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•	 Systemic antibiotic prophylaxis (SAP) is well-established in arthroplasty to prevent periprosthetic joint infection. 
However, the optimal duration and dosing of SAP remain a matter of debate, as evidenced by ongoing 
discordance between recommendations and clinical practice, reflected in the heterogeneity and imprecision of 
national and societal guidelines.

•	 The evidence currently available regarding the duration of SAP is summarised and discussed, specifically the 
postoperative repeated administration of antimicrobials within the first 24 h.

•	 The evidence available suffers from limitations, specifically deficiencies in outcome assessments in the available 
randomised controlled trials. Observational studies suggest that a short postoperative prolongation (<24 h) 
of SAP in arthroplasty may result in superior long-term outcomes compared to a single dose, and that an 
optimal dosing strategy, which warrants further prospective evaluation, may involve ‘stacked dosing’ in the 
early postoperative period, with re-administration every two half-lives when using commonly recommended 
beta-lactam antibiotics, instead of repetition at usual dosing intervals over 24 h. A stacked approach would 
also cover recognised indications for repetition, such as major blood loss and increased duration of operation, 
potentially simplifying prescribing protocols.

•	 Pharmacokinetic simulations are provided to illustrate the distinct concentration–time profiles associated with 
different prophylaxis regimens.

•	 Prolonging SAP beyond 24 h is not recommended.

•	 This review concludes by providing recommendations for further research, particularly a call to document SAP 
regimens with sufficient detail (choice of drug, dose regimen, and duration of administration) into established 
national arthroplasty registries, which should rapidly enable a significantly more nuanced understanding of 
these critical issues than permitted by the current literature.
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Introduction

The efficacy of systemic antibiotic prophylaxis (SAP) 
to prevent surgical site infection (SSI) in arthroplasty, 
and its effect on the occurrence of periprosthetic 
joint infection (PJI), was first clearly demonstrated in a 
multicentre study from the United Kingdom and Sweden 
published in 1984 (1). Subsequently, the benefits of SAP 
have become well-established in this type of surgery, 
as documented in various systematic reviews with 
meta-analyses (2, 3, 4, 5, 6). SAP has demonstrated a 
relative risk reduction (RRR) by approximately a factor 
of 5 and a number needed to treat of 13 compared to 
no antibiotic administration, making it one of the most 
efficient measures to prevent SSI, respectively PJI, in 
arthroplasty (2).
However, the optimal duration and dosing of SAP in 
arthroplasty remain a matter of debate (3, 5, 7, 8). As 
previous systematic reviews and meta-analyses were 
unable to demonstrate a benefit for postoperative 
prolongation of SAP (3, 5, 9, 10, 11), current guidelines 
recommend the administration of a single dose only 
(6, 12). Nonetheless, it remains common practice 
in many countries to extend SAP postoperatively 
after arthroplasty (3, 5, 7, 8, 9, 13, 14, 15, 16, 17). In 
particular, the Norwegian guidelines recommend a 
short postoperative extension of SAP (16, 18), based on 
data from the Norwegian arthroplasty registry (19, 20). 
In contrast, other guidelines explicitly prioritize explicitly 
reducing antibiotic use in line with general principles of 
antimicrobial stewardship (21).
The aim of this review was, therefore, to provide a 
detailed analysis of the evidence available regarding 
single-dose vs postoperatively prolonged SAP regimens. 
Particularly, the review also encompasses observational 
studies, as the randomised trials available suffer from 
important limitations, in our opinion. Furthermore, 
an analysis of antimicrobial pharmacokinetic–
pharmacodynamic (PK–PD) factors relevant to surgical 
prophylactic dosing regimens is provided to better 
understand the potential efficacy of different SAP 
regimens, respectively, as well as the limitations of 
previous studies, and to prioritise SAP regimens for 
prospective evaluation. We conclude by presenting 
suggestions for further research that may resolve the 
ongoing uncertainty around postoperative prolongation 
of antimicrobials.

