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Chronic kidney disease, including renal failure (RF), is a global public health problem. /e clinical diagnosis mainly depends on
the change of estimated glomerular filtration rate, which usually lags behind disease progression and likely has limited clinical
utility for the early detection of this health problem. Now, we employed Q-Exactive HFX Orbitrap LC-MS/MS based metab-
olomics to reveal the metabolic profile and potential biomarkers for RF screening. 27 RF patients and 27 healthy controls were
included as the testing groups, and comparative analysis of results using different techniques, such as multivariate pattern
recognition and univariate statistical analysis, was applied to screen and elucidate the differential metabolites. /e dot plots and
receiver operating characteristics curves of identified different metabolites were established to discover the potential biomarkers of
RF. /e results exhibited a clear separation between the two groups, and a total of 216 different metabolites corresponding to 13
metabolic pathways were discovered to be associated with RF; and 44 metabolites showed high levels of sensitivity and specificity
under curve values of close to 1, thus might be used as serum biomarkers for RF. In summary, for the first time, our untargeted
metabolomics study revealed the distinct metabolic profile of RF, and 44 metabolites with high sensitivity and specificity were
discovered, 3 of which have been reported and were consistent with our observations./e other metabolites were first reported by
us. Our findings might provide a feasible diagnostic tool for identifying populations at risk for RF through detection of
serum metabolites.

1. Introduction

Renal failure (RF), one of the main kidney diseases, is a
major health problem throughout the world [1]. It is always
associated with high cardiovascular morbidity andmortality,
and the progression of RF to end-stage renal disease (ESRD)
is believed to be closely related to the accumulation of
metabolites in the blood [2, 3]. Once people suffer from RF,
it can impose a huge financial burden on their families as it

increases the need for costly renal replacement therapies
(peritoneal dialysis, haemo-dialysis, and haemo-diafiltra-
tion) and kidney transplantation [4]. Although important
features, such as dyslipidemia and catabolism, remain in-
completely understood, small molecules related to impaired
renal function are believed to contribute to mortality in RF
patients. Moreover, decades of research have identified
numerous small molecules as potential uremic toxins to
exert detrimental activities [1]. At the early stages of RF, little
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signs or symptoms are obscure and often cannot be detected
until the later stages. /e risk of mortality is thus increased
with the progression of RF. Hence, looking for more me-
tabolite biomarkers with high sensitivity and specificity can
provide more choices for the diagnosis of RF and give a
better mechanistic understanding of this disease [3, 5, 6].
Although current clinical analytical methods are accurate in
diagnosing advanced kidney dysfunction, they are not the
case for the early stages [7], and most importantly, tools for
predicting the risk of kidney disease towards RF are still
lacking. Discovering and developing accurate biomarkers for
the diagnosis of RF always means a huge challenge, and the
interactions between metabolism and kidney disease are
particularly complex [8]. /e kidney organ performs the
energy-intensive task of solute and water reabsorption from
more than 100 L/day of filtrate, with distinct cell types
exerting different metabolic functions in widely disparate
oxygen tensions and osmotic environments across the
nephron. Kidney function was related to approximately one-
third of detected metabolites in both general populations
and RF patients [8–10]. Decreased kidney function can
directly affect the systemic metabolism, homeostasis of body
fluids, electrolytes, acid-base equilibrium, bone metabolism,
erythropoiesis, and blood coagulation [9, 11–15]. Previous
studies employing ion-exchange chromatography or LC
have identified several changes in amino acid metabolism in
patients with ESRD. And recent developments in advanced
metabolomics techniques allow the metabolic conditions to
be evaluated sensitively and comprehensively [16].

Metabolomics, also known as metabonomic or meta-
bolic profiling, has been proven to possess widespread ap-
plicability for screening clinical biomarkers. Given kidney
organ is responsible for concentrating and excreting a va-
riety of metabolites from body [17, 18], metabolomics
method is particularly well suited for screening biomarkers
of RF. According to the published data, several metabolite
markers including dicarboxylic acids (adipate, malonate,
methylmalonate, and maleate), biogenic amines, nucleotide
derivatives, phenols, and sphingomyelins were identified in
ESRD by applying LC-MS-based metabolomics technology
[1]. Lactose, 2-O-glycerol-α-d-galactopyranoside, D-threitol
and tyrosine were proven to be associated with the risk of
ESRD [19]. /erefore, the more sensitive and specific bio-
markers are identified, the more simply and easily the
disease can be diagnosed. Meanwhile, besides the bio-
markers themselves, metabolic fingerprints also provide
insight into the complications and highmortality rates of RF,
and potentially lead to the discovery of novel treatments
[20]. Hence, in the present study, we employed a Q-Exactive
HFX Orbitrap UHPLC-MS/MS-based metabolomics tech-
nology to elucidate the different metabolites in RF that could
be further developed as potential biomarkers for its diag-
nosis and treatment.

