
Viability Conditions for a Compartmentalized
Protometabolic System: A Semi-Empirical Approach
Gabriel Piedrafita1, Kepa Ruiz-Mirazo2,3, Pierre-Alain Monnard4, Athel Cornish-Bowden5,

Francisco Montero1*

1 Departamento de Bioquı́mica y Biologı́a Molecular I, Universidad Complutense de Madrid, Madrid, Spain, 2 Departamento de Lógica y Filosofı́a de la Ciencia, Universidad

del Paı́s Vasco, Donostia-San Sebastián, Spain, 3 Unidad de Biofı́sica, Consejo Superior de Investigaciones Cientı́ficas-Universidad del Paı́s Vasco, Leioa, Spain, 4 Center for

Fundamental Living Technology, University of Southern Denmark, Odense, Denmark, 5 Unité de Bioénergétique et Ingénierie des Protéines, Centre National de la
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Abstract

In this work we attempt to find out the extent to which realistic prebiotic compartments, such as fatty acid vesicles, would
constrain the chemical network dynamics that could have sustained a minimal form of metabolism. We combine
experimental and simulation results to establish the conditions under which a reaction network with a catalytically closed
organization (more specifically, an (M,R)-system) would overcome the potential problem of self-suffocation that arises from
the limited accessibility of nutrients to its internal reaction domain. The relationship between the permeability of the
membrane, the lifetime of the key catalysts and their efficiency (reaction rate enhancement) turns out to be critical. In
particular, we show how permeability values constrain the characteristic time scale of the bounded protometabolic
processes. From this concrete and illustrative example we finally extend the discussion to a wider evolutionary context.
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Introduction

By means of a complex set of interconnected enzymes, living

systems have mastered the coupling and kinetic control of

chemical reactions leading to robust forms of cyclic self-

production, generally conceived as metabolisms. Biochemistry,

however, takes place within compartments. All known metabo-

lisms are vectorial [1]: they involve gradients, processes occurring in

compartmentalized space, diffusion and transport of compounds

across diverse boundaries, all of these being deeply entangled with

enzyme-regulated chemical pathways. The complementary rela-

tionship established between a network of reaction processes and

its physical-topological border (most distinctively, the cytoplasmic

membrane) has often been highlighted as a central aspect of

biological organization, and even considered as the defining

feature of life [2,3]. However, despite the claims of the

‘‘compartment-first’’ school of thought in the origins of life

research field [4–9] (see also [10]), there have been few empirical

or theoretical studies of the actual conditions for viability of that

kind of system (see Note 1 in Text S1), i.e. about the mutual

physical-chemical constraints that a minimal cyclic reaction

network (a protometabolism) and a boundary (e.g. a prebiotic

lipid vesicle) impose on each other.

Until recently, self-assembling compartments (in particular,

topologically closed lipid bilayers, or vesicles) have been regarded

as a challenge for the development of any complex chemistry, due

to the barrier to the free diffusion of solutes they represent and the

corresponding reduction of the molecular precursor accessibility to

the inner aqueous core of the system. Therefore, some authors

have shown preference for a scheme of prebiotic transitions in

which (bio-)chemistry develops without lipid compartments [11–

13] or, at most, in their vicinity [14,15]. Recent experimental work

on protocell systems with membranes made of mixtures of fatty

acids and other prebiotically plausible amphiphiles [16,17] has

shown, however, that vesicles do not necessarily constitute such

impermeable barriers [18], particularly for non-ionic and low-

molecular-weight compounds. From these new pieces of evidence,

an alternative co-evolutionary scenario can be envisioned in which

reaction networks would very early be hosted within protocell

compartments, becoming increasingly both interdependent and

complex thereafter.