Methods

We have conducted a narrative review of the published 
evidence on the duration of SAP in arthroplasty. First, 
relevant publications are summarised and critically 
reviewed. The identification of the literature involved 
cross-referencing existing guidelines and reviews, along 
with a comprehensive literature search in PubMed 
and Google Scholar, using the keywords ‘arthroplasty’ 

and ‘antibiotic prophylaxis’. We then present evidence 
related to antimicrobial PK–PD relevant to arthroplasty 
prophylaxis. Pharmacokinetic simulations using 
literature-derived typical parameter values were 
conducted using Simulx 2023R1 (Lixoft, Antony, France) 
in order to illustrate the PK–PD implications of different 
dosing regimens. Graphical illustrations were created 
using R version 4.3.1 (R Foundation for Statistical 
Computing, Vienna, Austria) within RStudio 2023.06.2.

Evidence from non-randomised studies
Observations from the Norwegian arthroplasty registry 
(19) provide key information regarding the duration 
of SAP, as it is the only source combining data about 
the choice of SAP and long-term outcomes in total hip 
arthroplasty (THA). While no significant difference was 
identified depending on the SAP regimen regarding 
revision for PJI among the 22 170 THA included, a major 
difference was observed in the long-term revision risk 
for all causes, particularly for aseptic loosening (Fig. 1). 
Administration of four doses of beta-lactam antibiotics 
within the first 24 h was associated with a RRR of 
3.5 times (95% CI: 2.1–5.8, P < 0.001) at 10 years for 
revision for all causes compared to a single-shot SAP, 
after adjusting for potential confounders such as age, 
gender, duration of operation, type of ventilation in the 
operating room, type of prosthesis fixation, cement type, 
and addition of antibiotics within the cement. Based on 
these findings, the Norwegian guidelines recommend 
the administration of four doses of a first-generation 
cephalosporin as SAP in arthroplasty (16, 18).
Notably, the relative magnitude of the effect of repeated 
administration over 24 h was similar to the benefit of 
administration of any SAP compared to no prophylaxis 
at all (1, 2). Even if such a high RRR represents a strong 
argument (22) in favour of a postoperative prolongation 
of SAP, this aspect should be examined in greater detail. 
As only 46 revisions for PJI were reported (19), the 
power of any subgroup analysis is greatly limited when 
solely this reason for revision is analysed. A well-known 
limitation of arthroplasty registries is the registration of 
the reason leading to revision. Typically, the case report 
form is filled out at the end of the operation, whereas 
the final diagnosis may not be available until later. This 
is particularly true for PJI, as results of microbiological 
cultures are available only several days later (23, 24, 
25, 26). For this reason, the International Prosthesis 
Benchmarking Working Group recommends analysing 
the global revision rate rather than focussing solely on a 
single reason for revision, as many diagnoses overlap or 
may not have been appropriately recognised (27). These 
arguments, however, increase the weight of the findings 
regarding all-cause revision rates. In the Norwegian 
arthroplasty registry, the 10-year revision rate for all 
reasons was 2.3% in the subgroup receiving four doses 
of SAP within the first day, compared to 8.8% in the 
single-shot group (Fig. 1) (19). For aseptic loosening, the 
10-year revision rates were 1.5% vs 5.9%. At 15 years of 
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follow-up, as may be extracted from the Kaplan–Meier 
analysis, the rates were 4.2% vs 11.9% for all-cause 
revision and 2.9% vs 8.8% for aseptic loosening (Fig. 1) 
(19). Despite no significant effect on the revision rate 
for PJI, the effect on global revision rates and revision 
rates for aseptic loosening was substantial. It cannot 
be argued that the revision rates in the best subgroup 
are simply low for historical reasons, as a 10-year 
overall revision rate of 2.2% corresponds to the best 
results currently observed in the Australian arthroplasty 
registry, also for THA with cemented stems (28).

