameters of osteopenia and sarcopenia are
shown in Figure 4.

Table 12. Spatial–temporal parameters of osteopenia and sarcopenia.

Parameter Osteopenia Non-
Osteopenia

Shapley
Value Sarcopenia Non-

Sarcopenia
Shapley

Value

1 Stance phase time right (s) 0.61 0.645 0.034 ** 0.614 0.608 0.014
2 Stance phase time left (s) 0.612 0.641 0.084 * 0.617 0.604 0.18
3 Swing phase time right (s) 0.427 0.419 0.156 0.416 0.414 0.143
4 Swing phase time left (s) 0.424 0.422 0.04 0.412 0.417 0.039
5 Stance phase percent right (%) 58.77 60.442 0.196 ** 59.468 59.445 0.235
6 Stance phase percent left (%) 59.05 60.124 0.035 ** 59.853 59.114 0.345

7 Double support first phase time
right (s) 0.1 0.115 0.074 ** 0.112 0.099 0.005

8 Double support first phase time
left (s) 0.085 0.106 0.197 ** 0.09 0.090 0.551

9 Double support second phase time
right (s) 0.085 0.106 0.031 ** 0.09 0.090 0.097

10 Double support second phase time
left (s) 0.1 0.115 0.072 ** 0.111 0.099 0.007

11 Single support phase time right (s) 0.424 0.422 0.078 0.412 0.418 0.007
12 Single support phase time left (s) 0.427 0.419 0.017 0.416 0.414 0.018

13 Double support first phase percent
right (%) 9.66 10.711 0.224 10.802 9.692 0

14 Double support first phase percent
left (%) 8.18 9.857 0.311 ** 8.563 8.858 0.248

15 Double support second phase
percent right (%) 8.17 9.846 0.046 ** 8.556 8.855 0.072

16 Double support second phase
percent left (%) 9.606 10.686 0.017 ** 10.727 9.677 0.001

17 Single support phase percent
right (%) 40.939 39.884 0.077 ** 40.11 40.897 0.035

18 Single support phase percent
left (%) 41.262 39.58 0.416 ** 40.562 40.578 0.02

19 Stride length right (m) 0.95 0.93 0.065 0.94 0.979 0.022
20 Stride length left (m) 0.918 0.892 0.015 0.896 0.942 0.011
21 Stance phase time SI 0.031 0.032 0.018 0.036 0.025 0.250 **
22 Swing phase time SI 0.041 0.046 0.073 0.053 0.034 0.049 **
23 Stance phase percent SI 0.026 0.028 0.013 0.0325 0.021 0.007 **
24 Cadence (steps/min) 115.781 113.859 0.047 116.21 117.469 0
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Figure 4. SHAP plots of the spatial–temporal parameters of osteopenia (a) and sarcopenia (b).

The parameter with the highest SHAP value within the descriptive statistical param-
eters of osteopenia is the skewness of the x-axis of the accelerometer in the initial swing
phase (parameter number 247). Initial swing refers to the FA after TO. When the skewness
is negative, the probability density function has a long tail on the left side, and the data,
including the median, are more distributed on the right side. When the skewness is positive,
there is a long tail on the right side of the probability density function, indicating that the
data are more distributed on the left side. Skewness has a positive value when the mean
is smaller than the median, negative when the mean is larger, and has a larger value as
the difference between the median and the mean becomes larger. When there is a negative
value, the right part of Figure 5a has a long tail, but the average decreases and the skewness
value becomes small or negative.
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The inertial signals and SHAP dependence plots of the descriptive statistical param-
eters 247 and 114 of osteopenia cases are shown in Figure 5. The blue signal represents
osteopenia, and the red signal represents non-osteopenia. A skewness of 0.5 or higher
shows a low risk of osteopenia, whereas a negative value shows an increased risk. The
absolute sum of gyro z values in the mid stance (parameter number 114) decreased in
osteopenia. This implies that there is no rotation of the z-axis in the mid stance. When the
absolute sum of values was 2.6 or higher, the risk decreased, and when the absolute sum of
values was 1.89 or lower, the risk increased, as shown in Table 13.

Table 13. Descriptive statistical parameters of osteopenia and sarcopenia. * indicates that the p-value
is less than 0.025, and ** indicates that the p-value is less than 0.001.