The role of lipid phases and compartments that likely

preceded bio-membranes must have gone beyond their primary

anti-dilution effects of preventing the irreversible loss of soluble,

non-abundant–but often essential–organic compounds. For

example, lipid bilayer and multilayer structures have been

reported to assist polymerization of both nucleic acids and

peptides in various experimental conditions [19–23], or to harbor

light energy transduction mechanisms [24]. In addition, encap-

sulating a reaction network (in particular, a network comprising

populations of replicating molecules) within a vesicle with

potential, itself, for reproduction (as a whole system) has often

been underlined as a key evolutionary step towards living
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organisms [25,26]. Nevertheless, many other possible advantages

of combining aqueous and lipidic faces (i.e. soft interfaces; see

Note 2 in Text S1) deserve both theoretical and empirical

explorations. If one recognizes the far-reaching effects that simple

spatial diffusion has on chemical processes (e.g. spontaneous

pattern formation [27]), it is then difficult to overlook the

potential of self-assembling compartments to modulate chemistry

(e.g. through more precise control of diffusion rates) or even to

enable ‘‘new chemistries’’ (unexpected in open solution condi-

tions). As an illustrative example, we can mention how the use of

water-in-oil micro-emulsions to adjust the diffusion rates of the

different compounds involved in an oscillating reaction system,

such as a Belousov-Zhabotinsky reaction system, has allowed the

empirical observation of a very diverse range of complex spatial-

temporal patterns of chemical behavior [28].

In this context, it would be of great interest to determine the

conditions for viability of cyclic reaction networks (e.g. coupled

autocatalytic loops with potential for self-maintenance) within

vesicles made of prebiotically plausible amphiphilic molecules.

Although several interesting results have been recently obtained on

those lines (e.g. the achievement of the autocatalytic formose

reaction system in vesicles, even if these were not prebiotic [29]),

bottom-up approaches to this general problem are rare. In

contrast, some theoretical studies have progressed towards a

rigorous definition and characterization of metabolism. For

instance, it has been argued that any metabolism must be based

on autocatalysis, through coupled autocatalytic reaction networks

[30,31] or reflexively autocatalytic sets [32,33]. In addition,

authors such as Maturana and Varela [3], Rosen [34] or Fontana

and Buss [35] consider that metabolic behavior requires an

operationally-closed organization. Thus, protometabolisms must

have developed mechanisms of self-production, such as the ability

to produce their own catalysts, achieving catalytic closure [36]. In

these theoretical approaches, however, the compartment is

frequently disregarded or treated in terms that are too abstract.

Here we attempt to fill that gap, combining theoretical and

experimental results obtained through various methods into a

common framework of analysis. Specifically, we explore the

implications of inserting a cyclic network of reactions with a self-

productive and self-repair architecture [37–39], into prebiotically

plausible fatty acid vesicles. We will pay special attention to the

way in which the properties (in particular the permeability) of

these initial, protocellular compartments could impose limits on

the actual rates of the reactive processes subject to encapsulation,

if the system is to avoid self-suffocation [31].

Results

Model Description
The protometabolic model we will explore (Fig. 1) consists of

two distinct domains. First, there is an external environment, taken to

be an unlimited reservoir of energy-rich precursors (S, T and U),

with concentrations that are assumed to have fixed values in that

medium (in other words, they are assumed to be buffered by a

surrounding chemistry, as in a primordial-soup hypothesis). In

addition, there is a system containing a protometabolic reaction

network limited or enclosed by a semi-permeable primitive

membrane. With these premises, the membrane is considered to

be permeable to the small precursors, but impermeable to the

bulkier metabolic intermediates produced by the internal reaction

network [16,40]. This allows the acquisition (by passive diffusion)

of the precursors from the external environment, which is a

necessary process for feeding the internal set of reactions, while

preventing the leakage of the intermediates. Regarding the

internal protometabolic network, it follows a previous model of a

simple catalytically-closed metabolism [36,41], which has been

adapted by introducing some slight but non-trivial modifications

(in particular, the non-catalyzed, thermodynamically driven, slow

production of the main catalysts in the system). The core reaction

scheme is composed of three intertwined catalytic cycles (colored

in Fig. 1) that are together capable of counteracting the

spontaneous degradation of the catalysts STU, ST and SU–shown

by the dashed arrows in the graph. Self-maintenance thus results

from a trade-off between modest degradation rates and an efficient

coupling of condensation reactions that involve the three energy-

rich precursors, which essentially provides the system with its own

means of production of the degrading catalysts.