As results from 1987 to 2001 are reported, major 
changes in diagnostic microbiological practices 
implemented since then must be considered (19, 
29). At that time, microorganisms with low virulence 
were not recognised as being pathogenic (30). These 
microorganisms could not even be consistently 
identified, as necessary optimisations of microbiologic 
culture methods were established only at a later 
time (23, 25, 26, 31, 32, 33). In particular, systematic 
collection at revision of microbiologic samples in 
sufficient numbers and with the necessary quality 
later became the standard of care, including the 
replacement of swabs with tissue biopsies (34, 35, 36, 
37). The reported revision rate over time in the group 
receiving a single-shot SAP was also surprisingly high 
for THA with cemented stems, particularly in the short-
term follow-up, in comparison to observations from 
other national arthroplasty registries and despite 
considerations of improvements in revision rates in 
THA over time (28, 38). The reported revision rate for 
PJI of only 0.3% (46 PJI among 14 465 THA in the group 
with SAP) (19) is also very low compared to the rate 
of 1% observed in THA in studies matching data from 
contemporary registries (39, 40, 41). Thus, it can be 
speculated that many of the so-called aseptic revisions 
described had been unrecognised PJI of low virulence, 
thus providing a potential causal explanation for the 
influence of the various regimes of SAP (Fig. 1) (19). 
Improved awareness and diagnostics may well explain 
the increasing PJI rates observed in the Norwegian 
arthroplasty registry between 1987 and 2007 (42).

Two large studies from other arthroplasty registries 
also addressed the question of the duration of SAP (15, 
43). Although both studies failed to identify any effect 
regarding the repetition of SAP, both considered only 
revisions for PJI, as opposed to revisions for all causes, 
and limited follow-up to 12 months only. Thus, as 
argued above, these studies may have been incapable 
of detecting any potential effect of SAP duration, due to 

Figure 1

Cox-risk-adjusted Kaplan–Meier survival curves from the Norwegian 
arthroplasty registry of cemented THA implanted from 1987 to 2001, for 
any revision (A), for revision due to aseptic loosening (B), and for revision 
for PJI (C) as endpoints (reproduced from reference (19)). Age, gender, 

duration of operation, ventilation type of the operating room, risk factors 
related to cement type and component type, as well as the 
administration of SAP and antibiotics in the cement, were included in the 
risk adjustment. Data presentation was broken down into the various 
groups of SAP. The main number indicates the duration of SAP in days, 
whereas the number in subscript indicates the number of doses 
administered within the first 24 h postoperatively.
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inadequate outcome measurement. The first of these 
studies, a retrospective single-centre study of a mixed 
population of 20 682 THA and total knee arthroplasty 
(TKA), examined the PJI rate at 12 months follow-up and 
reported a non-significant odds ratio of 0.755 (95% CI: 
0.489–1.166, P = 0.205) of single-dose vs 24 h of cefazolin 
or vancomycin in a multivariable analysis (43). Patients in 
the single-dose group were those who were discharged 
on the day of the operation, whereas the standard 
of care was repeated administration of SAP for 24 h. 
This potentially induces a bias, with healthier patients 
being in the outpatient group. Notably, the subgroup 
with postoperatively prolonged SAP had significantly 
more patients with obesity, more comorbidities, and 
a more frequent administration of vancomycin as SAP. 
Vancomycin is associated with a higher SSI rate than 
beta-lactam antibiotics (44). Furthermore, the study 
combined THA and TKA, despite the latter having up 
to twice the revision rates for PJI as THA (39, 40, 41). 
Together, these issues raise the possibility of incomplete 
adjustment for potential confounders, which may have 
led to a biased estimate of the treatment effect. The 
second study, from the Dutch arthroplasty registry, 
investigated the rate of complete component exchanges 
for PJI at 12 months follow-up in a mixed population 
of 242 179 THA and TKA (15). Group attribution was 
determined by the standard of care in the treating 
hospital, as the Dutch arthroplasty registry does not 
register SAP at the patient level. While the publication 
concludes that there is no effect, analysing THA and 
TKA separately, it may be noted that an adjusted hazard 
ratio of 2.21 (1.12–4.38) was found for cefazolin single 
dose vs multiple dose in THA, although this effect 
was not identified for cefuroxime nor in TKA. Finally, 
a substantial proportion of revisions for PJI are likely 
to have been missed in this study, as only complete 
component exchanges were considered, whereas 
prosthesis-retaining treatments would be indicated 
most frequently in early postoperative PJI (45, 46, 47). 
Arguing in favour of such a bias would be the very low 
rate of revision for PJI reported, of only 0.3% (399 of 130 
712 THA and 303 of 111 467 TKA) (15).

