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Abstract: The efficiency of micellar solubilization is dictated inter alia by the properties of the
solubilizate, the type of surfactant, and environmental conditions of the process. We, therefore,
hypothesized that using the descriptors of the aforementioned features we can predict the solu-
bilization efficiency, expressed as molar solubilization ratio (MSR). In other words, we aimed at
creating a model to find the optimal surfactant and environmental conditions in order to solubilize
the substance of interest (oil, drug, etc.). We focused specifically on the solubilization in biosurfactant
solutions. We collected data from literature covering the last 38 years and supplemented them with
our experimental data for different biosurfactant preparations. Evolutionary algorithm (EA) and
kernel support vector machines (KSVM) were used to create predictive relationships. The descriptors
of biosurfactant (logPBS, measure of purity), solubilizate (logPsol, molecular volume), and descriptors
of conditions of the measurement (T and pH) were used for modelling. We have shown that the
MSR can be successfully predicted using EAs, with a mean R2

val of 0.773 ± 0.052. The parameters
influencing the solubilization efficiency were ranked upon their significance. This represents the first
attempt in literature to predict the MSR with the MSR calculator delivered as a result of our research.

Keywords: rhamnolipid; biosurfactant; micellar solubilization; efficiency; MSR; QSAR; prediction

1. Introduction

Next to wetting, mobilization, and emulsification, solubilization is a common mecha-
nism supporting a variety of domestic and industrial processes, starting from everyday
hygiene, washing dishes and doing laundry, including environmental protection and drug
delivery systems. For example, in environmental protection, solubilization is an inherent
stage of water and ground remediation [1–3], which results in a significant increase of
pollutants bioavailability for compatible microorganisms [4], therefore supporting self-
purification or engineered purification of contaminated sites. In regard to drug delivery
systems, solubilization serves not only for the preparation of normally water insoluble
drug formulations, but also for their targeted delivery, e.g., in anti-cancer therapies [5,6].
Moreover, solubilization forms an important aspect of the efficient functioning of our
digestive system, where human surfactants, i.e., bile salts solubilize consumed fat in order
to increase the interfacial surface for enzymatic action of lipase/colipase complex [7].

For any given solubilization application it is crucial to reduce the environmental
and human impact, and at the same time provide high efficiency. The human impact of
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solubilization is especially pronounced by the surfactants’ tendency to irritate human skin
in domestic applications, whereas the environmental impact is mostly characterized by
their resistance to biodegradation [8,9]. Therefore, an alternative to synthetic surfactants is
commonly found among natural surfactants, i.e., biosurfactants, with rhamnolipids (RLs)
being the most widely examined and commercially available group [10,11].

RLs are glycolipids produced by variety of microorganisms, often pathogenic, to
support foundations of microbial life, i.e., food absorption or biofilm development [12,13].
For industrial purposes however, special emphasis is paid to biosurfactant production by
non-pathogenic strains [14–17]. It allows not only to meet health and safety requirements in
bioprocessing, but also to satisfy high requirements for raw materials for pharmaceuticals
and cosmetics production. RLs are considered being active in a wide range of pH [18,19]
and salinity [19], low- or non-toxic [20], easily biodegradable [20,21], and mild to the
skin [22,23]. Except positive effects of RLs, there were reported cases where the biosurfac-
tant either had no impact or even influenced the process negatively. The latter was rather
matrix-dependent, i.e., resulted from the presence of co-contaminants next to RLs [24]. Such
cases concerned e.g., preferential use of RL as a carbon source by bacteria and resulting lack
of stimulation of hydrocarbon degradation [25] or increase of diesel oil phytotoxicity [26].
Notwithstanding, these do not undermine the general overtone of literature, bringing
RLs to the position of green surfactants. Not without significance are the facts that CMC
of RLs is low compared to synthetic surfactants (Table S1), and they were reported to
solubilize hydrocarbons at concentrations even below the CMC [27]. These altogether
make RL biosurfactants suitable for many domestic and industrial applications, implying
they can be applied at reduced quantities, compared to synthetic surfactants. In spite of
vast number of research on efficient methods for RLs production [28–30], the overall cost
of the synthesis is high, and therefore limits the potential to widely replace surfactants
with petrochemical origin. In the scientific world, multidimensional efforts are made to
overcome this obstacle [31].