As mentioned at the end of the Introduction, the metabolic

model has already been analyzed in homogeneous conditions

[38,39] revealing an interesting dynamic behavior, with a

stationary state of non-null concentrations of intermediates that

proved robust for a range of degradation rates. While S, T and U

were then assumed to have constant concentrations, these

parameters will be variable now, as the reaction domain is

compartmentalized. This constraint is thus translated to the

concentration of precursors in the outer, external environment

(Sout, Tout and Uout). In this way, the impact of membrane

permeability on the dynamics of the system can be studied.

Additionally, accessory reactions for the non-catalyzed formation

of catalysts from precursors have now been included. These

uncatalyzed processes are illustrated with grey arrows in Fig. 1, to

distinguish them from the rest of internal protometabolic reactions

(catalytic transformations plus irreversible degradations) that will

be called the ‘‘core protometabolism’’ (black arrows).

All rate constants are treated as invariant, with the fixed values

shown in Table 1, except for the degradation rate constants, k4, k8

and k11, which are varied in the range 0.0–0.6, and the rate

constants for the incorporation of precursors, qS, qT and qU, which

are varied in the range 10{3–1010. Both the rate constants and the

concentrations are assigned consistent units: concentrations are

expressed in mM, whereas time is expressed in arbitrary units (t) in

the absence of strong arguments supporting a particular time scale

for such prebiotic processes. Later in the paper we shall discuss

how large the unit of time should be.

Notice (from Table 1) that, quite reasonably, the rate constants

of uncatalyzed condensation reactions are assigned values

significantly smaller than those of the catalyzed processes, to

stress the kinetic effect of those primitive catalysts, even if they

must have been much less effective in their action than present-day

proteins. This was done with care to avoid violating thermody-

namic constraints on the global processes, i.e. the equilibrium

constant of each one of the uncatalyzed processes is the same as

the overall equilibrium constant of the corresponding catalytic

cycle forming the same product. Thus, for instance

K
eq
ST~K

eq
1 K

eq
2 K

eq
3 as developed below:

K
eq
ST~

½ST�eq

½S�eq½T�eq ~
kST

k{ST
~

k1k2k3

k{1k{2k{3
:

The restriction of constant concentrations of S, T and U in the

external environment (Sout, Tout and Uout) and the exit of

degraded compounds (see Note 3 in Text S1) implies a continuous

flow of energy and/or matter through the entire system (vesicular

system plus its external environment), from the activated

precursors, S, T and U, to the waste inactivated products of

irreversible degradations. This, together with the condition of

Viability for a Compartmentalized Protometabolism
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irreversibility of the degradation reactions, make the system

thermodynamically open, forcing it to operate under non-

equilibrium conditions.

Stationary Solutions of the Model Protometabolism
Stationary state solutions (i.e. states with invariant concentra-

tions of intermediates) were calculated (see Materials and

Methods) and explored in a wide range of the parameter space.

As shown in Fig. 2 and detailed in the text below, the number

and type of possible steady states that the system may reach

depend both on the values of the degradation rate constants, k4,

k8 and k11, and on the values of the rate constants for the influx

of the different precursors, qS, qT and qU. For simplicity, we will

only illustrate the effects on the concentration of ST, but

qualitatively similar results apply to the behavior of the other

intermediate concentrations.

Non-limiting diffusion of precursors. We first analyzed

the possible steady-state solutions under the extreme assumption of

non-limiting diffusion of precursors, i.e. immediate supply of

feeding molecules S, T and U. This situation is equivalent to the

assumption of instantaneous uptake of precursors from the

external reservoir (qX??), so that the concentrations of

precursors are always equilibrated between the external and the

internal medium. Therefore, for practical purposes, in this

situation we considered the internal concentrations of S, T and

U to be fixed and equal to the external ones: ½S�~½Sout�,
½T�~½Tout� and ½U�~½Uout�. These conditions are similar to those

analyzed in previous papers [38,39] but with the novelty that the

uncatalyzed synthesis of the catalysts is now included.