2. Materials and Methods

2.1. Subjects and Reagents. 27 serum samples were collected
from patients with RF (RF), and corresponding healthy
control serum were obtained from 27 healthy people (HC).

All of the serumsampleswereobtained fromYinchuanWeike
Renal SpecialtyHospital, from the year 2018 to 2019. Detailed
information of the serum samples are listed in Table 1 and
Table 2, and the clinical characteristics of patients are pre-
sented in Supplementary Table S1. In this study, patients at
CKD stage 5 with an estimated glomerular filtration rate
(eGFR)< 15mL/min/1.73m2 (chronic kidney disease, CKD
5, n� 27) and HC participants without acute inflammatory
disease were selected for screening serum biomarkers of
chronic renal failure. /e serum samples were packaged and
stored at −80°C for later analysis. Methanol, acetonitrile,
ammonium acetate, and ammonium hydroxide were all
chromatography grade (CNW Technologies, Germany).

2.2. Metabolites Extraction. Experimental processions were
outlined as follows: 50 μL of each serum sample were
transferred to an EP tube, and 200 μL of extraction solution
(methanol: acetonitrile� 1 :1 (v/v), containing isotopically-
labelled internal standard mixture were added. /e internal
standard in positive/negative ion mode is tmao-d9/hippuric
acid-d5), sonicated for 10min in an ice-water bath, and
incubated at −40°C for 1 h to precipitate proteins. /en, the
suspension was centrifuged at 12000 rpm at 4°C for 15min,
and the supernatant was transferred to a fresh glass vial for
further analysis. Moreover, the quality control (QC) sample
was prepared by mixing an equal aliquot of the supernatants
from all of the samples.

2.3. Q-Exactive HFX Orbitrap LC-MS/MS Analysis.
LC-MS/MS was performed using an UHPLC system
(Vanquish, /ermo Fisher Scientific) coupled with a
Q-Exactive HFX mass spectrometer (Orbitrap MS, /ermo
Fisher Scientific) to acquire MS/MS spectra in an infor-
mation-dependent acquisition mode in the control of the
acquisition software (Xcalibur, /ermo Fisher Scientific).
An UHPLC experiment was performed as described below:
BEH amide column (2.1mm× 100mm, 1.7 μm), a binary
mobile phase consistent of water with 25mmol/L ammo-
nium acetate and 25mmol/L ammonia hydroxide (pH 9.75)
as mobile phase A, and acetonitrile as mobile phase B, using
a gradient elution as follows: 0∼0.5min, 95% B; 0.5∼7.0min,
95%∼65% B; 7.0∼8.0min, 65%∼40% B; 8.0∼9.0min, 40% B;
9.0∼9.1min, 40%∼95% B; 9.1∼12.0min, 95% B. /e column
temperature was held at 30°C, while the autosampler tem-
perature was maintained at 4°C, and the injection volume
was 2 μL. /e ESI source conditions were set as follows:
sheath gas flow rate was 50 arb, aux gas flow rate was 10 arb,
capillary temperature was 320°C, full MS and MS/MS res-
olutions were acquired at 60000 and 7500, respectively;
collision energy was set as 10/30/60 in normalized collision
energy mode, spray voltage was 3.5 kV for positive mode and
3.2 kV for negative mode, respectively.

2.4. Data Preprocessing and Annotation. /e raw data were
first converted to mzXML format using ProteoWizard, and
then processed with an in-house program, which was de-
veloped by using the R package with XCMS, for peak
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detection, extraction, alignment, and integration./irdly, an
in-house MS2 database (BiotreeDB) was applied to me-
tabolite annotation, with the cutoff at 0.3. To better analyze
the data, a set of preparations and data management were
performed based on the original peaks, which mainly in-
cluded the following steps: (1) /e noise was removed by
filtering individual peaks. (2) Deviation values were filtered
based on relative standard deviation (RSD) of 30%. /e
missing values recoding in the original peak area were
simulated by 1/2 of the minimum values. (3) /e peak area
was normalized by an internal standard.

