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The mammalian gastrointestinal tract harbors a diverse microbial community with which 
dynamic interactions have been established over millennia of coevolution. Commensal 
bacteria and their products are sensed by innate receptors expressed in gut epithelia and 
in gut-associated immune cells, thereby promoting the proper development of mucosal 
immune system and host homeostasis. Many studies have demonstrated that host–
microbiota interactions play a key role during local and systemic immunity. Therefore, 
this review will focus on how innate sensing of the gut microbiota and their metabolites 
through inflammasome and toll-like receptors impact the modulation of a distinct set 
of inflammatory and autoimmune diseases. We believe that a better understanding of 
the fine-tuning that governs host–microbiota interactions will further improve common 
prophylactic and therapeutic applications.
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iNTRODUCTiON

The mammalian gastrointestinal (GI) tract harbors more than 500 bacterial species that have protec-
tive, metabolic, and trophic roles and are a constant source of stimulation for the immune system 
(1). Surveillance mechanisms of the innate immune system control the communication of the gut 
microbiota with the internal environment, preventing their penetration and systemic spread, and 
maintaining intestinal homeostasis.

The GI innate immune system consists primarily of a physical barrier, which is composed of 
intestinal epithelial cells (IECs), represented by absorptive enterocytes, mucus-producing goblet 
cells, hormone-producing enteroendocrine cells, and Paneth cells, which produce antimicrobial 
peptides and lectins, among other molecules. The selective permeability of the epithelial barrier 
allows nutrients absorption while contributing to the immune responses by providing microbial 
products, which can be recognized through pattern recognition receptors (PRRs), including toll-
like receptors (TLRs), nucleotide-binding domain leucine-rich repeat-containing receptors (NLRs), 
RIG-I like receptors (RLRs), C-type lectin family, and AIM2-like receptors (ALRs) (2), triggering 
different intracellular signaling cascades against pathogen-associated molecular patterns (PAMPs) 
or damage-associated molecular patterns (DAMPs).

The relationship between the intestinal epithelium and the gut microbiota is not restricted to 
prevent host invasion by commensals. Bacteria-mediated fermentation of food that cannot be fully 
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digested in the mammalian intestine releases products such as 
short-chain fatty acids (SCFAs), which are used as fuel by IECs. 
In turn, the host provides a stable, nutrient-rich ecosystem for 
commensals to thrive. The microfold (M) cells are specialized 
epithelial cells of the mucosa-associated lymphoid tissue found in 
the follicle-associated epithelium (FAE) that mediate the uptake 
and transepithelial transport of luminal antigens to intraepi-
thelial immune cells, such as macrophages and dendritic cells, 
which are responsible for presenting antigens to lymphocytes 
(3). In the intestinal lamina propria, macrophages and dendritic 
cell-mediated antigen uptake, either directly from the intestinal 
lumen by extending projections between IECs or indirectly by M 
cells, results in cytokine production, which drives either inflam-
matory Th17 or regulatory T cells, and T-cell-dependent and 
-independent IgA class-switching responses (4–6).

In this review, we focused on the interactions between the gut 
microbiota and two distinct groups of molecules, the innate sen-
sors, namely, TLRs and the inflammasomes, which are typically 
composed of the innate sensors NLRs and ALRs, the adaptor 
protein apoptosis-associated speck-like protein containing a 
caspase-recruitment domain (ASC), and the proinflammatory 
caspase-1. Increasing efforts have been pointed out toward the 
understanding of how innate sensing of commensals promotes 
homeostasis and immunity. Here, we review the impact of innate 
sensing of the gut microbiota on inflammatory and autoimmune 
diseases’ outcomes.

TOLL-LiKe ReCePTORS

Toll-like receptors are type I transmembrane proteins with an 
extracellular horseshoe-shaped domain-containing leucine-rich 
repeats (LRRs) and a cytoplasmic tail containing a toll/IL-1 
receptor (TIR) domain (7). They correspond to one of the five 
main families of PRRs, which recognize a variety of PAMPs and 
DAMPs.

Toll-like receptors are capable of forming both homodimers 
and heterodimers to detect different types of ligands. TLR2/
TLR1 heterodimers recognize triacylated lipopeptides (8), and it 
has been recently demonstrated that they can also be activated by 
α-synuclein, a protein associated with Parkinson’s disease (9). On 
the other hand, diacylated lipopeptides are recognized by TLR2/
TLR6 heterodimers (8).

A recent study has shown that human immunodeficiency 
virus (HIV-1) structural proteins can activate TLR2- and TLR2-
related heterodimers (10). A variety of viral proteins from measles 
virus (MV), hepatitis C virus (HCV), human cytomegalovirus 
(hCMV), and herpes simplex (HSV) have also been indicated 
as TLR2 activators (11–14). Lipoteichoic acid (LTA), zymosan, 
and peptidoglycan also trigger TLR2 signaling when TLR2/
TLR6/CD14, TLR2/Dectin-1, and TLR2/CD14 are assembled, 
respectively (15–20).