Methodological arguments
Randomised controlled trials (RCTs) have been placed 
at the top of the hierarchy of evidence – commonly 
visualised as the ‘pyramid of evidence’ – as this study 
design permits a direct and (statistically) unbiased 
estimate of the treatment effect in the population 
from which the individuals in a study are recruited. 
Conversely, due to the risk of confounding in non-
randomised designs, observational studies have been 
relegated to the lower tiers (48, 49). However, as many 
authors have pointed out, simply ranking study designs 
in this uniaxial manner, while ignoring the specific 
strengths and weaknesses of relevant studies along 
other axes of evidence (for example generalisability, 
methods of outcome assessment), may be misleading 

(49). Conversely, causality may well be strongly 
suggested by observational studies if the totality of the 
evidence supports this conclusion, particularly in the 
setting of large relative risks persisting after confounder 
adjustment (22, 50). A classic example would be the 
relation between smoking and lung cancer, with 
causality being accepted based on a chain of arguments 
and sufficient relative risk, without the requirement for 
proof by RCT (51). The exact relative risk sufficiently 
strong to dominate theoretical concerns around residual 
confounding risk is a matter of debate, but values 
of 5–10 have been suggested. Even if not that solid 
from a statistical point of view, a relative risk of 2 may 
already be enough to have causality being accepted in 
a lawsuit (52). Rare events occurring at a late interval 
following an exposure/intervention of interest may be 
better investigated by observational designs, such as 
register-based cohort or case–control studies (53). PJI 
is a rare event, affecting approximately 1% of THA and 
up to 2% of TKA (39, 40, 41). The additional difficulties 
in diagnosing PJI have already been discussed above, 
leading to an underestimation in any study. Diagnosis 
of PJI can be delayed, occurring more than 1 year 
postoperatively, and made only following revision (39, 
40, 41, 54). Thus considering the overall revision rate 
in arthroplasty registry studies is recommended as  
a better option than focussing on single reasons for 
revision (27). Many years of follow-up are required, 
a timeframe realistically recorded only in national 
registries, particularly as revision may happen in other 
institutions than primary care. Therefore, considering 
only randomised trials is a major shortcoming that 
affects the systematic reviews performed to date (2, 3, 
4, 5, 6, 9). Indeed, few would support the position that 
SAP should not be administered at all in arthroplasties 
performed on joints other than the hip, simply on 
the basis that there is no RCT evidence of a benefit 
over placebo available for other joints (4). To withhold 
postoperatively prolonged SAP based solely on the 
fact that no RCT, nor any meta-analysis limited to 
RCTs, has proven an advantage over single-dose SAP is  
similarly flawed.
A recently published study comparing repeated SAP 
with single-shot SAP combined with topical vancomycin 
(55) illustrates well the limitations of the randomised 
trials available. With only 165 cases included, the 
study was underpowered to investigate a complication 
affecting roughly 1% (39, 40, 41). Results numerically 
favoured repeated SAP, with 0 of 85 (0%) vs 3 of 80 
(3.8%) PJI, despite topical vancomycin having a probable 
effect in preventing PJI in both hip and knee primary as 
well as revision arthroplasty, as shown by various recent 
systematic reviews with meta-analyses of the literature 
(56, 57, 58, 59). This led to prematurely stopping the 
trial after an intermediate analysis, but proceeding 
thus may have induced another methodological (type 
2) error (60). The rather high PJI rate in the group of 
single-shot SAP with topical vancomycin also indicates 
some other, hidden perioperative issues (39, 40, 41). 
Some RCTs are planned or ongoing to compare single 
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shot with prolonged SAP (ClinicalTrials.gov Identifier 
NCT03283878 and NCT04297592). However, we are 
concerned that these studies may fail to identify a 
difference between the regimens due to the relatively 
short follow-up periods. The planned duration of 
follow-up may be insufficient to identify implant 
loosening caused by low-virulence organisms that may 
take many years to manifest.