2.5. Statistical Analysis. Based on the normalized peak area,
differential metabolites were identified by employing t-test
with SPSS (25.0), principle component analysis (PCA) and
orthogonal projections to structures-discriminant analysis
(OPLS-DA) with SIMCA software (V16.0.2, Sartorius Ste-
dim Data Analytics AB, Umea, Sweden). /e variable im-
portance in the projection (VIP) value for each metabolite
was extracted from the OPLS-DA models, and the volcano
plot was used to excavate the candidate metabolites in

comparison groups. Metabolites with a VIP value greater
than 1 and p value less than 0.05 were considered as sig-
nificant differential biomarkers./en, the hierarchical cluster
analysis (HCA), KEGG annotation, metabolic pathway and
random forest analysis on the potential differential metab-
olites were carried out. Finally, receiver operating charac-
teristics (ROC) curves and dot plots based on the relative
quantification of the differential metabolites were established.

3. Results

3.1.QualityControlResults. Quality control in two aspects of
metabolites was performed, including instrument quality
control (instrument stability and internal standard response)
and data quality control (presentation of QC samples in PCA
analysis). /e results are shown in Supplementary Figure S1.
/e PCA results of the QC and test samples in both positive
and negative ion modes indicated the stability of the in-
strument and the good quality of the data.

3.2. Metabolomic Outline of Renal Failure. According to the
above Q-Exactive HFX Orbitrap LC-MS/MS methods, a
total of 8066 and 7050 peaks were extracted from positive
(POS) and negative ionmodes (NEG), respectively. Based on
the above three datamanagement steps, 5577 and 5042 peaks
were preserved in POS and NEG modes, respectively. /e
results of the PCA, OPLS-DA and correlation analysis
showed that RF and HC groups could be clearly differen-
tiated (Figures 1(a)–1(f), the original figures with high pixels
in Supplementary Figures S2A and S2B.). And the R2Y
values of permutation test of the OPLS-DA model for RF
and HC were 0.988 and 0.971 (Figures 1(g) and 1(h)), re-
spectively, which implied that the original model had good
robustness and there was no over-fitting phenomenon.

Based on a local database with MS/MS fragment in-
formation, a total of 141 and 119 metabolites were identified
from the positive and negative ionmodes of RF, respectively,
as compared to the health control (Positive ion mode:
Supplementary Table S2, Negative ion mode: Supplementary
Table S3). Volcano plots are shown in Figure 2, and in-
creased abundance is indicated in red, whereas decreased
abundance is indicated in blue. Excluding the non-
endogenous metabolites based on the HMDB database, the
endogenous metabolites were remaining 118 and 104, re-
spectively. By comparing the metabolites between positive
and negative modes, 6 endogenous metabolites are shared by
both, including creatinine, kynurenic acid, 4-pyridoxic acid,
4-hydroxyproline, prolylhydroxyproline, and phenylacetyl-
glutamine, as shown in Figure 3. All the differential me-
tabolites could be classified into 7 different categories, of
which the largest number was amino acids, followed by fatty
acids and alkaloids (Table 3). Based on relative quantifica-
tion, we established the dot plots of all differential endog-
enous metabolites (Supplementary Figure S3). It was found
that the response values of some metabolites which came
from the RF group were similar to those from the HC group.
/e significant difference between these metabolites between
the RF and HC groups was caused by a higher dispersion,

Table 1: Sample information of the RF and control group.

Sample information RF HC All
Sample size 27 27 54
Gender
Female 5 13 18
Male 22 14 36

Age
<20 0 0 0
20–29 2 2 4
30–39 7 7 14
40–49 8 8 16
50–59 6 7 13
≥60 4 3 7

Table 2: Sample characteristics of the RF.