TLR3 recognizes viral double-stranded RNA (dsRNA) (21) 
and is also capable of recognizing DAMPs released from dam-
aged tissues (22), while TLR7 and TLR8 detect single-stranded 
RNA (ssRNA) found during viral replication (23–25). TLR4 is the 
main sensor for lipopolysaccharides (LPS) from Gram-negative 
bacteria (26) and also detects viral motifs (27). Flagellin is sensed 

by TLR5 (28), and TLR9 detects unmethylated CpG sequences 
in DNA molecules of bacterial and viral genomes (29). TLR10 
is expressed in humans, but not in mice, making the search for 
a specific ligand experimentally difficult. It has been recently 
shown that TLR10 expressed in IECs responds to an unidenti-
fied component of Listeria monocytogenes, but it requires the 
presence of TLR2 for inducing NFκB activation (30). This opens 
the possibility that TLR10 acts as a coreceptor of TLR2, as it is 
phylogenetically related to TLR1 and TLR6 (31). Furthermore, 
other authors have demonstrated anti-inflammatory properties 
of TLR10 expressed in human peripheral blood mononuclear 
cells (PBMCs) (32).

TLR11 is expressed in mice and as a non-functional pseudo-
gene in humans and has been related to prevention of Salmonella 
infection, the detection of uropathogenic Escherichia coli, and the 
recognition of a profiling-like molecule from Toxoplasma gondii 
(33–35). TLR12 and TLR13 are not expressed in humans but are 
expressed in mice and are capable of detecting the profiling-like 
molecule of T. gondii and 23S rRNA, respectively (36, 37). Besides 
PAMPs, endogenous ligands activate TLRs in the absence of 
infection (38).

Toll-like receptor–ligand interactions lead to dimerization 
of extracellular domains and results in dimerization of their 
cytoplasmic TIR domains. This structural modification is recog-
nized by TIR domains on the adaptor proteins myeloid differen-
tiation primary response gene 88 (MyD88), MyD88 adapter-like 
(MAL)/TIR domain-containing adapter protein (TIRAP), TIR 
domain-containing adapter-inducing interferon-β (TRIF), and 
TRIF-related adaptor molecule (TRAM), triggering downstream 
signaling pathways, which culminate in the expression of inflam-
matory cytokines, several anti-viral and anti-pathogen proteins, 
leading to the initiation of the adaptive immune response. The 
Myd88-dependent signaling pathway is common to all TLRs, 
except TLR3, which is dependent on TRIF. TLR4 uses both 
MyD88- and TRIF-dependent signaling pathways (7).

The detection of common molecules shared by pathogenic and 
non-pathogenic bacteria should trigger the same inflammatory 
response, but paradoxically, the recognition of commensal bac-
teria by intestinal receptors is somehow regulated to not result in 
inflammatory responses but to induce tolerance. Moreover, these 
TLR-mediated signals contribute to the intestinal homeostasis 
by regulating IECs proliferation and epithelial integrity (39–42). 
Interestingly, the localization, distribution, and expression of 
TLRs in the intestinal epithelium seem to be directly related to 
their role in maintaining homeostasis (43). IECs have a polarized 
organization, with an apical pole facing the intestinal lumen and 
a basolateral one that communicates with other IECs and the 
lamina propria. TLRs are differentially distributed through the 
polarized organization of IECs and in different quantities along 
the entire GI tract.

The human esophagus expresses TLR4, low levels of TLR1 and 
TLR5, and high levels of TLR2 and TLR3 mRNA in epithelial cells 
(44, 45). In gastric epithelial cells, it is possible to find expression 
of TLR2, TLR4, and TLR5, as both mRNA and protein (46). In 
the human small intestine, it is possible to find mRNA expression 
from the TLRs 1–10 (47). Under homeostatic conditions, enter-
oendocrine IECs from intestinal crypts express TLR1, TLR2, and 
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TLR4 (48), and IECs from human colon express relatively high 
levels of mRNA for TLR3 and less for TLR2 and TLR4 (49).

Colonic IECs are hyporesponsive to LPS, and it may be 
due to epigenetic mechanisms that downregulate MD-2 and 
TLR4 expression (50). Moreover, TLR3 in murine IECs seems 
to have an age-dependent expression related to an enhanced 
response to rotavirus in adult mice (51). On the other hand, 
the high basolateral expression of TLR5 is directly induced by 
administration of flagellin to IECs (52). TLR9 apical expression 
in colonic IECs has been related to the maintenance of the 
intestinal  homeostasis (53).

The FAE presents a differential expression of TLRs in com-
parison with villous IECs. The murine small intestine expresses 
TLR2 and TLR9 in both apical and basolateral sides of the FAE, 
whereas IECs in the villi shows apical expression only. The TLR5 
is abundantly expressed in the apical pole of villous IECs and 
FAE, whereas TLR4 expression is low (54).

It is conceived that TLR-mediated sensing of microbial prod-
ucts has a dual role in promoting the fine-tune balance between 
proinflammatory and pro-regulatory immune responses. A bet-
ter understanding of how these molecules are regulated in face 
of commensals and pathogenic microorganisms will benefit the 
design of prophylactic and therapeutic approaches.

THe DUAL ROLe OF TLRs iN TRiGGeRiNG 
iNFLAMMATORY AND AUTOiMMUNe 
DiSeASeS

Bearing in mind the importance of the gut microbiota for the 
development of the immune system, one might speculate that 
microbial components could also modulate immunity and 
trigger inflammatory and autoimmune diseases. Several studies 
have shown correlations between altered expression of TLRs and 
inflammatory/autoimmune conditions, and increasing evidence 
suggests the participation of the gut microbiota during TLRs 
abnormal signaling and the development of diseases, including 
type 1 diabetes (T1D), multiple sclerosis (MS), rheumatoid 
arthritis (RA), and inflammatory bowel diseases (IBDs) (Table 1) 
(55–58).