The efficiency of solubilization is most commonly presented in the form of weight or
molar solubilization ratio (WSR and MSR, respectively) and is expressed as the ratio of the
amount of solubilizate to the amount of surfactant used, as shown in Equation (1):

MSR =
C − CCMC

Csur f − CMC
(1)

where C is the concentration of solubilized compound in a micellar solution, CCMC is
the solubility of solubilized compound in a micellar solution at the CMC, CSurf is the
concentration of the surfactant, and CMC is the critical micellar concentration of the
surfactant. For instance, the MSR for n-dodecane varied from 0.27 [32] to even 2.91 [27],
and the MSR for n-hexadecane was 5.2 [33].

The MSR may vary upon different factors connected with the rhamnolipid itself, the
solubilizate, but also upon the experimental/industrial conditions. The MSR is crucial
for the application of biosurfactants for several purposes in the industry. Being able to
predict the MSR, one could more easily find an efficient surfactant for target application
and limit the number of experiments needed for the research. In case of rhamnolipids, this
could also be a step forward to design biosynthesis of these biomolecules, as the process
usually results in obtaining a mixture of different congeners. The congeners differ in basic
physicochemical properties, e.g., CMC or the ability to stabilize emulsions. Therefore, a
deep understanding of structure–property dependences would allow for the design of
the mixtures of rhamnolipids with properties adjusted for different applications. This
could be reached by applying quantitative structure–property relationship (QSPR) models.
The QSPR is nowadays one of the most commonly used in silico method for testing
chemicals [34]. It is a tool for computational modelling, which shows molecular structures
of tested chemicals in terms of descriptors later used to predict physical and biological
properties [35].
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To determine physical or biological activity quantitatively, minimal concentration
of tested chemical giving some response is used. By analysis of those responses we can
evaluate parameters having the highest influence on the activity of tested compounds.
To obtain such information physicochemical parameters (descriptors) are used in QSPR
models. Descriptors characterize tested chemical and should be selected by taking into
account their relevance for the property under investigation. Different features of the
molecule, such as thermodynamic, structural, and electron, can be described by descriptors.
QSPR analysis allows then for the determination of most significant descriptors. In addition,
it allows for the prediction of the properties of investigated compound within a certain
descriptor range.

Even though methods of QSPR for surfactants [36] and ionic liquids are common [37],
surprisingly no one has yet attempted to predict the MSR. This is especially unusual,
considering the industrial importance of the parameter. Commonly, in technological
applications relying on incorporation of insoluble drugs or active anti-aging substances
into micelles or other carriers, the general rule is the larger the MSR, the better. However,
this is not always the case; for example, a lower MSR opens the possibility to separate
components in biological matrices or model non-aqueous phase liquids of environmental
importance [38], as shown in Table 1.

Table 1. Exemplary results of selective solubilization of components from matrices of biological or environmental signifi-
cance with an application of different surfactants. Shown are compounds selectively solubilized over other components of
the matrix, thereby highlighting the need for a targeted molar solubilization ratio (MSR).

Process Surfactant Matrix
Compound
Selectively
Solubilized

Ref.

Separation of proteins
with similar, low

molecular size from
their ternary mixture

Anionic surfactant:
Aerosol OT/AOT (sodium di-2-ethylhexyl

sulfosuccinate)

Ternary mixture of
LMW proteins
(ribonuclease-a,

cytochrome-c and
lysozyme)

Ribonuclease-a or
cytochrome-c or

lysozyme
[39]

Selective solubilization

Nonionic surfactants:
Brij 30, C12E4Brij 35, C12E23

Tergitol NP10, C9PE10.5
Triton X-100, C8PE9.5Tween 80, C18S6E20

Naphthalene,
hexadecane and/or

phenantrene

Naphtalene or
phenantrene [40]

Selective solubilization

Cationic surfactants:
Cetylpyridinium chloride, C16PyrCl

Dodecyl ammonium chloride, C12NH3Cl
Dodecyl trimethyl ammonium chloride,

N[C12,C,C,C]Cl
Anionic surfactants:

Sodium dodecyl sulfate, C12SO4Na
Sodium diamyl sulfosuccinate (Aerosol AY)

Benzene-hexane
mixtures Benzene [41]

Selective solubilization
of PAHs from NAPL

Nonionic surfactants:
Brij 30, C12E4
Brij 35, C12E23

Tergitol NP10, C9PE10.5
Triton X-100, C8PE9.5Tween 80, C18S6E20

Ternary mixtures of
naphtalene,

phenantrene and
hexadecane

Phenantrene 1 [42]
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Table 1. Cont.