Characteristics RF
BMI (kg/m2) 23.07± 3.72

Liver function
ALT (U/L) 12.14± 8.62
AST (U/L) 13.33± 6.26
AST/ALT 1.47± 0.84

Renal function

Ur 20.33± 5.23
Cr (μmol/L) 937.10± 250.72
Scr (mg/dl) 10.60± 2.84

eGFR (mL/min/1.73m2 5.35± 1.81
UA (μmol/L) 442.58± 111.41

Blood glucose GLU (mmol/L) 7.57± 5.39

Blood lipids

TG (mmol/L) 1.98± 1.62
TC (mmol/L) 3.15± 0.63

HDL-C (mmol/L) 1.01± 0.36
LDL-C (mmol/L) 2.38± 0.589

Past medical history Treat/Not treat RF
Coronary heart disease Treated 13 (48.14%)
Diabetes Treated 5 (18.52%)
Renal hypertension Treated 11 (40.74)
No disease 3 (11.11%)
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Figure 1: Score plots of PCA, OPLS-DA, correlation analysis and permutation test for group RF vs HC. (a) and (b) are PCA score plots in
positive and negative modes, respectively; (c) and (d) are OPLS-DA score plots in positive and negative modes, respectively; (e) and (f) are
correlation analysis heat map in positive and negative modes, respectively; (g) and (h) are permutation tests of OPLS-DA in positive and
negative modes, respectively.
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which will influence the clinical utility of subsequent bio-
markers in RF disease. /erefore, we selected metabolites for
which the response values were totally different between RF
and HC groups to establish the ROC curves, and the me-
tabolites with an area under the curve (AUC) value close to 1
were screened out as potential biomarkers. In the positive
and negative ion modes, we screened 29 and 15 metabolites
respectively, as shown in Table 4, and only one metabolite,
kynurenic acid, was shared by both. /e dot diagrams and
ROC curves were shown in Figures 4 and 5, respectively.

3.3. Hierarchical Cluster Analysis of Differential Metabolites.
/e differential metabolites obtained through the above strat-
egies often exhibited functional similarities/complementarities
in physics or were subjected to positive and negative regulation
of the same metabolic pathways. HCA of such characteristics
could help us classify metabolites with the same characteristics
into one category and discover the characteristics of changes in
metabolites between RF and HC groups. All the differential
metabolites were clustered using HCA, and the results were
displayed in a heat map in Supplementary Figure S4A (positive)

and S4B (negative). Intuitively, all the samples could be clus-
tered together based on the significantly increased and de-
creased metabolites of the RF group as compared with the HC
group, and the number of increased metabolites was signifi-
cantly more than the decreased metabolites.

3.4. KEGG Annotation and Metabolic Pathway Analysis of
Differential Metabolites. Generally, complex metabolic re-
actions and regulations in objects did not go through alone,
and different genes and proteins often formed complex
networks of signaling pathways./eir mutual influences and
regulations eventually lead to systemic changes in the
metabolome. /e analysis of these metabolites and regula-
tory pathways could provide a more comprehensive and
systematic understanding of the changes in the physical
process, as well as the mechanisms of the occurrence of traits
or diseases. /erefore, after obtaining the matching infor-
mation of the different metabolites, the metabolic pathways
were analyzed based on the pathway library ofHomo sapiens
(human). /en, the pathway diagram of the differential
metabolites mapped by the KEGG database is described in
Supplementary Figure S5. However, as the diagram shows,
the pathways involved all the different metabolites were so
complicated and difficult to clarify the relationships among
them, thus the enrichment and topological analysis on those
pathways were conducted, as shown in Figure 6. Specifically,
arginine and proline metabolism, sphingolipid metabolism,
glycerophospholipid metabolism, D-arginine and D-orni-
thine metabolism were the main differential meta-
bolic pathways in positive ion mode (Supplementary
Figures S6a–S6d). While in negative ion mode, phenylala-
nine metabolism, ascorbate and aldarate metabolism,
D-glutamine and D-glutamate metabolism, arginine and
proline metabolism (Supplementary Figures S7a–S7d) were
the main differential metabolic pathways. Arginine and
proline metabolism were the common pathways in both
positive and negative ion modes.
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3.5. Random Forest Analysis of Differential Metabolites.
To further verify the classification effect of the different
metabolites between RF and HC groups, we trained the
random forest model, and the training results are shown in
Figure 7. /e out-of-bag errors were equal to 2.7% in
positive and negative ion modes, and the values of AUC

were all equal to 1 in both positive and negative ion modes.
Based on the coordinate map (Figure 8) of the random
forest model, it could be seen that the two sets of samples
were clustered separately, indicating that the established
random forest models exhibited excellent discriminative
efficiency.