Rheumatoid arthritis, IBDs, T1D, and MS are classified as 
multifactorial diseases with genetic and environmental factors 
contributing to their pathogenesis. Among the environmental 
factors, the exposition to microbial components has been 
associated with their development (55, 59–62). The concept 
called “molecular mimicry” was proposed to explain the role 
of microbial agents in inflammatory and autoimmune diseases, 
and according to this concept, cross-reactivity between epitopes 
from microbes and self-proteins can cause deregulated immune 
responses, leading to autoantibody production and activation of 
effectors cells (63).

The major organs exposed to microbial agents and their com-
ponents are the skin and gut. In the gut, sensing of microbial anti-
gens by innate immune cells and non-immune cells, such as IECs 
and stromal cells, is mediated by PRRs that recognized PAMPs. 
It is possible that bacterial components stimulate the mucosal 
immune cells by penetrating a damaged epithelial barrier or via 

a paracellular pathway; alternatively, microbial antigens may 
interact with TLRs at the apical surface of IECs, inducing inflam-
matory activation of the mucosal immune system. In addition, 
innate immune cells, such as dendritic cells and macrophages, 
can also sense PAMPs through TLRs initiating rapid and effective 
inflammatory responses against microbial invasion (57, 64). As 
mentioned above, the commensal microbiota is necessary for 
the constant stimulation of the immune system (1) and TLR-
mediated sensing of these microorganisms may play a dual role 
in disease development as a source of both inflammatory and 
regulatory signals.

Rheumatoid arthritis is an autoimmune disease characterized 
by chronic inflammation in which cartilage and bone of the 
affected subjects are progressively destroyed in multiple joints 
(55). Several immune and resident cells, such as chondrocytes 
and fibroblasts, contribute to the development and progression 
of RA. Release of proinflammatory cytokines, such as tumor-
necrosis factor (TNF)-α and interleukin-1 (IL-1), mainly by 
macrophages, activation of Th17 lymphocytes, and production 
of autoantibodies are suggested to play an important role in the 
disease onset (65). Studies showing the presence of bacterial cell 
wall components in the joints of RA patients accompanied by 
changes in their gut microbiota support the idea that commensal 
bacteria may initiate inflammation in genetically susceptible 
individuals (66, 67).

Abdollahi-Roodsaz et  al. (56) using the IL-1 receptor 
antagonist-deficient (IL1rn−/−) mice that spontaneously develop 
T-cell-mediated autoimmune arthritis showed that germ-free 
(GF) IL1rn−/− presented no signs of arthritis during 20  weeks 
of follow-up, whereas matched non-GF animals started to 
develop the disease from the age of 5  weeks. The authors also 
demonstrated that the activation of TLRs was dependent on 
the microbial status of the mice and that TLR2 deficiency in 
IL1rn−/− mice led to less Foxp3+ expression and reduced suppres-
sive activity of Tregs, resulting in an enhancement of clinical and 
histopathological scores of arthritis. By contrast, IL1rn−/−Tlr4−/− 
mice were protected against severe disease. It has been shown that 
TLR4 contributes to more severe arthritis by modulating IL-17 
production and Th17 cell expansion (56, 68). In fact, gut-residing 
segmented filamentous bacteria (SFB) have been shown to drive 
both IL-1β and IL-6 production, and Th17 development, which 
promotes arthritis (69, 70). Therefore, one may conceive that a 
delicate equilibrium in TLR-mediated sensing of the gut micro-
biota is necessary to maintain homeostasis and prevent certain 
autoimmune diseases.

Although the gut microbiota has been extensively explored as 
an etiologic factor of RA, less is known about oral commensal 
microorganisms. In this context, the Gram-negative commensal 
bacterium Porphyromonas gingivalis has been a major focus of 
investigation as it provides a direct link between a specific micro-
organism and an autoimmune disease (71, 72). In fact, individuals 
with periodontitis present an increased proportion of P. gingivalis 
and specific antibodies to this bacterium, which has been linked 
to RA (73). A recent study showed that periodontal disease (PD) 
induced by P. gingivalis increases the severity of experimental 
arthritis through Th17 induction. This periodontal pathogen 
induces IL-17-producing T cells through TLR2 activation on 
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TABLe 1 | Toll-like receptors and related molecules involved in inflammatory and autoimmune diseases.

Molecule Disease Model evidence Reference

IL-1 
receptor, 
TLR2, 
TLR4

Rheumatoid 
arthritis (RA)

IL1rn−/− TLR2 deficiency in IL1rn−/− mice led to less Foxp3 expression and reduced suppressive activity of Tregs; 
IL1rn−/−Tlr4−/− mice were protected

(56)
Germ-free mice

TLR2 DBA-1 mice Repeated oral inoculations of the periodontal pathogens Porphyromonas gingivalis and Prevotella 
nigrescens-induced Th17-mediated periodontitis in mice, which was dependent on TLR2-expressing 
APCs

(74)

TLR2, 
MyD88

Inflammatory 
bowel 
disease (IBD)

C57Bl/6 mice Variants of the MDR1/ABCB1 gene have been associated with susceptibility to UC. TLR2/MDR1A 
double-knockout mice presented exacerbated colitis score, which could be inhibited by treatment with 
IL-1R antagonist; intestinal CD11b+ Ly6C+-derived IL-1β production and inflammation was dependent 
on MyD88

(77)

TLR2, 
TLR4, 
MyD88

129/
SvJ × C57Bl/6 
mice

TLR2−/−, TLR4−/−, and MyD88−/− mice showed increased susceptibility to colonic injury than WT. 
Antibiotic treatment increased mortality and morbidity, and abrogated the production of cytoprotective 
and reparative factors