Process Surfactant Matrix
Compound
Selectively
Solubilized

Ref.

Competitive
solubilization of
naphthalene and

pyrene

Nonionic surfactants:
Brij30, C12E4
Brij56, C16E10

Cationic surfactants:
Dodecylethyldimethyl ammonium bromide,

N[C12,C2,C,C]Br
Cethyltrimethyl ammonium chloride,

N[C16,C,C,C]Br
Anionic surfactant:

Sodium dodecyl sulfate, C12SO4Na

Binary mixtures of
pyrene and
naphthalene

Pyrene [38]

Selective solubilization
of glycerolipid and

glycoprotein species
from isolated human

erythrocyte membranes

Nonionic surfactant:
Triton X-100

Isolated human
erythrocyte membranes Glycolipid, glycerolipid [43]

1 or reverse, depending on the type of surfactant used in experiment; E—oxyethylene group; PE—oxypropylene group; types of surfactants
were marked in italic.

Biosurfactants have a wide range of characteristics, with a wide range of MSRs as
shown in Table 2. The question is, therefore, which biosurfactant is most suitable for
which application? To answer that question, we need to be able to predict the MSR.
Even though methods for predicting micelles formation are common [36,44], prediction
of the MSR has never been attempted. The only literature example of a related concept
concerns microemulsions. The hydrophilic–lipophilic deviation (HLD) concept [45,46]
was used to determine the composition of surfactant formulations for cosmetics, drug
delivery and detergency [47], oil spills removal [48], enhanced oil recovery [49], also
considering biosurfactant application [47]. However, the concept uses several descriptors
that have to be determined experimentally prior to calculation, i.e., optimal salinity, critical
curvature, equivalent carbon atoms number and empirical constant K. In addition, the
HLD concept concerns Winsor type III microemulsion. This middle phase, bicontinuous
system is known for its high solubilization capacity, but can be formed only in a narrow
salinity [50,51], and temperature range [47]. That excludes many practical applications
of the microemulsion, as even simple dilution of the formulation for cleaning purposes
would disturb the equilibrium of the system and lead to transformation to Winsor type I or
type II.

Table 2. Range and diversity of different parameters used for creation of model to predict MSR of BS in aqueous system.
These represent the bounding box applicability domain according to Sahigara et al. [52].

Parameter Impurity logPBS CMC [mg/L] logPsol Vm sol. [Å3] pH T [◦C] MSR

Min. value 0 4.51 0.0010 2.69 94.19 4 20 1.35 × 10−5

Max. value 2 5.21 700.00 9.00 314.59 9 30 82.10
Mean 0.73 4.88 101.98 5.80 207.04 6.76 24.0 4.97

SD 0.80 0.22 118.20 1.99 59.42 0.78 2.7 16.06

Therefore, the purpose of this research was to use a series of chemical and phe-
nomenological descriptors to predict the solubilization efficiency of different compounds
in biosurfactant solutions, and then rank them upon their significance. The prediction will
use the descriptors of both, the biosurfactant, and the solubilizate, but also the conditions
of the measurement, which to our knowledge, is a first such attempt. The data used for
this come from literature [1,4,27,33,53–68] as well as experiments.
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2. Results and Discussion
2.1. Solubilizing Properties of Rhamnolipid Biocomplex

For QSPR models it is crucial to have a wide applicability domain, i.e., the space
determined by descriptors on which the model was built and where it will be further
applicable [69]. The literature dataset covered only narrow purity range of biosurfactants.
In order to build a model covering a wider range of biosurfactants we therefore examined a
new type of biosurfactant, i.e., rhamnolipid biocomplex with alginate (RBC). RBC belongs
to 3rd class of purity according to classification published before [36], that was hardly
represented in the literature dataset collected (ESI MSR dataset with MICE). What is more,
rhamnolipid biocomplex is a cheaper and more environmentally friendly alternative than
purified rhamnolipids [36].