Table 4: Potential renal failure metabolites.

No Metabolites Level in patients AUC
1 Creatinine∗ ↑ 0.997
2 1-methylhypoxanthine ↑ 1
3 Beta-carboline ↑ 0.964
4 Arabinofuranobiose ↑ 1
5 Valdecoxib ↓ 1
6 Glycerol tripropanoate ↑ 0.982
7 4-Guanidinobutanoic acid ↑ 1
8 Kynurenic acid∗ ↑ 1
9 Alcophosphamide ↓ 1
10 1-(Beta-D-ribofuranosyl)-1, 4-dihdronicotinamide ↑ 1
11 /elephoric acid ↓ 1
12 5′-Methylthioadenosine∗ ↑ 1
13 3-Methylglutarylcarnitine ↑ 1
14 Formiminoglutamic acid ↑ 0.994
15 Solacauline ↑ 1
16 PC (20 : 5 (5Z, 8Z, 11Z, 17Z)/(20 : 5 (5Z, 8Z, 11Z, 17Z)) ↑ 1
17 Serylalanine ↓ 1
18 5, 6-Dihydrouridine ↑ 1
19 L-Beta-aspartyl-L-threonine ↓ 1
20 Isoleucyl-alanine ↑ 0.999
21 Beta-solamarine ↑ 1
22 Presqualene diphosphate ↑ 1

Lycoperoside D ↑ 1
24 2-O-(6-Phospho-alpha-mannosyl)-D-glycerate ↓ 1
25 2, 8-Di-O-methylellagic acid ↓ 1
26 Perlolyrine ↑ 0.993
27 3, 3′, 4′, 5, 6, 7, 8-Heptahydroxyflavone ↓ 1
28 /reoninyl-aspartate ↓ 1
29 Paraquat dichloride ↓ 1
30 Azelaic acid ↑ 1
31 (10E, 12Z)-9-HODE ↑ 1
32 N-acetylglutamine ↑ 1
33 4-acetamidobutanoic acid ↑ 1
34 N-acetyl-L-alanine ↑ 0.997
35 Mycophenolic acid ↑ 1
36 Formylanthranilic acid ↑ 1
37 Trehalose ↑ 1
38 Prostaglandin F3a ↑ 1
39 /ymine ↑ 0.996
40 Kynurenic acid ↑ 1
41 Tiglic acid ↑ 0.975
42 N-acetylserine ↑ 1
43 Glutamyltheronine ↓ 1
44 3-methoxy-4-hydroxyphenylethyleneglycol sulfate ↑ 0.999
∗ presents the metabolites identified in kidney disease had been reported.

Table 3: Categories of potential renal failure metabolites.

Amino acid Fatty acids Glycerophospholipids Alkaloids Nucleosides Carbohydrate Other Total
POS 23 10 9 9 3 1 63 118
NEG 22 17 0 2 5 8 50 104
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4. Discussion

RF is a pathological condition that causes partial or complete
loss of renal function and is stimulated by the development
of various kidney diseases. In our present study, various

changes in amino acid metabolites, nucleic acid metabolites,
and glycometabolism metabolites were found in the serum
of RF patients as compared to HC. Generally, while the
amino acid are within the normal range, it has been assumed
that these changes are due to low protein intake and
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Figure 5: ROC curves of metabolites in positive and negative ion modes.
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deficiency of excretory and metabolic functions of the
diseased kidneys. According to the published studies, sig-
nificant changes in amino acid metabolites in ESRD patients
have been observed, which implies that the changes in amino
acid metabolisms were already detectable at an early stage of