(39)

TLR2, 
TLR3, 
TLR4, 
TLR5

Human; adults TLR2 and TLR5 expression on IECs remain unchanged in active IBD; upregulation of TLR2 was 
observed in inflammatory cells from the lamina propria; UC and CD patients showed differential 
expression of TLR3 and TLR4, which occurred on basolateral and apical surfaces of IEC

(81)

TLR4 Human; adults DCs from UC and CD patients showed increased TLR4 expression and the uptake of LPS started earlier 
than in controls; stimulated DCs secreted high amounts of TNF-α and IL-8

(83)

TLR9 C57Bl/6 mice Apical TLR9 stimulation on IECs conferred intracellular tolerance to subsequent TLR challenges; IECs 
from TLR9-deficient mice displayed lower NF-κB activation threshold, and these mice were highly 
susceptible to experimental colitis

(53)

TLR9, 
TLR3

Type 1 
diabetes 
(T1D)

BioBreeding 
Diabetes 
Resistant (BBDR) 
rats

ssDNA parvovirus Kilham rat virus (KRV) acts as a TLR9 ligand to upregulate proinflammatory cytokines 
and induce islet destruction; pretreatment with poly I:C acts synergistically with KRV to induce diabetes 
in 100% of infected rats

(90)

TLR2, 
TLR4

NOD mice Apoptotic β-cell is sensed by APCs through TLR2, which could stimulate the priming of diabetogenic T 
cells

(91)

MyD88 NOD mice MyD88-deficient NOD mice did not develop T1D (58)
Germ-free mice Germ-free (GF) MyD88-deficient NOD mice developed T1D; colonization of GF MyD88-deficient NOD 

mice with the bacterial community present in healthy mouse gut-attenuated symptoms

MyD88, 
TRIF, 
TLR2, 
TLR4

NOD mice TRIF deficiency did not promote T1D development in MyD88 sufficient NOD mice; only double-deficient 
mice were susceptible to T1D; reduction in disease incidence caused by TLR2 deletion was reversed in 
GF TLR2-deficient mice

(92)
Germ-free mice

TLR4, 
TLR9, 
MyD88

Multiple 
sclerosis (MS)

C57Bl/6 mice LPS- and CpG-stimulated B cells produce IL-10 in a MyD88-dependent manner; DCs produce less 
IL-12 and restrain Th1 differentiation

(102)

TLR4 C57Bl/6 mice TLR4 is highly expressed in Th17 cells and LPS directly stimulated Th17 differentiation in vitro; 
subcutaneous injection of LPS increased the frequency of IL-17 producing cells worsening experimental 
autoimmune encephalomyelitis (EAE)

(100)

IL1rn, IL-1 receptor antagonist-deficient mice; MDR1, multidrug resistance gene; UC, ulcerative colitis; IECs, intestinal epithelial cells; CD, Crohn’s disease.
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APCs (74), which suggests that the same TLR molecule may play 
different roles in RA onset, depending on where the molecule is 
expressed and with which microorganism the interaction occurs. 
Thus, more studies are still necessary to better determine the role 
of TLR-mediated sensing of the microbiota and/or pathogens 
in autoimmune diseases, such as RA. Mice models with organ-
specific TLR expression could be used to shed light on how TLRs 
contribute to disease onset depending on their localization.

Inflammatory bowel diseases have been extensively studied 
in regarding of the gut microbiota–immune system interactions. 
Two major forms of IBD have been investigated: the ulcerative 
colitis (UC) and Crohn’s disease (CD). Distinctive and complex 
chronic inflammatory processes characterize both disorders (61, 

62), and it has been demonstrated that the intestinal microbiota 
of patients differ from healthy controls, showing an increase of 
Enterococcus spp. and Bacteroides spp. accompanied by a decrease 
of Bifidobacterium spp. and Lactobacillus spp. levels (75, 76), sug-
gesting that the gut microbiota may play a pivotal role in intestinal 
inflammatory diseases.

Increased susceptibility to severe UC has been associated 
with variants of the multidrug resistance gene (MDR1/ABCB1). 
Deletion of TLR2 in MDR1A deficiency resulted in fulminant 
pancolitis, characterized by expansion of CD11b+ myeloid cells, 
and a shift toward Th1 immune responses in the lamina propria. 
An unaltered microbiota was required for colitis exacerbation 
in TLR2/MDR1A double-knockout mice once protection from 
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colitis was observed upon antibiotic treatment (77). Treg-specific 
deletion of MyD88 has been recently shown to culminate in 
deficiency of Treg cells, increase in Th17 cells, and exacerbated 
experimental colitis. An overgrowth of SFB and increased bacte-
rial translocation was reported, and also impaired antimicrobial 
IgA responses (78), suggesting that the TLR-mediated sens-
ing of the gut microbiota contributes to Treg cell-dependent 
maintenance of the intestinal homeostasis. On the other hand, 
it has been shown that gut microbiota-mediated triggering of 
intestinal epithelial TLRs is not critical for promoting intestinal 
inflammation once mice lacking TNF receptor-associated factor 
6 (TRAF6), but not MyD88/TRIF, were protected from dextran 
sodium sulfate (DSS)-induced colitis (79). Therefore, it is becom-
ing clear that not only the microbiota is important during TLRs 
signaling through colitis development but also where these 
molecules are expressed.