We have determined the influence of pH on the solubilization efficiency of dodecane
in RBC solutions (Figure 1A). We observed that the concentration of dodecane increased
with increasing RBC concentration. This is due to parallel increase of number of micelles to
receive solubilizate. The increase was very steep at pH 5 and significantly milder at pH 7
and 9. The change of slope was obviously reflected by the decrease of MSR values from
4.84 ± 0.19 in acidic to 0.26 ± 0.02 in alkaline conditions (Figure 1B). This can be explained
by change of solubility and dissociation of RLs with change of pH. RLs are weak acids
with pKa of 5.6 [70]. At pH 5 RL-carboxylic groups are protonated and of limited solubility.
We hypothesize that solubilizate may then act as solubility nuclei that supports formation
of micelles. Pre-micelles formation was previously described in literature [71], except in
our case they would be filled with the solubilizate. It was already reported that RLs are
able to solubilize hydrocarbons at concentrations below the CMC [27]. With change of pH,
surfactant aggregation behavior changes as well. Shin et al. [72] found that rhamnolipids
form vesicles in acidic, and micelles in alkaline conditions. The latter have significantly
lower solubilization capacity.

We have also performed solubilization of dodecane in the solutions of different bio-
surfactant preparations, namely with use of model RBC (i.e., pure RLs mixtures with
alginate at different mass ratios) and pure RLs (JBR 425) (Figure 1C). The experiments were
performed at pH 7, so that the influence of alginate on solubilization is not overshadowed
by the impact of dissociation, solubility or pre-micellization of RLs, as discussed above.
Surprisingly, no clear trend was observed. The highest MSR was found for model RBCs,
i.e., JBR: Alginate mixtures (1.11 ± 0.10 and 0.98 ± 0.14 for 1.3:1 and 1:1 weight ratio,
respectively) as compared to 0.88 ± 0.04 for pure RLs (Figure 1D). Therefore, one could
conclude that the presence of alginate increases solubilizing properties or RLs although
alginate is not surface active. However, the biocomplex had the lowest MSR (0.63 ± 0.09),
although containing about 80% of RLs. It is possibly due to the presence of junk molecules.
JBR is composed of pure RLs, and model biocomplexes are composed of JBR and alginate,
whereas RBC is a product of biosynthesis that was not so deeply purified. It represents 2nd
Impurity class as compared to JBR 425, which represents 0 Impurity class. It was already
stated by us previously that junk molecules increase the CMC of RLs. At pH 7 the CMC of
JBR was 41.5 mg/L, whereas it was 62.1 mg/L for RBC [36]. Junk molecules may weaken
the solubilizing properties of RLs analogously to micellization properties. Increase of MSR
observed for model RBCs (Figure 1D) would indicate change of interactions between RLs
and alginate with increasing concentration of the latter one. Perhaps some adsorption at
alginate interface or even saturation may occur, likewise in surfactant-protein systems [73].
A more detailed physicochemical research would be required to confirm that hypothesis.

The obtained MSR values for RBC, pure RLs, and their mixtures with alginate (model
RBCs) at different pH conditions were further used to expand the applicability domain of
the model to predict MSR in different biosurfactant systems (ESI MSR dataset).
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Figure 1. Efficiency of dodecane solubilization in biosurfactant solutions: (A) The influence of pH on the dodecane
concentration in rhamnolipid biocomplex solutions (RBC) and (B) corresponding molar solubilization ratios (MSRs) values;
(C) dodecane concentration dependence on the concentration of different biosurfactant preparations at pH 7, and (D)
corresponding MSRs. JBR represents pure RLs (JBR425 of Jeneil), mixtures of JBR and alginate represent model RBC. With
increasing pH rhamnolipid aggregates change from vesicles to micelles and the sharp decrease of solubilization efficiency is
observed for RBC solutions.

2.2. Predicting MSR with EA and KSVM

The model to predict MSR was built on the combined literature and experimental
data and represented by the function logMSR = f(CMC, pH, logPsol, Vm sol, T, (im)purity,
logPBS) with evolutionary algorithm (EA) EureqaPro was generated 10 times. The results
of the modelling are presented in Table 3 and Figure 2.