Pharmacokinetic–pharmacodynamic  
considerations
Knowledge of the PK–PD factors influencing SAP efficacy 
is critical to a rational evaluation of the literature 
and to evaluate generalisability. First- or second-
generation cephalosporins (e.g. cefalotin, cefazolin, and 
cefuroxime), along with anti-staphylococcal penicillins 
(e.g. cloxacillin), are usually recommended for SAP in 
arthroplasty due to their antibacterial spectrum and 
low risk of toxicity (3, 6, 7, 8, 12, 14, 16, 61, 62, 63). 
The PK–PD index best-describing beta-lactam efficacy is 
the time of exposure of the free (unbound) drug above 
the minimal inhibitory concentration of the target 
microorganism (fT>MIC) (63, 64, 65, 66, 67, 68, 69, 
70, 71). Classical observations performed in historical 
(neutropenic) animal models initially established a PK–
PD target of 40–50% fT>MIC (63, 64, 65, 66, 67, 68, 69, 
70, 71). Conversely, more recent publications argue for 
optimal bacterial killing at concentrations maintained 
permanently above 4–6  ×  MIC (63, 69, 72). Some 
national intensive care guidelines have been adapted 
accordingly (73). As only some hundreds of bacteria are 
sufficient to cause implant-related infections (74, 75), 
high PK–PD targets may well be preferred (on a risk-
benefit basis) in arthroplasty SAP, particularly during 
the early postoperative period (first few hours), even if 
no strong clinical evidence is available. Thus, it is useful 
to explore the potential implications, with respect to 
PK–PD target attainment, of different dosing regimens. 
For the purposes of illustrating cephalosporin and 

penicillin dosing regimens in arthroplasty, a simple one-
compartment model describing plasma concentrations 
is a useful starting point and physiologically justified, 
as diffusion of these highly hydrophilic drugs into the 
extracellular space is fast and broadly reflected by 
serum concentration (71, 76, 77, 78). Note that historical 
studies describing concentrations in homogenised 
bone (i.e. containing all components of bone tissue) 
are misleading (79), as bacteria do not invade osteoid 
but remain in the extracellular space (disregarding 
intracellular persisters relevant in established infection), 
even if invading bone canaliculi (80, 81).

Using PK parameters derived from the literature (Table 1),  
various typical serum concentration–time profiles 
were simulated for an 80 kg individual with normal 
renal function for cloxacillin, cefalotin, cefazolin, and 
cefuroxime (Fig. 3). As the simulations consider total 
(bound + unbound) drug, and because only the unbound 
fraction is microbiologically active (65, 82), the target 
concentration has been adjusted according to typical 
protein binding (PB) according to

	target concentration mg L MIC PBECOFF/ / % /� � � �� �� �� �1 100 	

where MICECOFF corresponds to the epidemiological cut-
off MIC for Staphylococcus aureus (87). These simulations 
illustrate the potential implications of different dosing 
regimens: (i) single-dose SAP, (ii) multi-dose SAP at 
standard dosing intervals, and (iii) stacked multi-dose 
SAP, where the antimicrobial is re-dosed at every two 
(typical) half-lives of the drug for a total of four doses, 
as recommended in the Norwegian guidelines (16, 18). 
Considering the very high susceptibility of implants to 
infection (74, 75), a more aggressive PK–PD target of  
5  ×  MIC is investigated, in addition to the classical  
1  ×  MIC threshold. Finally, the serum elimination half-
life must be considered in any analysis of dosing 
regimens, as PK–PD target attainment differs greatly 
for drugs with a very short half-life (e.g. cloxacillin, 
approximately 22–36 min) vs those with modestly longer 

Table 1 Summary of the pharmacokinetic parameters of the antibiotic drugs most commonly recommended for SAP in 
arthroplasty. Values are indicated for healthy adults. Values may differ in the case of obesity and disease, as well and particularly 
in the case of severe renal failure. The majority of candidates for arthroplasty are, however, to be considered healthy enough for 
these values to be transposed in this patient population for illustrative purposes. Sources of the pharmacokinetic parameters are 
indicated.

Drug References AVD, L/kg
Protein 

binding, % EH-L, min Clearance, L/h MIC*, mg/L
PBA MIC, 

mg/L

Cloxacillin 72, 78, 87, 88, 89, 90, 91, 92, 93 0.10 94 22–36 9.2 0.5 8.3
Cefalotin 94, 95, 96, 97, 98 0.07–0.20 65–80 30–54 11.1 1 4.0
Cefazolin 83, 94, 96, 97, 99, 100, 101, 102 0.10–0.15 80–90 84–120 4.6 2 13.3
Cefuroxime 77, 94, 103 0.17–0.20 20–50 80 8.3 4 5.0
Ceftriaxone 84, 85, 97 0.08–0.25 67–96 348–870 0.96 8 200
Clindamycin 86, 104, 105, 106 0.79 62–94 120–180 16.2 0.25 1.67

*MIC for S. aureus from reference 83.
AVD, apparent volume of distribution; EH-L, estimated half-life; MIC, minimum inhibitory concentration; PBA, protein binding adjusted.
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half-lives (e.g. cefazolin, approximately 84–120 min).  
Any analysis lumping together these regimens risks 
obscuring important differences related to the duration 
of effective antimicrobial concentrations.