The space of possible steady-state behaviors is mainly sensitive to

the degradation rates (Fig. 2a). For relatively high values of

degradation rate constants (k4~k8~k11w0:373 t{1) only one

steady state is possible, corresponding to a residual state (Fig. 2a, shown

in red) in which the system shows close-to-zero concentrations of

intermediates, mainly due to the slow rates of uncatalyzed

production processes. However, when the degradation rate

constants are smaller (0:221 t{1
vk4~k8~k11v0:373 t{1),

the previous residual state coexists with a non-null steady state with

high concentrations of intermediates (Fig. 2a, in blue), which will be

referred to as the functional steady state. That is, a self-maintaining

Figure 1. Kinetic model of a compartmentalized protometabolic network. Two different domains are defined: an external environment,
considered as an unlimited source of precursor molecules (S, T and U); and a system in which a set of protometabolic processes take place,
encapsulated by a semipermeable membrane (represented as a sphere). Its boundaries allow for the passive diffusion of the precursors into the inner
aqueous core. Three intertwined catalytic cycles, highlighted in different colors, define the core protometabolism (reactions depicted as black arrows),
transforming the precursors into catalysts STU, ST and SU; whereas three accessory reactions, shown in light grey, correspond to the non-catalyzed
formation of these catalysts, which are also irreversibly degraded through steps 4, 8 and 11 (dashed arrows). The concentrations of the distinct
species inside the system are treated as variables, and all processes except the degradation reactions are reversible. Forward rate constants are
denoted ki , adjacent to their corresponding processes (direction of the arrows), while reverse rate constants, when pertinent, appear as k{i . The
nutrients S, T and U can diffuse through the membrane in both directions: the same rate constants qX are assumed for their incorporation and efflux.
doi:10.1371/journal.pone.0039480.g001
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regime in which the system can keep producing its own components

despite the continuous degradation they suffer. In this region of the

parameter space, bistability appears: both steady states are shown to

be asymptotically stable and appear separated from each other by an

unstable steady state (a saddle point; Fig. 2a, in green). This third steady

state is associated with a separating barrier in the phase space

delimiting the attraction areas of the two stable steady states. In this

range, therefore, the time evolution of the system towards one state

or the other is determined by the initial conditions. Initial

concentrations of intermediates over the separating barrier lead to

the self-maintaining state, whereas too restrictive conditions, below

that separating barrier, lead to the residual state. Finally, when the

values of degradation rate constants are even smaller

(k4~k8~k11v0:221 t{1), the only steady state present is the

non-trivial one corresponding to self-maintenance of large concen-

trations of intermediates (see Note 4 in Text S1).

Our analysis predicts two bifurcation points (at

k4~k8~k11~0:221 t{1 and k4~k8~k11~0:373 t{1) that

allow an interesting hysteretic behavior. Assuming that the system

is in the residual state, the system remains in the same state as the

degradation rate constants decrease (moving to the left in Fig. 2a),

as long as the values of the degradation rate constants are greater

than the critical point 0:221 t{1. Below this point the system

experiences a sudden jump in the concentrations of intermediates

to the values in the functional non-trivial stable steady state. Once

in this non-trivial stable steady state, the system will tend to remain

there, even when the degradation rate constants are increased over

the critical point 0:221 t{1 (moving to the right in Fig. 2a). It is

necessary to go further to values over the critical point 0:373 t{1

to observe a collapse to the residual state. At this sudden transition

all concentrations rapidly become very low, presumably as a

consequence of the incapability of the self-producing catalytic

cycles to compensate for the fast degradation of its components.

This hysteretic behavior is especially interesting because it shows a

relatively high robustness of the functional non-trivial steady state

with respect to the increase in the values of the degradation rate

Table 1. Values of rate constants and fixed concentrations in
the kinetic protometabolic model.

Kinetic constants

First-order reactions (t{1) Second-order reactions (mM{1 t{1)

k21 = 10 k1 = 100

k22 = 10 k2 = 100

k3 = 2 k23 = 10

0,k4,0.6

k25 = 1 k5 = 10

k26 = 1 k6 = 10

k7 = 0.1 k27 = 1

0,k8,0.6

k29 = 0.05 k9 = 1

k10 = 0.05 k210 = 0.5

0,k11,0.6

k2ST = 0.001* kST = 0.02*

k2STU = 0.001* kSTU = 0.01*

k2SU = 0.001* kSU = 0.02*

Passive diffusion rate constants (t{1)

1023,qS,1010 *

1023,qT,1010 *

1023,qU,1010 *

External concentrations (mM)

[Sout] = 0.4

[Tout] = 0.2

[Uout] = 0.1

All parameters have the same values as already defined in previous work
[38,39], except those marked with an asterisk, which are new.
doi:10.1371/journal.pone.0039480.t001