The external validation results showed an advantage of the EA over KSVM model.
The average R2

val for ten validation sets were equal to 0.773 ± 0.052 and 0.166 ± 0.152 for
EA and KSVM, respectively (Table 3). The overall predictive power of EA model was also
much higher (R2 = 0.807, Figure 2A) than observed for KSVM model (R2 = 0.234, Figure 2B).
With R2 of 0.807 the correlation is considered to be strong [74]. Therefore, the MSR can be
successfully predicted using EAs. To check if the numerical relationship is not by chance
y-randomization technique was also applied. The method successfully validated the model
developed with EA. As can be seen from the results of the y-randomization (Table 3), the
real R2 was a statistical outlier, as opposed to the y-randomized R2 values, with a p value
of 0.006, indicating that the relationship between the MSR and descriptors is non-random.
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Table 3. Parameters obtained for ten models, used to obtain formula able to predict logMSR, after
115,000 generations. Average R2

val and average MSEval were calculated for ten validation sets.
Also shown are results of the y-randomization, indicating that the relationships are not due to
random chance.

Parameter
Chemometric Tool

EA KSVM

External validation:
R2

val ± CI 0.773 ± 0.052 0.166 ± 0.152
MSEval ± CI 0.296 ± 0.084 1.176 ± 0.483

Y-randomization:
G 2.613 -

G (Critical value) 2.355 -
p-value 0.006 -

Figure 2. The estimated predictive power of the model used for logMSR calculation. The opaque region is 95% confidence
interval (CI) of the regression. As can be seen the evolutionary algorithm (EA) approach performs better (A) than the kernel
support vector machines (KSVM) (B). Variable x in regression line equations denotes the log(MSR) measurement. The R2

values displayed in the figures are given with respect to outcomes of all ten testing sets.

In predicting logMSR kernel support vector machines (KSVM) did not perform sat-
isfactorily (R2

val = 0.166 ± 0.152, R2 = 0.234). Although, KSVM is considered an effective
regression tool for small datasets, it still suffers from the curse of dimensionality [75]. Al-
though it handles small datasets better than other regression techniques it still may become
useless if the ratio of observations to features is not big enough. The genetic algorithm
approach, like the one presented by Eureqa, is much more likely to succeed in case of
data sparsely distributed in the feature space. If the amount of the data does not allow
to estimate the functional relationship with statistical methods, fitting a surface may still
provide a tool for prediction.

Support vector machines are known to be useful in case of small datasets as it takes
into consideration the points that support the margin [76]. However, the dataset has to be
large enough to provide the sufficient number of points supporting the margin. Otherwise,
it is impossible to build the function in kernel space that would reflect the real relationships
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hidden in the data. If the dataset is unable to provide sufficient number of support vectors
then the prediction becomes poor.

In the considered case, we are unable to build a reliable KSVM predictor for the given
data, due to its insufficient size.

2.3. Sensitivity Analysis

All ten models (given in Table S5) created with EA for the dataset were subjected to
the sensitivity analysis [36]. The results of the analysis are shown in Figure 3A,B. As can
be seen from Figure 3A, according to EA sensitivity analysis MSR strongly depends on
CMC, and the influence of other parameters remains negligible. The importance of CMC
was confirmed by PLS analysis (VIP ≥ 1 [77]). Here in turn, also pH and T were found to
significantly alter solubilization efficiency (Figure 3B).

Figure 3. Sensitivity analysis for modelling of logMSR in biosurfactant solutions: (A) Average sensitivity towards each of
descriptors weighted according to number of appearances, obtained with evolutionary algorithm (EA); (B) average variable
importance in projection (VIP) analysis performed with PLS regression method. Error bars represent 95% CI. The Eureqa
evolutionary algorithm (EA) provides random model equations. The error in the sensitivity of the CMC is due to the large
range from 0.78 to 158 as shown in Table S5.

The results of sensitivity analysis are in agreement with literature. The dependence
of the MSR on CMC is evident from Equation (1), as micellar solubilization requires the
presence of micelles. As CMC is sensitive to pH changes, therefore this environmental
factor appears to alter the overall solubilization efficiency. Further, temperature may also
affect MSR. Just as in case of pH, this happens indirectly—by influencing CMC that already
appeared crucial for MSR prediction within both sensitivity analyzes (Figure 3A,B).