Apart from the alterations in the gut microbiota composition, 
Cario and Podolsky have studied TLRs expression in CD and 
UC patients and showed variations in the expression of some 
receptors. During homeostasis, TLR2 and TLR4 are presented 
in small amounts on IECs and lamina propria cells to minimize 
microbiota recognition and to maintain tolerance (80, 81). 
So, signaling through those PRRs may determine the balance 
between immunity and tolerance. The authors observed that 
TLR2 and TLR5 are expressed on IECs from non-IBD subjects 
and remain unchanged in active IBD. Upregulation of TLR2 was 
observed in inflammatory cells from the lamina propria of active 
IBD patients; differential expression of TLR3 was verified in UC 
patients, which presented a basolateral expression on IECs; both 
UC and CD patients showed an abundant TLR4 expression on 
basolateral and apical surfaces of IECs, respectively, and enhanced 
expression of TLR4 was also present in the lamina propria of IBD 
individuals (80).

In DCs, PRRs stimulation induces IL-23 releases, which is an 
important component of antimicrobial defense, but when exces-
sively produced it favors proinflammatory T-cell response and 
reduces Foxp3+ T cell differentiation. In this way, DCs may act 
as a key player in the initiation, continuation, and control of IBD 
(82). Conventional DCs (cDC) from UC and CD patients during 
remission phase showed an increased TLR4 expression. After 
stimulation, these cells secreted higher amounts of TNF-α and 
IL-8, and the uptake of LPS started earlier and was higher than in 
controls (83). These data suggest that an aberrant TLR4 signaling 
in cDC of IBD patients may result in an inflammatory phenotype 
during the acute phase.

Paradoxical effects of TLRs activation may be present in 
IBD. Bacterial DNA induces strong Th1 immune responses 
with high production of TNF-α and IL-8, which is also found in 
experimental and human IBD (84). On the other hand, bacterial 
DNA stimulation of IECs via apical TLR9 may result in anti-
inflammatory effects, with the inhibition of TNF-α and IL-8 
secretion, as well as NFκB activation, reducing colitis severity 
(53). Furthermore, it has been observed in a CD4+ T-cell-
dependent Severe combined immunodeficiency (SCID) transfer 
model of colitis that pretreatment of donor mice with CpG 
completely abolished colitis development in SCID recipients in a 
CpG–TLR9-mediated modulation of T-cell function (85).

Another important protective effect promoted by TLR signal-
ing was recently elucidated by Kawashima et al. (86) showing that 
dsRNA of lactic acid bacteria (LAB), one major commensal bac-
teria, triggered interferon-β (IFN-β) production through TLR3 
activation pathway and protected mice from experimental colitis. 
On the other hand, pathogenic bacteria induced much less IFN-β 
and contained less dsRNA than LAB, indicating that dsRNA was 
not involved in pathogen-induced IFN-β induction. These results 
point toward TLR3 as a sensor to commensal bacteria and suggest 
a mechanism by which this endosomal receptor contributes to 
anti-inflammatory and protective immune responses.

Paradoxical effects of TLRs participation are also observed in 
T1D, an organ-specific autoimmune disease in which insulin-
producing β cells are mainly destroyed by not only Th1 but 
also Th17 lymphocytes (87). The autoreactive CD4+ T cells that 
infiltrate the pancreas present a proinflammatory phenotype, 
characterized by IFN-γ secretion (88), and support cytotoxic 
T lymphocytes (Tc), which are responsible for the progressive 
destruction of β cells (55). Although the later steps of T1D devel-
opment are well known, the initial steps remain unclear.

The role of TLRs–PAMP interactions during T1D onset has 
been investigated in several animal models. Studies performed 
in BioBreeding Diabetes Resistant (BBDR) rats infected with the 
ssDNA parvoviruses Kilham rat virus (KRV) showed that KRV 
acts as a TLR9 ligand by upregulating proinflammatory cytokines 
in pancreatic lymph nodes, thus inducing islet destruction (89). 
Pretreatment with poly I:C, a TLR3 ligand, acts synergistically 
with KRV to induce diabetes in 100% of infected rats (90). Also, 
it has been demonstrated that the activation of APCs through 
TLR2-mediated sensing of β cells death contributes to T1D 
initiation in non-obese (NOD) mice (91). In contrast with these 
findings, Wen et al. (58) investigating the effects of MyD88 gene 
disruption on disease incidence and progression in NOD mice 
showed that MyD88-deficient NOD mice did not develop T1D, 
and that the observed protection was dependent on commensal 
microorganisms once GF MyD88-deficient NOD mice developed 
disease. The authors also demonstrated that the gut microbiota 
composition was changed by MyD88 deficiency and colonization 
of GF MyD88-deficient NOD mice with the bacterial community 
termed “altered Schedler’s flora” (ASF), normally present in healthy 
mouse gut, attenuated T1D. Thus, it can be suggested that in the 
absence of TLRs signaling, some bacterial groups predominate 
and induce tolerogenic responses. However, the receptors and 
signaling pathways involved in microbiota-dependent protection 
against T1D development remain unclear.