Figure 2. 2D bifurcation diagrams. (A) Bifurcation diagram
obtained as a function of the values of the degradation rate constants,
k4, k8 and k11, assuming total availability of precursors S, T and U (i.e.
instantaneous diffusion). (B) Bifurcation diagram with respect to the
values of incorporation rates of precursors, qS, qT and qU , considering
degradation rates of k4~k8~k11~0:3 t{1 . Notice (in B) that for
sufficiently large values of qX , the steady-state concentrations approach
those shown in A for k4~k8~k11~0:3 t{1 . In both (A) and (B) a
bifurcation point can be distinguished that separates a region of mono-
stability of a residual steady state (with vanishing concentrations of
intermediates––depicted in red), from a region of bistability in which
that solution coexists with a functional stable steady state with high
concentrations of intermediates (in blue), separated by an unstable
steady state (a saddle point shown in shaded green). This behavior
indicates that both the degradation rate constants and the incorpora-
tion rate constants are critical to achieve self-maintenance, given that
certain critical thresholds cannot be crossed without loosing that
capacity for self-maintenance.
doi:10.1371/journal.pone.0039480.g002
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constants; but also (and perhaps more significantly) because it

explains how this system could emerge spontaneously, just from its

precursors, given a certain scenario with relatively low values of

the degradation rate constants. Indeed, when

k4~k8~k11v0:221 t{1, the formation of the functional system

becomes certain even if there is no catalyst present initially. The

slow, spontaneous uncatalyzed formation of intermediates from

precursors will be sufficient to drive the production of a certain

amount of catalysts, which in turn triggers the construction of the

system. This result represents the first important novelty compared

with previous studies along similar lines [38].

Rate-limiting diffusion of precursors. Even if primitive

membranes were probably much leakier than present bio-

membranes [18], it is reasonable to assume a diffusive constraint

for nutrient uptake by any encapsulated protometabolism. Every

closed membrane, if it is minimally stable, acts as a diffusion

barrier, so primitive vesicle bilayers must have imposed kinetic

restrictions on the free acquisition of precursor molecules from the

external medium. Accordingly, we turn now to study the effects of

varying the rate constant for the incorporation of precursors, qX,

on the system dynamics.

In a first approach, we focused on the steady-state solutions

found for diverse values of qX (in the range 10{3–1010 t{1),

while keeping a fixed value of the degradation rate constants. For

instance, Fig. 2b shows the results obtained when

k4~k8~k11~0:3 t{1. As seen in this figure, for relatively high

values of qX the system is bistable, as for the same degradation

parameters with non-limiting diffusion of precursors (Fig. 2a). In

fact, not surprisingly, as qX increases the steady-state concentra-

tions approach the values obtained in the analysis with non-

limiting diffusion of precursors (i.e. qX??). However, the

behavior is very different at smaller values of the incorporation

rates: the concentrations in the functional steady state (blue line in

Fig. 2b) decrease as the values of the rate constants for uptake of

precursors progressively decrease, until a critical point is reached

(qS~qT~qU~100:94~8:71 t{1) in which the functional steady

state merges with the unstable steady state (green line). Below this

point the system becomes monostable, with the residual steady

state (very small concentrations of intermediates) as the only

possible solution (red line in the figure). To avoid its collapse under

these conditions, the system must maintain relatively high values of

qX; in other words, its membrane needs to be sufficiently

permeable.

To get a better insight into the general region of the parameter

space where the functional non-trivial steady state is permitted, we

have extended the previous analysis to other values of k4, k8 and

k11, in the range: 0.0–0:6 t{1. The results are summarized in

the three-dimensional bifurcation diagram in Fig. 3. Although the

system always finishes at the residual steady state when

k4~k8~k11w0:373 t{1, regardless of the values of the

incorporation rate constants (i.e. if catalyst degradation occurs

too rapidly, then even a high permeability will not prevent the

residual state), this set of parameters qX become critical for lower

values of the degradation rate constants. In fact, as we saw above,

in the range 0:221 t{1
vk4~k8~k11v0:373 t{1 the system

becomes bistable. But this only happens for relatively large values

of qX: as these values decrease, diffusion cannot completely fulfill

the metabolic requirements and intermediate concentrations at the

functional non-trivial steady state start to decrease as well

(reflected in the curvature of the blue surface in Fig. 3). Following

that trend, below a certain critical value qc, the system suffers a

sudden shift to the residual state (edge of the blue surface). This

sharp transition occurs for qS~qT~qU~100:94~8:71 t{1

when k4~k8~k11~0:3 t{1 (Fig. 2b, star in Fig. 3), but moves

to lower values of qX as the degradation rate constants get smaller.