Surprisingly, the nature of solubilizate, namely its hydrophobicity/hydrophilicity
(expressed here as logPsol) seems to have no apparent effect on solubilization. Although lit-
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erature concerning micellar solubilization indicates that strongly hydrophobic solubilizates
(e.g., alkanes) incorporate in the core of micelle, and hydrophilic solubilizates incorporate
in palisade layer [78,79], this effect was found negligible for predicting MSR by both VIP
and EA sensitivity analyzes (Figure 3A,B).

2.4. PCA and Descriptor Overlap

PCA is a technique that projects the data into another feature space in which the
arising features are uncorrelated. The data features in the new space are called principal
components (PCs). The PCs are ordered due to the decreasing amount of information
(Eigenvalue) introduced into the dataset. They are usually presented in the form of a bar
chart (Figure 4A). Such knowledge allows to reduce the data dimensionality as the vectors
positioned at the last places usually introduce small amounts of information and can be
neglected without the significant losses. Apart from dimensionality reduction, PCA can
be used to estimate the correlation relationships of the original features. For this purpose
projection of the original features onto the plane created by the two most significant PCs is
done. The graphical presentation of this is the correlation plot (Figure 4B). In such a plot
vectors pointing along the similar lines are correlated. If they point at the same direction the
correlation is positive, if opposite the correlation is negative. As can be seen on Figure 4B,
both Vm and logP of the solubilizate are strongly overlapping, indicating that they provide
similar information to the model. The similarity of logPsol and Vm sol is clear, as a larger
Vm sol results in a larger logPsol, considering the collected range of the solubilizates. The
PCA results are in accordance with the results provided by EA sensitivity analysis. None
of 10 EA models delivered used these two descriptors simultaneously (Table S5). Other
variables are uncorrelated with any of the other features.

Figure 4. The results of the PCA analysis are shown. (A) shows the scree plot of the eigen-values, indicating that the data
can be reduced to about six variables. In (B), correlation plot of descriptors is presented.

3. Materials and Methods
3.1. Materials

Rhamnolipid biocomplex (RBC) was biosynthesized by Pseudomonas sp. PS-17 as
described previously [36] and is a complex of RLs with an exopolysaccharide, alginate. JBR
425 (lot. No. 040714) in a form of the 25% neutral aqueous solution of dirhamnolipid and
monorhamnolipid at 0.97:1 (w/w) ratio was kindly provided by the Jeneil Biosurfactant
Company (Saukwille, WI, USA). This sample is referred to pure RLs. Sodium alginate
(W201502) was purchased in Sigma-Aldrich (Poznań, Poland). Dodecane (99+, Lancaster)
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was purified from polar additives by passing through a column filled with calcinated
Al2O3 (120 ◦C, 2 h). Isopropanol (p.a., POCh Gliwice, Poland) was used as a solvent for
GC analysis.

3.2. Dodecane Solubilization

Rhamnolipid biocomplex (RBC), pure RLs (JBR425) and their mixtures with alginate
at 1.3:1 and 1:1 weight ratio (referred to model RBCs) were used as biosurfactant prepara-
tions of different purity for the current research. Aqueous solutions of the biosurfactant
preparations at the following concentrations 1.0, 2.5, 5.0, 7.5, and 10.0 g/L were prepared
by series dilution of 10 g/L stock solution. Ultrapure water (D4700, Barnstead) was used
for preparing the solutions. NaOH and HCl were used to set the pH. Aqueous (5 mL) and
oil phases (0.5 mL of dodecane) were mixed in 10 mL vials at 1500 rpm for 24 h with a hori-
zontal shaker (IkaVibrax VXR, Ika Technologies, Boutersem, Belgium) at room temperature.
Unsolubilized dodecane (excess) was separated from micellar phase by centrifugation at
5000 rpm for 15 min (MPW-350R, MPW Med. Instruments, Warsaw, Poland). Subsequently,
clear micellar phase was separated with a syringe through a silicone sealed hole in a bottom
of the vial and analyzed for the content of dodecane. All experiments were run in triplicate.