Some protective signals against T1D development triggered 
by the gut microbiota have been revealed through studies with 
NOD mice lacking MyD88 crossed with mice deficient for 
other components of the innate immune response. As ASF 
bacteria colonization has reduced T1D in GF MyD88-deficient 
NOD mice, it is possible that several signaling pathways acti-
vated by TLR agonists could contribute to protection when 
MyD88 signaling is absent. In fact, stimulation of TLR3 and 
TLR4 induces the activation of a MyD88-independent, TRIF-
dependent signaling pathway (55), which has been pointed out 
as a negative regulator of immunity. In this context, Burrows and 
colleagues (92) have demonstrated that TRIF deficiency did not 
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affect T1D development in Myd88 sufficient NOD mice, while 
double-deficient mice were more susceptible to T1D. Thus, it 
could be suggested that TLR3- and TLR4-mediated sensing of 
the gut microbiota participates in the protection against T1D 
development in MyD88-deficient NOD mice through tolerating 
mechanisms involving TRIF signaling.

Protective effects from TLR–microbiota interaction have 
also been demonstrated in MS studies. The MS is an immune-
mediated chronic disease in which demyelination and axonal 
damage are caused by infiltration of myelin-specific autoreac-
tive Th1 and Th17 cells into the central nervous system (CNS) 
in either relapsing/remitting or progressive condition (93, 94). 
CNS-derived peptides, such as the melanocortin antagonist 
agouti-related peptide (AgRP) and neuropeptide Y (NPY), 
are capable of modulating food intake and physiological 
processes that control nutrient absorption, which may influ-
ence the gut microbiota composition. In turn, gut microbiota 
modulates brain functions by releasing SCFAs and antigens, 
such as lipopolysaccharide (LPS), polysaccharide A (PSA), 
and LTA (95).

Miyake and colleagues (96) have investigated whether the gut 
microbiota was altered in MS by comparing the gut microbiota 
of 20 patients with relapsing–remitting (RR) MS with that of 40 
healthy subjects. They found differences in the relative abundance 
of both archaea and butyrate-producing bacteria when compar-
ing MS patients and healthy individuals and a significant reduc-
tion of clostridial species in MS patients. Interestingly, none of 
the clostridial species that were significantly reduced in the gut 
microbiota of MS patients overlapped with other spore-forming 
clostridial species capable of inducing colonic regulatory T cells, 
which have been associated with protection from autoimmunity 
and allergies (97). However, it has been shown that reconstitu-
tion of the gut microbiota from antibiotic-treated mice with 
Bacteroides fragilis protected against experimental autoimmune 
encephalomyelitis (EAE) by a mechanism dependent on PSA-
induced IL-10-producing Treg cells, which may rely on TLR2 
signaling (98). In fact, B. fragilis-derived PSA converts effector 
CD4+ T cells into IL-10-producing T cells in  vitro by a TLR2-
dependent mechanism (99). On the other hand, TLR4-mediated 
sensing of LPS has been shown to stimulate in vitro differentia-
tion of Th17 cells and subcutaneous LPS injection increased the 
frequency of IL-17-producing cells in inguinal lymph nodes, 
worsening EAE (100).

Numerous studies have focused on the role of B cells during 
MS pathogenesis (101, 102). B cell-deficient C57Bl/6 mice suffer 
an exacerbate EAE form and transfer of IL-10-producing B cells 
into IL-10-deficient mice protected them from disease (101). In 
fact, it has been recently shown that microbiota-driven IL-1β and 
IL-6 production promotes regulatory B cells differentiation (103). 
Lampropoulou et al. (102) showed that TLR-activated B cells pro-
duce IL-10 in a MyD88-dependent manner by stimulating TLR4 
and TLR9 with LPS and CpG oligonucleotides, respectively. These 
B cells limit the capacity of DC to produce IL-12 and restrain Th1 
differentiation. Therefore, new studies are fundamental to eluci-
date the role of different TLRs in the context of EAE modulation, 
which seems to depend on microbiota-driven inflammatory and 
regulatory immune cells.

iNFLAMMASOMeS iN THe GUT

Inflammasomes are multimeric protein complexes typically 
composed of a sensor protein, the adaptor protein ASC, and 
the proinflammatory caspase-1, which can be triggered by a 
variety of stimuli associated with infection and cellular stress 
(104). Inflammasome activation results in recruitment of ASC, 
proteolytic cleavage, and activation of caspase-1, which leads 
to process and release of the proinflammatory cytokines IL-1β 
and IL-18 (105). The majority of inflammasomes contain a 
NLR sensor molecule, namely NLRP1 (NOD-, LRR-, and pyrin 
domain-containing 1), NLRP3, NLRP6, NLRP7, NLRP12, or 
NLRC4 (NOD-, LRR-, and CARD-containing 4). However, other 
two inflammasomes have been described containing the pyrin 
and HIN domain-containing protein (PYHIN) family members 
absent in melanoma 2 (AIM2) and IFN-γ-inducible protein 16 
(IFI16) as sensor molecules (106). A non-canonical activation 
pathway of inflammatory caspases 4/5 in humans and caspase-11 
in mice has also been described and depends on intracellular 
sensing of lipopolysaccharide (LPS) released upon Gram-negative 
bacteria escape from vacuoles (107).