There is a parallel decrease in the concentration of ST at which

this transition occurs, shown by the progressive fall of the

intersection between the blue and green surfaces. This intersection

finally merges with the residual state at k4~k8~k11~0:221 t{1

for qS~qT~qU~1 t{1.

Below the limit k4~k8~k11~0:221 t{1 there is no longer a

sharp transition between the functional steady state and the

residual one, but a continuous space of admissible steady-state

concentrations of ST. The system exhibits high concentrations at

relatively high values of qX, and progressively lower concentrations

at more restrictive values of qX. However, except for conditions

too close to equilibrium (k4~k8~k11~0), the major decrease in

the concentrations is still produced in a narrow range of values of

the incorporation rate constants, which is generally between 0.1

and 10 t{1. For instance, for k4~k8~k11~0:1 t{1 the

concentration of ST is 1.29 mM when qS~qT~qU~10 t{1,

but goes down to 0.13 mM when qS~qT~qU~0:1 t{1. So,

even though the system maintains non-null concentrations of

intermediates at relatively low values of permeability, they become

so small and close to those of the residual steady state that it turns

arguable whether the system is functional, sensu stricto, under such

far-from-optimal conditions. Hence, although strictly speaking a

critical value qc does not exist in the region where

k4~k8~k11v0:221 t{1, the values of the incorporation rate

constants still affect the development of the system into either a

functional steady state or a residual state. We will also neglect

conditions too close to k4~k8~k11~0, where the independence

of ½ST�ss on qX is due to the close-to-equilibrium state of the

system (i.e. far from functional conditions).

In conclusion, the rate constants both for the degradation of

catalysts (k4, k8 and k11), and for the incorporation of feeding

molecules (qS, qT and qU) are critical parameters in this model.

Thus, in order for the enclosed or compartmentalized protometa-

bolic system to maintain a functional steady state with high enough

concentrations of intermediates, it is necessary to consider a

relatively limited degradation of catalysts

(k4~k8~k11v0:373 t{1) and a relatively high permeability

of the compartment to precursors (qS, qT and qU at least in the

order of magnitude of 0.1 to 10 t{1).

Permeability Constraints: an Experimental Survey
Once the critical effect that passive transmembrane diffusion

rates can have on the self-maintenance of this protometabolic

system has been shown, it becomes necessary to assess how

permeable real primitive lipid bilayers could have been to

nutrients. The permeability to a relatively small solute (carboxy-

fluorescein, CF; see Note 5 in Text S1) was accordingly

investigated for two representative experimental compartment

models: vesicles made of lauric acid (LA) (a short-chain, fully

saturated fatty acid), as a plausible model of a prebiotic, precursor

membrane boundary; and vesicles composed of mixed oleic acid

and glycerol monooleate (OA/GMO), as a control model for more

stable and evolved membrane systems, i.e. ‘‘primitive biomem-

branes’’ (for a review on the evolutionary aspects of prebiotic

compartments see [42]). Before the release experiments were done,

the experimental methodology used for encapsulating CF (see

Materials and Methods) was validated by fluorescence microscopy

(Fig. 4). Both types of amphiphilic systems rapidly formed self-

assembled vesicles when prepared at a pH close to the pKa of the

fatty acid. In those conditions, samples were also able to

Viability for a Compartmentalized Protometabolism
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encapsulate CF, as confirmed by the observation of small green

dots after size-exclusion chromatography (Fig. 4c).