Osteopenia Sarcopenia

Parameter Osteopenia Non-
Osteopenia

Shapley
Value Parameter Sarcopenia Non-

Sarcopenia
Shapley

Value

1 247 0.126 0.548 1.033 ** 430 2.748 3.797 0.921 **
2 114 1.892 2.613 0.312 ** 524 4.925 2.403 0.113 **
3 87 0.357 1.201 0.247 ** 51 0.813 0.463 0.189 **
4 218 5.671 7.065 0.200 ** 9 8.121 11.813 0.142 **
5 816 3.091 2.502 0.055 ** 270 16.417 13.079 0.304 **
6 206 1.926 2.089 0.119 * 457 −0.352 0.047 0.003 **
7 291 3.774 3.129 0.020 ** 231 1.532 0.891 0.002 **
8 21 35.175 29.313 0.023 ** 387 −0.17 0.042 0.002 **
9 169 3.563 2.823 0.032 ** 3 2.267 3.44 0.129 **

10 667 0.135 0.481 0.153 ** 97 −0.425 0.274 0.021 **

The inertial signals and SHAP dependence plots of the descriptive statistical param-
eters 430 and 524 of sarcopenia are shown in Figure 6. Here, the blue signal represents
sarcopenia, whereas the red signal represents non-sarcopenia. The maximum difference
between two successive values of accelerometer x in the loading response (parameter
number 430) was lower in the sarcopenia group than in the non-sarcopenia group. When
the maximum value was less than 2.74, the risk of sarcopenia increased; however, when
the maximum value was 3.79 or more, the risk of sarcopenia decreased. In the sarcopenia
group, the change in the acceleration was smooth. The absolute sum of gyro y values in
the mid stance (parameter number 524) increased in the sarcopenia group. As the absolute
sum value increased, the risk of sarcopenia increased.

The output for layer2, when the deep-learning-based XAI technique, LRP, Grad-CAM,
and Relevance-CAM were applied to ResNet50, is shown in Figure 7. In ResNet50, the
CAM technique shows low resolution in small-sized images because the feature map is
reduced in layer2. It is difficult to interpret the CAM results for ResNet50 with input sizes
of 100 horizontal and 36 vertical. Therefore, it is desirable to interpret ResNet results as LRP.
Figure 8 shows the analysis results of LRP for the ResNet of osteopenia and sarcopenia.
The LRP attention map of the osteopenia group had high values in 64~67 samples of the
acceleration x-axis of the right foot. Its position is the section where the acceleration value
rises after TO, and it is the same as the position in Figure 5a, the parameter-based SHAP
result. Osteopenia pays attention to changes in acceleration after TO in SHAP and LRP. The
LRP attention map of sarcopenia group has a high value at 99~100 positions of the right
acceleration x. The position is the section where HS occurs, and it is the same section as
Figure 6a. The result of paying attention to the various sections of the acceleration left is
similar to having a high identification result when used as various parameter inputs in
SHAP. The sarcopenia group pays attention to the HS section and the various sections of
the signal.
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5. Discussion

The objective of this study was to propose and evaluate a method that can utilize
the gait parameters obtained from a wearable device with an inertial sensor in the health
management of patients suffering from sarcopenia and osteopenia in daily life.

In the proposed method, the patient was identified using gait phase description-based
descriptive statistical parameters as the handcrafted feature-based machine learning input
and the original signal of the inertial sensor as the input for the deep learning algorithm.
For gait analysis, the identification results were analyzed using XAI tools, such as SHAP
and LRP. To verify the proposed gait analysis method, the results of functional tests and
questionnaires obtained at the hospital for participants, the results using the existing gait
parameters, and the results of the proposed method are discussed.

To identify osteopenia and sarcopenia, a decrease in walking speed and poor body
balance has been reported in previous studies. It has been reported that patients with
sarcopenia have a slower walking speed than those with osteopenia. The result of the 3 m
TUG was 11.71 s in the sarcopenia group and 10.96 s in the osteopenia group, indicating that
the walking speed was slower in the patients with sarcopenia. Except for TUG, statistical
significance was not obtained for the MMSE, MFS, SARC-F questionnaire, or BBS.

In gait analysis using inertial sensors, spatial–temporal parameters have traditionally
been used as tools to conveniently identify diseases such as Faller, PD, and THA in everyday
life. In this study, to identify patients with osteopenia and sarcopenia, 24 spatial–temporal
parameters used for conventional disease identification were detected, and descriptive
statistical parameters were detected to analyze the inertial sensor signals according to the
gait phase. Statistical significance was obtained for the stance phase, double support phase,
and single support phase percent in osteopenia, and SI in the stance and swing phase
in sarcopenia.
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With gait analysis using XAI, SHAP demonstrates the importance of parameters and
the positive/negative contribution of parameters to the classification results of machine
learning. To apply SHAP to machine learning classifiers, it is necessary to obtain a high
machine learning accuracy. Good classification results were obtained for osteopenia in
XGBoost and sarcopenia in RF. It has been reported that XGBoost has the advantage of
being the most accurate among tree-based classifiers, and RF has a strong advantage in
terms of overfitting. Comparing various machine learning results, osteopenia showed an
accuracy of lower than 70% and sarcopenia showed overfitting. Overfitting in sarcopenia
was inferred from the results of the deep learning model.