If drugs with such short elimination half-lives are 
applied more than 60 min before incision, half or 
more of the drug already has been eliminated before 
surgery starts. Consequently, increased infection rates 
are observed in the case of administration >60–120 
min before incision (17, 44). Contrary to common belief, 
infection rates may not increase significantly if the 
SAP is administered within 60 min after incision (17, 
44). Nevertheless, SAP does not lose its positive effect 
even if applied with a delay, with the application of a 
tourniquet, of course, creating an exception (76). The 
administration of additional doses at short intervals 
during the procedure and in the hours that follow 
ensures optimal concentrations without drops below 
desired thresholds (Fig. 2). Considering that biofilm 
requires approximately 1 day to start forming (108, 
109), it should not be surprising that a favourable 
effect of SAP may be observed during the early 
postoperative phase, when microorganisms are still in 
planktonic form, highlighting the need for targeting 
high antibiotic concentrations during this critical 
period. Systematically repeated administration has the 
advantage of overcoming the loss of efficacy in case 
of increased delay until incision and would be more 
robust to specific situations potentially compromising 
effective antimicrobial concentrations during the critical 
period, such as longer operation times or greater blood 
loss, where repeated dosing usually is recommended 
anyway. As cefazolin and cefuroxime have a relatively 
longer half-life, the same number of doses may not be 
necessary to cover the same duration as for cefalotin 

and cloxacillin. Some authors mention the apparent 
volume of distribution (AVD) as a pharmacokinetic 
parameter to be considered, specifically to justify dose 
increases in the case of obesity (7, 68, 83, 110). However, 
it is crucial to understand that increasing the dose of 
these antibiotics primarily influences peak concentration 
(Cmax). For antibiotics used in orthopaedic prophylaxis, 
Cmax, however, is not decisive for the bactericidal 
effect, as they belong to the class of beta-lactams, 
with a time-dependent effect (64, 65, 66, 67, 68, 71). A 
more efficient strategy for maintaining time above an 
effective concentration is to administer further doses, 
rather than increasing the dose. Toxicity associated 
with beta-lactams should not be an issue, particularly 
with short administration, even in the case of stacked 
administration (63, 73, 84).

Finally, yet importantly, the only RCT available regarding 
SAP in the internal fixation of closed fractures is 
worthwhile to be mentioned (111). This study proved 
a substantial reduction in SSI for SAP with ceftriaxone 
(5 of 1105 cases) compared to placebo (41 of 1090 
cases). While this publication is a milestone for SAP in 
internal fracture fixation, it often is discarded arbitrarily 
in discussions about SAP in arthroplasty. However, 
the pathomechanisms of infection and the spectrum 
of microorganisms are similar between fracture 
fixation devices and joint replacements (112, 113). 
Particularly interesting is the fact that ceftriaxone is an 
antibiotic drug with a long half-life usually requiring 
administration only once a day (84). These results may 
well be explainable by the long half-life of ceftriaxone, 
which ensures adequate postoperative exposure, in 
contrast to first and second-generation cephalosporins 
(114, 115, 116). This RCT, in fact, studied SAP effective 
for more than 24 h. A single dose of a drug with a 