Inflammasome signaling has been extensively studied in 
macrophages in different contexts (104, 108), but little is known 
about inflammasome expression and function in cells located in 
the gut. Intestinal CD11b+F4/80+ mononuclear phagocytes that 
normally reside in the lamina propria were shown to be anergic 
to ligands for TLRs or commensals but to produce IL-1β upon 
NLRC4 activation after infection with pathogenic Salmonella or 
Pseudomonas (109). More recently, Enterobacteriaceae and the 
pathobiont Proteus mirabilis were shown to induce robust IL-1β 
production through NLRP3 activation in newly recruited intesti-
nal Ly6Chigh monocytes upon epithelial injury (110). IECs, the first 
cellular barrier toward the gut lumen, were also shown to express 
a variety of inflammasome components such as NAIPs 1, 2, 5, and 
6 in mice (hNAIP in humans), NLRC4, NLRP1, NLRP6, AIM2, 
caspase-1, caspase-11 (-4, in humans), ASC, and IL-18. These 
inflammasome components contribute to intestinal homeostasis 
by regulating commensals’ ecology, by restricting pathogens, and 
by restoring epithelial barrier integrity (105). However, further 
studies are still necessary to shed light on how inflammasomes are 
regulated in both hematopoietic and non-hematopoietic intes-
tinal cells in face of commensal microorganisms, diet-derived 
antigens, and pathogens to maintain homeostasis and systemic 
immunity.

iNFLAMMASOMe-MeDiATeD SeNSiNG 
OF THe GUT MiCROBiOTA AND 
iNFLAMMATiON

The NLRP6 inflammasome has been shown to regulate intes-
tinal microbiota ecology as metagenomic analysis has revealed 
pronounced dysbiosis in NLRP6-deficient mice (111, 112). 
Changes in the biogeographical distribution of microbiota are 
also observed in NLRP6 deficiency, leading to accumulation 
of commensal microorganisms in the colonic crypts. Reduced 
IL-18 levels and increased relative abundance of bacterial phyla 
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Bacteroidetes (Prevotellaceae) and TM7 have been observed in 
NLRP6-deficient mice, which present spontaneous intestinal 
hyperplasia, chemokine (C–C motif) ligand 5 (CCL5)-mediated 
inflammatory cell recruitment, and exacerbation of DSS-induced 
colitis. Cross-fostering and cohousing experiments were sufficient 
to transfer dysbiotic microbiota to neonatal and adult wild-type 
(WT) mice, leading to increased susceptibility to DSS-induced 
colitis. Although deficiency in other inflammasome components, 
including ASC, caspase-1, and IL-18, also led to dysbiosis and 
exacerbated colitis, deficiency in NLRC4, NLRP10, NLRP12, 
and AIM2 had no impact on the susceptibility of WT mice to 
colitis upon cohousing (111). These mice were shown to have 
a distinct configuration of their microbiota when compared to 
NLRP6-deficient mice, which might explain the different results 
and suggests that although inflammasomes share many of their 
effector molecules, different impacts on microbiota ecology can 
be observed.

It has been recently shown that mice deficient in NLRP6 
and the inflammasome components ASC and caspase-1 lack a 
thick continuous overlaying inner mucus layer in the gut due 
to abrogated mucus secretion by IECs and are unable to clear 
enteric pathogens from mucosal surface (113). As mucus has 
an important role in regulating host–microbial interactions, it 
is likely that dysbiosis and increased intestinal inflammation 
observed in NLRP6 mice are consequences of this reduced 
mucus secretion by epithelial cells. Deficiency in NLRP6 and 
IL-18 has also been linked to colitis-related colorectal cancer 
(CRC) development. Enhanced tumorigenesis in these mice was 
dependent on microbiota-induced CCL5-driven inflammation 
and local IL-6 production and could be transferred to WT mice 
upon cohousing (114).

Corticotropin-releasing hormone (CRH)-mediated reduc-
tion of intestinal NLRP6 expression in mice exposed to water-
avoidance stress (WAS) has been shown to result in altered gut 
microbiota and acute small intestinal inflammation. These mice 
presented intestinal erythema, leukocyte infiltration, increased 
intestinal permeability, and increased mucosal expression of 
IL-17 and IL-6. Other inflammasome components that had their 
expression partially inhibited by WAS were ASC, caspase-1, 
IL-1β, and IL-18, while no significant impact was observed on 
NLRP3 expression. As observed for colitis and colitis-related 
CRC, non-stressed mice developed enteritis upon cohousing 
with WAS-exposed mice and probiotic therapy prior to WAS 
reduced intestinal inflammation and prevented WAS-mediated 
dysbiosis (115).

NLRP3-deficient mice have also been shown to be more 
susceptible to DSS-induced colitis, to have a dysbiotic micro-
biota, and to present altered colonic β-defensin expression and 
decreased antimicrobial capacity. Their neutrophils exhibited 
impaired chemotaxis and enhanced spontaneous apoptosis (116). 
Modulation of NLRP3 in the gut epithelium by high-fiber feed-
ing has been suggested to contribute to intestinal homeostasis 
and protection from colitis through maintenance of a healthy 
microbiota and due to SCFA-mediated sensing by G-protein-
coupled receptors GPR43 and GPR109A and IL-18 release (117). 
However, upon epithelial injury, members of the gut microbiota, 
such as Enterobacteriaceae, and in particular the pathobiont 

P.  mirabilis induce NLRP3-mediated IL-1β release by Ly6Chigh 
monocytes, leading to intestinal inflammation (110).

The influence of inflammasome-mediated sensing of the micro-
biota goes beyond inflammatory processes in the gut. NLRP3, 
NLRP6, and inflammasome components ASC, caspase-1, and 
IL-18-deficiency-associated dysbiosis leads to exacerbated hepatic 
steatosis and inflammation through influx of TLR4 and TLR9 
agonists into the portal circulation, which results in enhanced 
hepatic TNF-α expression and non-alcoholic steatohepatitis 
(NASH)/non-alcoholic fatty liver disease (NAFLD) progression. 
Cohousing experiments were sufficient to exacerbate NASH in 
WT mice, suggesting that intestinal dysbiosis may govern initial 
steps of systemic autoinflammatory disorders (118).