3.3. Solubilization Efficiency

Gas chromatography was used for determination of dodecane solubilization efficiency.
One milliliter of micellar phase was diluted with 4 mL of 2-propanol. Chrompack CP
9001 with XTI-5 capillary column (30 m × 0.32 mm, 1 µm) was used for GC analysis. The
analysis was performed at 180 ◦C, using a split feeder and FID at 250 ◦C. The injection
volume was 1 µL. An external calibration was used for quantitative analysis.

A simplified equation 1 was used to calculate MSR values. As the solubility of dode-
cane is negligible, CCMC ~ 0 was assumed. Considering high surfactants concentrations
used as compared to CMC, and linearity of C = f(Csurf) function in the examined range of
surfactant concentrations, the MSR equals to the slope (i.e., directional factor a) as follows:

MSR =
C − CCMC

Csur f − CMC
=

C
Csur f

=
∆C

∆Csur f
= tgα = a (2)

where α is a slope of C = f (Csurf) function, and a is a directional factor of thereof.

3.4. Data Collection

The modelling was performed on a dataset of MSR values collected from literature and
experimental data obtained for the purpose of this research. Google Scholar, which provides
a high coverage [80], was used for literature data collection. The years 1980–2017 were
covered in the search, however the first article was found in 1994. The following keywords
were used to search for the MSR data: Biosurfactant, rhamnolipid, monorhamnolipid,
dirhamnolipid, sophorolipid, emulsan, lichenisyn, surfactin, solubilization, MSR, and WSR
(molar and weight solubilization ratio, respectively). As a result, 21 publications were
found, resulting in 44 unique data points. However, only 11 of them provided continuous
data needed for modelling, resulting in a dataset with 23 literature data points. Missing
data in remaining 16 discontinuous datapoints were filled with Multiple Imputation by
Chained Equations (MICE) technique. Finally, the dataset used for modelling consisted
of 45 datapoints, out of which six were determined experimentally for the purpose of
this research (Table 2 and ESI: MSR Dataset). WSR data were recalculated into MSR
value using the Equation (S1). CMC was taken from each paper. Structural descriptors
of solubilizate and rhamnolipid (molecular volume Vm and logarithm of octanol-water
partition coeffiecient logP) were calculated using Molinspiration [81]. If the rhamnolipid
was present as a mixture, the weight percent mean was used, as shown in Tables S2 and S3.
The state of biosurfactant purification was expressed numerically based on reversed purity
scale published before [36] and is presented in Table S4.
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3.5. MICE

Multiple Imputation by Chained Equations (MICE) was used to extend the dataset
(composed initially of 29 data points), and fill the missing data gaps. Here we used an im-
plementation of MICE within XLSTAT (Adinsoft) [82]. Predictive mean matching was used
with 14 iterations. MICE methodology was validated as described by Łozińska et al. [77]
The normalized mean root squared error (NMRSE) graph is shown in Supplementary
Figure S1. MICE was utilized here to show that the model can potentially also be applied
to a larger variety of biosurfactants (i.e., alasan, and flavolipids).

3.6. Computational Modelling

The dataset was randomly divided into training and validation sets at 8:2 ratio [37,83].
This allows for external validation of the model [84]. In total 10 random training and
validation sets were created in order to obtain a truly representative relationship. This
methodology has been described in detail by [37,85].

Two methods for constructing models were applied. One was a parametric regression
method in which an expression is fitted to the provided data. The expression was con-
structed by evolutionary algorithm (EA). For this purpose EureqaPro software was used
(v1.24.0, build 9367). As the second kernel support vector machine (KSVM) regression was
performed. For this purpose, kernlab package in R [86] was used.

In total seven molecular descriptors related to MSR were used to develop a model.
Those included physical (CMC) and chemical descriptors (logP of BS and solubilizate,
impurity of BS), molecular volumes (Vm sol) and conditions present in aqueous system (pH,
T). The models were searched in a form of the following function logMSR = f(CMC, logPBS,
(im)purity, logPsol, Vm sol, pH, T).

Detailed descriptions of EA, PLS, and KSVM techniques have previously been pro-
vided by us elsewhere [36,77].