Figure 2

Pharmacokinetic simulations of antibiotic drugs 
typically administered for SAP in arthroplasty. A 
one-compartment model was used, with the 
pharmacokinetic parameters derived from the 
literature (Table 1), applied for a healthy 80 kg 
individual. The lower dashed line corresponds to 
a target concentration of 1× MIC, whereas the 
upper dashed line corresponds to 5× MIC. The 
blue curve corresponds to a single dose. The red 
curve corresponds to regular intermittent 
administration for antibiotic treatment. Please 
note that the usual administration of cefuroxime 
would be every 8 h, as for cefazolin, but may be 
increased to every 6 h, as illustrated. The green 
curve corresponds to stacked administration, one 
dose every two half-lives of the drug. Stacked 
administration provides the best coverage during 
the period of interest, particularly for drugs with 
a very short half-life, such as cefalotin or 
cloxacillin, and also offers the shortest exposure 
to antibiotics.
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short half-life may not be considered equivalent from a 
pharmacokinetic point of view. Due to elevated protein 
binding, ceftriaxone is sometimes not considered a 
drug of choice for the treatment of staphylococcal 
infections, despite the fact that the activity of beta-
lactams correlates to the concentration of the unbound 
drug (65, 84, 85, 117, 118, 119). Accordingly, cefalotin 
also has a high protein binding, and may thus be 
affected similarly, despite its recognised adequacy 
for SAP, supporting the notion that pharmacokinetic-
pharmacodynamic assessments are required both in 
vitro and in vivo to appropriately predict SAP efficacy 
(16, 18, 120).

Alternatives to beta-lactams
In cases of allergy to beta-lactam antibiotics or in 
cases of high prevalence of methicillin resistance, 
alternatives such as clindamycin and vancomycin are 
mainly recommended (7, 8, 86, 121, 122, 123). From 
a PK point of view, their longer half-life would allow a 
less stringent timeframe for administration. However, 
from a PD viewpoint, they may be less advantageous 
due to less rapid bacterial killing (124). Indeed, some 
studies associated clindamycin and vancomycin with 
an increased PJI risk (3, 44, 61, 62). In the case of 

vancomycin, the combination of (i) limited safe rate 
of administration (125, 126, 127), (ii) delayed and 
incomplete distribution into third compartments such 
as bone (119, 127, 128), and (iii) inherently reduced 
bactericidal activity against staphylococci (124, 129, 
130, 131) renders it a poor option compared to beta-
lactams in settings where these first-line options can be 
safely and effectively deployed. Regarding clindamycin, 
there is, to the best of our knowledge, very limited 
literature available. An increased risk for PJI in cases 
of allergy to beta-lactam antibiotics may be largely 
explained by the use of second-line antibiotics (132, 
133). This issue, however, complicates any analysis. 
While the Norwegian arthroplasty registry reported 
no increased risk for revision for PJI after primary TKA 
for clindamycin in a recent publication, the Swedish 
knee arthroplasty registry had observed some years 
earlier an RR of 1.5 (95% CI: 1.2–2.0; P = 0.001) (61, 
134). The increased risk may potentially be explained 
by resistance to clindamycin and particularly by C. 
acnes infections, as observed in an American shoulder 
arthroplasty registry study (135).

Systemic antibiotic prophylaxis beyond 24 h
Although two systematic reviews in cardiac surgery 
indicate an advantage for prolonging SAP up to 48 h 
postoperatively to decrease the risk of SSI compared to 
shorter regimes (136, 137), a phenomenon not detected 
by any individual study, there is no evidence supporting 
this in arthroplasty. As discussed above, the study from 
the Norwegian arthroplasty registry did not demonstrate 
any advantage regarding the risk of revision in THA for 
SAP prolonged beyond 24 h (19). Moreover, extending 
the SAP beyond 24 h postoperatively does not provide 
any reduction in PJI risk in aseptic revision THA 
and TKA (13, 138). Prolonging SAP beyond 24–48 h  
drastically increased the incidence of antibiotic-related 
complications in a large, retrospective study from 
Veterans Affairs, with a number needed to harm of 
less than 10 (139). Additionally, administering SAP for 
48 h leads to a detectable induction of resistances 
among the skin flora (140, 141). Even a short course of 
antibiotics has a major impact on the diversity of the 
gut microbiome, taking up to 6 months and more to 
recover, with potentially persistent diversity depletion 
(142, 143, 144, 145, 146, 147). Disturbance of the gut 
microbiome is the underlying pathomechanism for the 
development of antibiotic-associated diarrhoea and the 
promotion of antimicrobial resistance (144, 146). Certain 
conditions, such as Alzheimer's disease, even have been 
linked to alterations in the gut microbiome (148). Thus, 
limiting the duration of SAP, provided this does not 
compromise efficacy, should remain a guiding principle.