It has been shown that Pstpip2cmo mice, which are prone to 
develop osteomyelitis, present dysbiotic intestinal microbiota 
characterized by Prevotella outgrowth. Interestingly, these mice 
were protected from inflammatory bone disease and bone erosion 
when fed with high-fat diet (HFD), which had a marked impact 
on intestinal Prevotella reduction and significantly reduced pro-
IL-1β expression in neutrophils. Antibiotic treatment was also 
efficient in reducing pro-IL-1β expression in Pstpip2cmo mice, 
but cohousing experiments and fecal microbiota transplantation 
from Pstpip2cmo mice failed to cause disease in WT mice. However, 
fecal microbiota transplantation from low-fat diet (LFD)-fed dis-
eased Pstpip2cmo mice to young LFD-fed Pstpip2cmo mice by oral 
gavage promoted the expansion of Prevotella, and significantly 
accelerated the development of osteomyelitis, whereas trans-
plantation of fecal microbiota from HFD-fed Pstpip2cmo mice 
to young LFD-fed Pstpip2cmo mice limited Prevotella outgrowth 
and significantly protected mice from developing osteomyelitis. 
Caspase-1/8-mediated processing of microbiota-induced pro-IL-
1β was necessary to promote autoinflammatory disease in these 
susceptible mice (119).

Extraintestinal inflammatory processes have also been shown 
to be partially dependent on inflammasome-mediated sensing 
of the microbiota metabolite acetate. GF, antibiotic-treated, and 
GPR43-dificient mice are protected from joint inflammation 
upon injection of monosodium urate monohydrate (MSU) crys-
tals. It was demonstrated that microbiota reconstitution or acetate 
administration to GF mice restored MSU crystals-induced inflam-
mation and that GPR43 is at least partially necessary to adequate 
inflammasome assembly and IL-1β production in response to 
acetate (120). Therefore, one may suggest that inflammasome-
mediated sensing of both intestinal microbiota and their products 
contributes to control local and systemic inflammatory disorders, 
which should be considered when designing prophylactic and 
therapeutic applications.

iNFLAMMASOMe AND TLR 
iNTeRACTiONS

Many studies have focused on the interactions between 
inflammasomes and TLRs. In fact, it has been shown that the 
enteric pathogens E. coli- and Citrobacter rodentium-induced 
TLR4/TRIF-dependent synthesis of caspase-11 and activa-
tion of NLRP3 inflammasome in macrophages (121) and that 
Pseudomonas aeruginosa infection of macrophages induced 
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TLR-4/TRIF-dependent autophagy, which was attenuated by 
NLRC4/caspase-1-mediated cleavage of TRIF. Prevention of 
in vivo caspase-1-mediated cleavage of TRIF resulted in enhanced 
autophagy, reduced IL-1β production, and increased bacterial 
clearance (122). L. monocytogenes infection of macrophages was 
shown to induce TLR/IRAK1/IRAK4-dependent activation of 
NLRP3 (123, 124), which suggests that inflammasome–TLR inter-
actions may have an important role in the bacterial recognition.

It has been also demonstrated that Clathrin-mediated 
endocytosis followed by TLR8- and TLR7-mediated recognition 
of HIV and HCV in monocytes and macrophages resulted in 
NLRP3 activation, which was independent of type I IFN pro-
duction (125). Moreover, dendritic cells were shown to express 
higher levels of NLRP3 in the steady-state condition compared 
to macrophages and to secrete substantial amounts of mature 
IL-1β upon stimulation with TLR ligands independently of P2X7 
signaling (126). On the other hand, chronic TLR stimulation 
by LPS has been shown to dampen NLRP3 activation through 
IL-10 induction (127), and TLR2/TLR4 engagement resulted in 
upregulation of plasminogen activator inhibitor type 2 (PAI-2), a 
serine protease inhibitor, which culminated in the stabilization of 
the autophagic protein Beclin 1 to promote autophagy, reduction 
of mitochondrial reactive oxygen species, NLRP3 protein level, 
and pro-IL-1β processing (128).

Although increasing evidence suggests that both TLRs and 
inflammasomes play an important role in promoting host–
microbiota communication, studies regarding the interactions 
of these molecules in the context of the gut microbiota are still 
lacking and will further improve our knowledge on how com-
mensal microorganisms and the immune system cooperate in the 
modulation of inflammatory and autoimmune diseases.

CONCLUDiNG ReMARKS

The dynamic interactions that have been established between 
mammalian hosts and commensal microorganisms over mil-
lennia of coevolution resulted in the development of a well-
structured immune system, which controls pathogenic infections 
while tolerates a highly diverse microbiota. Innate sensing of the 
gut microbiota through TLRs and inflammasomes contributes to 
intestinal homeostasis by stimulating the development/function 
of both regulatory and inflammatory cells and by promoting 
proliferation of IECs, epithelial integrity, mucus secretion, and 
containment of opportunistic infections. It has become clear that 
disturbances in the fine-tuning that governs host–microbiota 
interactions may lead to both local and systemic inflammatory and 
autoimmune diseases. In this review, we bring many examples of 
the dualistic role played by the gut microbiota in both promoting 
and regulating inflammation and autoimmunity. We believe that 
a better understanding of mechanisms involved in these complex 
interactions between host and commensals will further improve 
common prophylactic and therapeutic applications.
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