From the SHAP results of spatial–temporal parameters, single support phase percent
left, double support first phase percent left, double support first phase percent right, double
support first phase time left, and stance phase percent right were highly important for the
osteopenia group. In the sarcopenia group, double support first phase time left, stance
phase percent left, stance phase time SI, double support first phase percent left, and stance
phase percent right were found to be of high importance. The important parameters
obtained similar results to the statistical analysis; in osteopenia, the phase had a high
contribution, whereas in sarcopenia, SI had a high contribution. Double support first phase
time left and stance phase percent right showed a high contribution in both groups. The
double support first phase time decreased in the osteopenia group compared with that
in the sarcopenia group, and the stance phase percentage decreased. An increase in the
double support first phase time and an increase in the stance phase percentage indicate a
decrease in the walking speed. The time-related parameters were lower in the osteopenia
group than in the non-osteopenia group; therefore, it is difficult to identify the osteopenia
group based on walking speed. Sarcopenia significantly contributed to the reductions in
walking speed and balance parameters, as in the previous study results [1–3].

The accuracy of identification of osteopenia patients with spatial–temporal parameters,
which is the existing gait analysis parameter, was lower than 70%; thus, it was difficult to
analyze the results in SHAP. The inertial sensor had a high temporal resolution; therefore,
it was possible to obtain differences between groups by segmenting and analyzing the gait.
As a result of SHAP for 840 descriptive statistical parameters, a high contribution from
the skewness of the x-axis of the accelerometer in the initial swing phase (247) and the
absolute sum of values of gyro z in the mid stance (114) were observed for osteopenia. For
sarcopenia, the maximum difference between two successive values of accelerometer x in
loading response (430) and the absolute sum of values of gyro y in the mid stance (524)
showed a high contribution.

The descriptive statistical parameter 247 for osteopenia was smaller than that for
sarcopenia, and the low skewness of osteopenia is due to the rapid occurrence of the
maximum value of the acceleration x-axis after TO and a large negative value. This result
is related to the increase in the swing phase time. The descriptive statistical parameter
430 represents the change in acceleration, and its value of osteopenia is larger than that of
the sarcopenia group, implying that the gait speed of the sarcopenia group is slow because
the acceleration x is the walking direction. Parameters 114 and 524 are the absolute sum of
the gyro values in the mid stance. The absolute sum decreases in osteopenia indicating less
foot movement in the mid stance, as shown in Table 14.

The interpretation of results for LRP-based deep learning was similar to the results
of descriptive statistical parameter analysis based on SHAP. However, the reliability was
low due to the change in the attention map of the inertial sensor according to the learning
results of deep learning as a result of repeated experiments and low identification accuracy.
If high-accuracy identification results are obtained, it is expected that the inertial signal
characteristics of osteopenia and sarcopenia can be obtained using deep learning.

Functional tests and questionnaires conducted in the hospital were not statistically sig-
nificant, except for TUG in the sarcopenia group. Spatial–temporal parameters, which have
previously been used as gait parameters, showed statistical significance in the sarcopenia
group and the osteopenia group, but showed a low identification accuracy of 63% in the
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osteopenia group. The proposed descriptive statistical parameters obtained an accuracy of
76% or more, and the descriptive statistical parameters attributed similar meanings to the
results of the spatial–temporal parameters, had high statistical significance, and can be used
as a new clinical tool because the difference in parameter values between the osteopenia
and sarcopenia groups is remarkable. Descriptive statistical parameters can be used as
useful tools for patient identification and risk detection.

Table 14. Top 2 descriptive statistical parameters of osteopenia and sarcopenia.

Parameter Osteopenia Non-Osteopenia Sarcopenia Non-Sarcopenia

247 0.126 + 0.425 0.548 + 0.382 0.364 + 0.483 0.327 + 0.534
114 1.892 + 0.86 2.613 + 0.938 2.078 + 1.088 2.217 + 0.591
430 3.292 + 1.05 3.285 + 0.818 2.748 + 0.833 3.797 + 0.813
524 3.317 + 2.098 4.297 + 4.873 4.925 + 3.479 2.403 + 0.473

6. Conclusions

The inertial-sensor-based gait signal was acquired and analyzed for patients with
osteopenia and sarcopenia. Spatial–temporal parameters used in conventional clinical
evaluation and diagnosis are effective tools for understanding gait. However, they have
poor temporal resolution and do not include the function of kinematic signals during the
gait cycle. Therefore, the inertial sensor data can obtain descriptive statistical parameters
for each gait phase.