Financial arguments
Total treatment costs for hip and knee PJI have been 
estimated to be approximately USD 75 000 to 95 000 in 

Figure 3

Graphical illustration of a power analysis, considering an alpha-error of 0.05 
and a beta-error of 0.2 (power 0.8), as well as considering only half of the 
revisions (aseptic loosening and PJI) to be possibly influenced by 
modifications of the SAP. Considering a 10-year revision rate of 6%, 
commonly identified in national arthroplasty registries, only 5000 THA 
would be necessary in each group to identify a difference as small as 25% in 
the revision rate. The sample size needed corresponds to half the number 
of THA performed each year in a small country such as Switzerland. The 
sample size would increase the more risk factors have to be considered. 
Nevertheless, established national arthroplasty registries would be able to 
provide relevant case numbers within a rather small number of years if SAP 
would be incorporated among the collected parameters.
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the year 2009, representing an increase of more than 
25% compared to 2001, and have probably increased 
further since (149). Cost comparison from one country 
to another, however, is limited by differences in tariffs 
and billing systems, and as other studies limited 
the analysis to the hospitalisation, but costs are 
always high (150, 151, 152, 153). When considering 
lifelong costs, the financial burden may also be even 
higher, as revision for PJI is associated with functional  
impairment and thus increased long-term  
socioeconomic costs (154, 155, 156). While the effect 
of optimised SAP may not be as pronounced as 
demonstrated in the publication from the Norwegian 
arthroplasty registry, due to currently lower revision 
rates (19, 28, 38, 157), the potential benefits of 
even a minor reduction in PJI rates far outweigh the 
supplementary costs of implementing short repeated 
SAP protocols with first- or second-generation 
cephalosporins (68, 150, 152).

Suggestions for future research

While it would not be wise to establish recommendations 
based solely on data published 20 years ago from a 
single source (19), it is worth noting that this publication 
merely confirmed observations made previously in 
the Norwegian arthroplasty registry (20). Available 
national arthroplasty registries could easily expand 
data acquisition and provide useful results within 
some years of observation. The 10-year overall revision 
rate in THA is approximately 6% throughout registries 
(158). Approximately half of the revisions are due to PJI 
and aseptic loosening (28, 38, 158). Only this group of 
diagnoses would potentially be accessible to influence 
from optimised SAP. A power analysis with a type I error 
rate of 5% and a type II error rate of 20% reveals that 
including two groups of only 5000 procedures each 
would suffice to determine a difference of 25% in the 
revision risk (Fig. 3). To put this into perspective, this 
number is equivalent to half the annual THA procedures 
performed in a smaller country like Switzerland (159). If 
the effect is larger, and this may be expected from the 
data of the Norwegian arthroplasty registry (19), fewer 
patients would be necessary. However, as the reported 
revision rates were higher than current revision rates 
observed in other national arthroplasty registries, 
the effect of prolonged SAP may be less pronounced, 
and more cases are needed (19, 28, 38, 158, 160). 
As discussed above, significant advancement in our 
understanding of SAP regimens would be afforded by 
this approach, without the need for large randomised 
trials, as had been advocated by some authors (5). 
Registries would also allow further risk stratification, 
considering implants, surgical approach, experience of 
the surgeon and other known risk factors for revision, 
while permitting the ongoing evaluation of prophylaxis 
strategies in the face of evolving antimicrobial resistance 
patterns.

Conclusion
SAP is a well-established and effective measure in 
preventing PJI and SSI in arthroplasty. As illustrated 
and discussed, there is a chain of arguments indicating 
the Norwegian recommendations, with SAP prolonged 
postoperatively but stacked over the first hours (16, 18), 
may well be the best option when using beta-lactam 
antibiotics and should be evaluated prospectively. This 
approach would also have the advantage of covering 
recognised needs for the repetition of SAP, such as major 
blood loss or longer duration of operation, without 
requiring specific intervention from the treating team. 
However, prolonging SAP beyond 24 h is not beneficial 
and thus not recommended. In our opinion, available 
RCTs and meta-analysis arguing against postoperative 
prolongation of SAP suffer from relevant methodological 
weaknesses or mistakes. To advance our understanding 
of SAP in arthroplasty, national arthroplasty registries are 
encouraged to collect data regarding SAP administration, 
including the necessary granularity regarding timing 
and dosing. This approach has the potential to provide 
decisive data within a medium-term observation period, 
helping to optimise SAP practice.
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