3.7. EA Generations

Due to the fact, that EureqaPro generates different equations for the same data sets
each instance it is run, modelling was repeated ten times to assure high reliability of final
model (the methodology for this was discussed further in our previous publication [36]).
Based on those ten measurements average R2 and average mean squared error (MSE) were
calculated to determine the end point of modelling (Figure 5).
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SD. The dashed line indicates the endpoint at 115,000 generations. The endpoint was chosen due to
the plateau region and lower SD in MSE and R2.
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3.8. Model Validation—Y-Randomization

Y-randomization was performed to exclude an accidental relationship between the
descriptors, and the dependent variable (MSR). In this case, 10 randomizations of the MSR
were conducted. The descriptors were left unchanged. Each set was modelled separately
using the EA as described before. The resulting R2 was compared to the non-randomized
R2 of the original set, and the Grubbs outlier test was used to determine the p-value of
the outlier.

3.9. SVM Regression Methodology

In order to perform KSVM regression each of the data features was rescaled to the
range of values varying from −1 to 1. A Gaussian kernel was chosen as this is usually the
best one for non-linear data [87]. The set of optimal hyper-parameters was determined
using the grid search with leave one out cross validation. The error margin tolerance was
set to ε = 0.01.

3.10. Sensitivity for EA and KSVM

The sensitivity of the model towards descriptors was analyzed only in case of the
EA outcome, as KSVM did not provide satisfactory results. Such sensitivity analysis
was performed with two methods, namely using EA sensitivity analysis [36] and partial
least squares variable importance of projection (PLS VIP) analysis [77,88]. The XLSTAT
implementation of PLS regression was used [82,89]. For cross validation, the jackknife
leave one out method was used [90]. The variables importance for the projection VIPs were
determined according to [91]. PCA was also conducted within XLSTAT.

An overall schematic of the research procedure is shown in Figure 6.

Figure 6. Schematic representation of the procedure used to create the models. EA — evolution-
ary algorithm; KSVM—kernel support vector machine; MICE—multiple implementation by chain
equations; PCA—principal component analysis; PLS—partial least squares.

4. Conclusions

To our knowledge the prediction of solubilization efficiency (MSR) in RLs solutions
was described for the first time. We have shown that MSR can be successfully predicted
with EA (R2

val = 0.773 ± 0.052). As opposed to HLD concept [48,49], vast majority of
descriptors for our MSR approach can be easily calculated with a software widely available
online. Therefore, the experimental effort is minimized.

Additionally, we have ranked the parameters influencing the MSR upon their signif-
icance. This in turn may enhance the ease of designing experimental work with rham-
nolipids, as the most crucial parameters for rhamnolipid solubilizing properties were
determined and systematized.
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The model will allow biosurfactants to be designed for specific applications, which
will enhance the use of these green surface active molecules. What is more, we aimed at
changing the approach of surfactant application. Currently, research is often aimed to deter-
mine the best application for a surfactant that was either selected or bio/synthesized for the
purpose of research [92–95]. However, here we propose to determine the optimal surfactant
a priori for the application of interest, e.g., to pre-select best rhamnolipid biosurfactant
for removing oil spill of known composition. We propose here the following hypothetical
scenario, where we assume that on one spring day (T = 20 ◦C) a p-xylene (logP = 2.83,
Vm = 117.17 Å3 [81]) tank truck is damaged due to road incident and the chemical spills
over the road and neighboring acidic ground (pH 5), which raises an urgent need for
ground remediation. The MSR calculator that we provide (ESI MSR calculator) allows for
quick selection of a biosurfactant that can be used, indicating the optimal biosurfactant will
be found among alasan (calculated MSR = 19.0), monoRL mixture (calculated MSR = 7.3), or
mixture of JBR425 and alginate 1:1 (calculated MSR = 2.34). Combining our new approach
with the required parameters of biosynthesis would result in “a recipe for rhamnolipid”
for a targeted application, which we are currently investigating further. The MSR model is
limited by range of parameters as defined by the applicability domain that comprise the
model. It is feasible, for example, that biosurfactants can be developed that have larger or
smaller MSR values in the future. The model should then be updated.

Supplementary Materials: The following are available online, complete dataset of MSRs used for
prediction, EA equations, and MSR calculator.
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