For analyzing the patients and control groups, parameters can be statistically analyzed
or analyzed through machine-learning-based XAI. To apply XAI, high-accuracy machine
learning is required; thus, useful parameters obtained from parameter analysis are used to
increase the accuracy of machine learning. Therefore, parameter interpretation is important
for patient identification and risk estimation. As a machine learning algorithm, XGBoost
for osteopenia and RF for sarcopenia showed high performance, whereas for deep learning,
ResNet50, which transfer-learned a human identification model, achieved high accuracy.
For the analysis of gait parameters, SHAP was applied to the machine learning model to
detect the importance and contribution of the parameters. Unlike Gini and permutation
importance, SHAP has advantages of lowering the importance of a parameter when there
are similar characteristics between the high-importance parameters. When deep learning
identifies patient, the attention map of the inertial sensor signal was analyzed using LRP.

Analyzing the signal of the inertial sensor through XAI, we can diagnose and manage
osteopenia and sarcopenia in daily life using a smart insole rather than an expensive clinical
tool because the inertial sensor signal contains abundant information on gait. Although the
number of participants in this study was extremely small to enable fully understanding
the gait characteristics of osteopenia and sarcopenia, the proposed method is effective
in analyzing osteopenia and sarcopenia. Therefore, in future studies, additional clinical
evaluations will be performed to obtain and analyze many patients and segment data
according to sex, age, and dominant leg.

Author Contributions: Conceptualization, J.-K.K., M.-N.B., K.L., J.-C.K. and S.G.H.; Data curation,
J.-K.K. and M.-N.B.; Formal analysis, J.-K.K.; Funding acquisition, K.L. and J.-C.K.; Investigation,
J.-K.K.; Methodology, J.-K.K. and S.G.H.; Project administration, M.-N.B., K.L. and J.-C.K.; Soft-
ware, J.-K.K.; Supervision, K.L. and J.-C.K.; Validation, J.-K.K. and S.G.H.; Visualization, J.-K.K.;
Writing—original draft, J.-K.K.; Writing—review and editing, J.-K.K., M.-N.B. and S.G.H. All authors
have read and agreed to the published version of the manuscript.

Funding: This study was supported by a National Research Foundation of Korea (NRF) grant funded
by the Korea government (MSIT) (No. 2021M3I2A1077405) and by a grant (22DRMS-B146826-05) from
the Development of Customized Contents Provision Technology for Realistic Disaster Management
Based on Spatial Information Program funded by the Ministry of the Interior and Safety of the
Korean government.



Biosensors 2022, 12, 167 21 of 22

Institutional Review Board Statement: The study was conducted according to the guidelines of the
Declaration of Helsinki, and approved by the Institutional Review Board of Chungnam National
University Hospital Institutional (File No: CNUH 2019-06-042).

Informed Consent Statement: Informed consent was obtained from all subjects involved in the study.

Data Availability Statement: The data are not publicly available due to company security policy
and personal protection of subjects. Data are available from the authors upon reasonable request.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

Table A1. Abbreviations.

Abbreviations Raw Abbreviations Raw

XAI eXplainable Artificial
Intelligence LDA Linear Discriminant Analysis

BMD Bone Mineral Density NB Naïve Bayes
SD Standard Deviation k-NN k-Nearest Neighbor

DEXA Dual-Energy X-ray
Absorptiometry SVM Support Vector Machines

PD Parkinson’s Diseases RBF Radial Basis Function
THA Total Hip Arthroplasty DT Decision Tree
IMU Inertial Measurement Unit XGBoost Extreme Gradient Boosting
HS Heel Strike HMM Hidden Markov Model
TO Toe Off RF Random Forest

LIME Local Interpretable
Model-agnostic Explanations ANN Artificial Neural Network

SHAP SHapley Additive
exPlanations CNN Convolutional Neural

Network
SMI Skeletal Muscle mass Index LSTM Long Short-Term Memory

MMSE Mini-Mental State
Examination ResNet Residual neural Network

MFS Mores Fall Scale GAP Global Average Pooling
TUG Timed Up and Go FC Fully Connected

BBS Berg Balance Scale LRP Layer-wise Relevance
Propagation

ROM Range of Motion CAM Class Activation Mapping
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