RF [16]. Metabolites might be varied because of differences
in tubular secretion and resorption, as well as kidney ca-
tabolism and anabolism. However, even perfect adjustment
for eGFR might not fully address the effect of kidney
function on normal metabolite levels [10]. /erefore, this
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study employed untargeted metabolomics to measure and
quantify the metabolites as much as possible that might be
used in the diagnosis and treatment of kidney disease. In our
experiments, a total of 216 differential metabolites were
elucidated (the typical mass spectra of metabolites were
presented in Supplementary Figure S8), and 44 metabolites
showed high sensitivity and specificity which might be used
as serum biomarkers for RF. From these 44 potential bio-
markers, it could be seen that RF was mainly associated with
7 metabolic pathways: (1) arginine and proline metabolism;
(2) sphingolipid metabolism; (3) glycerophospholipid
metabolism; (4) D-arginine and D-ornithine metabolism;
(5) phenylalanine metabolism; (6) ascorbate and aldarate
metabolism; and (7) D-glutamine and D-glutamate meta-
bolism. Based on the HMDB database, 4 of 7 metabolic
pathways involved amino acid metabolism, and 11 of 44
potential biomarkers belonged to amino acids derivatives,
including creatinine, 4-guanidinobutanoic acid, for-
miminoglutamic acid, serylalanine, isoleucyl-alanine,
threoninyl-aspartate, L-beta-aspartyl-L-threonine, 4-acet-
amidobutanoic acid, N-acetyl-L-alanine, N-acetylserine, and
glutamylthreonine. Meanwhile, only 3 of 11 metabolites
including serylalanine, threoninyl-aspartate, and glutamyl-
threonine were downregulated in RF disease, while the
others were all upregulated. /e above metabolite changes
reflected that the occurrence of RF was mainly related to the
metabolic disorders of amino acid metabolism, which
manifested in decreased renal function, insufficient nutrient
intake, accumulation of urinary toxins, intestinal flora
disturbance, endocrine disorder, etc.

Rhee EP et al raised the hypothesis that argininemight be
developed as a marker of renal metabolic function whose
plasma level could provide insight on renal prognosis [21].
In our study, two metabolic pathways involving arginine
were found, but arginine was not screened as a differential
metabolite, which might be related to our small sample size.
In addition, it has been reported that the kidney is exqui-
sitely sensitive to sphingolipid metabolism. /e dysfunc-
tional sphingolipid metabolism might cause complications
of renal disease [22]. From the sphingolipid metabolism
graph, we also see that phytosphingosine, sphingaine, and
sphingomyeline have different degrees of aggregation. /ese
metabolites were related to the regulation of renal function

during RF [23]. In our study, the level of PC (20 : 5 (5Z, 8Z,
11Z, 17Z)/(20 : 5 (5Z, 8Z, 11Z, 17Z)) was obviously increased
in clinical patient with RF, suggesting that RF might be
accompanied with glycerophospholipid metabolism disor-
der. Moreover, among these 44 potential markers, 3 me-
tabolites (creatinine, thymine, and kynurenic acid) have
been recorded in the European uremic solute database.
Studies have demonstrated that creatinine is an important
indicator for clinical diagnosis of RF. /e level of creatinine
was significantly increased when RF occurred, which was in
accordance with the result of our study. Kynurenic acid, a
product of tryptophan metabolism, has also been recognized
as a protein-bound uremic toxin. /e accumulation of
kynurenic acid could be found in the early stage of CKD,
thus the level of kynurenic acid might be directly propor-
tional to the progression of kidney disease. Accumulating
evidence has found that the blood level of kynurenic acid was
increased in patients with CKD, which was consistent with
our result [24]. In addition, previous studies [19, 25] have
shown that the level of 5′-methylthioadenosine was sig-
nificantly increased in clinical patients with RF, which was
also in agreement with our findings.

5. Conclusions

Briefly, by employing a Q-Exactive HFX Orbitrap LC-MS/
MS based untargeted metabolomics, using PCA, PLS-DA,
HCA, KEGG annotation, metabolic pathway, and random
forest analysis, and by establishing ROC and dot plots, we
discovered 44 metabolites in RF with high sensitivity and
specificity. /e metabolic profile we elucidated might pro-
vide preliminary comprehensive insight into the molecular
basis of RF. More importantly, these metabolites might be
used as serum biomarkers in the diagnosis and treatment of
RF, as well as open a new perspective for subsequent
research.

In addition, in our present study, untargeted metab-
olomics seemed to be a useful approach to discover the
potential metabolic indicators of RF disease. However, our
study also exposed some limitations that should be marked.
/e first one considered the small sample size of the studied
groups. On the other hand, the observed serummetabolomic
profiles might also be influenced by some exogenous factors
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like diet, applied pharmacotherapy, or comorbidities present
in both RF and the health control groups. /erefore, further
prospective evaluation with an expanding clinical sample
quantity is needed to validate the clinical value and accuracy
of the potential metabolic biomarkers scrutinized in the
present study in RF disease diagnosis and treatment.
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