Permeability was monitored by measuring solute release at

45uC. Fig. 5a shows the time course of CF liberation from both

types of vesicular systems (for convenience, the fluorescence signal

has been translated into concentration units using a standard

curve; see Text S2). In both cases the data show approximately an

exponential decay. As equilibrium could not be reached in either

case, even after relatively long waiting times (500 min), a detergent

(Triton-X100) was used to solubilize the vesicles and release the

encapsulated dye (see Fig. 4d). The resulting values were taken as

the reference state ½CF�eq, corresponding to the normalized value

1 in the ordinate axis in Fig. 5a. Comparison by eye shows that the

efflux of CF from LA vesicles is much faster than from OA/GMO

vesicles, as expected for a more dynamic and unstable type of

membrane [16,17].

Beyond these general qualitative considerations, specific values

for the permeability were also calculated. To do this, the previous

release data were transformed, following the procedure described

in Text S2, and represented in a semi-logarithmic plot (Fig. 5b).

Approximately linear trends were obtained for at least the first

30 min of release both for LA vesicles (R2~0:97) and for OA/

GMO vesicles (R2~0:98), each of the slopes giving the respective

rate constant of release k, in accordance with Eq. 4 in Text S2 (see

Note 6 in Text S1). The corresponding values of k are shown in

Table 2 together with other related permeability parameters that

can be derived from it. For instance, the permeability coefficients

PX were obtained from the respective values of k, assuming a

monodisperse size distribution of unilamellar 400 nm-extruded

vesicles (50 nm- in the case of OA/GMO), i.e. rLA~200 nm;

rOA=GMO~25 nm (see Eq. 5 in Text S2). The molecular

diffusion coefficients DX could also be estimated (Eq. 6 in Text

S2) taking realistic values for the membrane thickness l

(lLA~2:8|10{8 dm; lOA=GMO~4:0|10{8 dm) [43]. All

this confirms the differences of permeability to CF when LA

vesicles and OA/GMO vesicles are compared, the former being

manifestly leakier. Notice that even though the permeability was

determined from release experiments, similar permeability prop-

erties would apply for the entry of CF (see Eq. 1 in Text S2).

Permeability Constraints: Time Scale Implications for
Compartmentalized Prebiotic Chemistries

Up to this point all processes defined in the protometabolic

model have been considered to occur in an arbitrary time scale.

This in principle allows for the free assignment of time units, as

long as these units are consistent within the different processes

taking place in the system. In practice, however, once the identity

of the molecules can be established, it will be reasonable to assume

certain constraints on the general time scale of events. In fact,

efficient catalysts (like protein enzymes) were surely absent in the

early stages of the emergence of life, thus inter-conversion rates

were also probably much slower in prebiotic conditions; i.e.

generally speaking, longer time scales than those characteristic of

present biochemistry should be considered. However, even

without taking into account how the progressive development of

catalysis could accelerate the general pace of protometabolic

reactions, permeability values in a compartmentalized system, like

ours, will already define important restrictions on the time scale of

the encapsulated chemistry. As the maintenance of the system in a

Figure 3. 3D bifurcation diagram. Combined bifurcation diagram, showing the dependence of the stationary solutions on both the degradation
rate constants (k4 , k8 and k11), and the rate constants for uptake of nutrients (qS, qT and qU). Three different regions are distinguished in the
parameter space: (i) For k4~k8~k11w0:373 t{1 , only a residual steady state (red surface) is possible regardless of the values of qS, qT and qU. (ii) In
the range 0:221 t{1

vk4~k8~k11v0:373 t{1 the number of possible attainable steady states is, in contrast, dependent of the values of qS, qT

and qU . The star shows the location of the critical point obtained for qS, qT and qU when k4~k8~k11~0:3 t{1. (iii) For k4~k8~k11v0:221 t{1,
there is again only one possible steady state, regardless of the values of qS, qT and qU . However, ½ST�ss is still strongly dependent on the values of
these incorporation rate constants, which remain critical to relate this steady state with a proper functional steady state or, instead, with some
residual functioning of the system.
doi:10.1371/journal.pone.0039480.g003
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functional steady state has been shown to be at risk for relatively

low values of the incorporation rate constants (qS, qT and qU), the

time scale of the internal protometabolic processes, presumably,

cannot be too short (i.e. processes should not occur too quickly).

Otherwise, the relatively slow acquisition of food molecules from

the environment would not be sufficient to supply the internal

demand (see Note 7 in Text S1). For instance, for

k4~k8~k11~0:3 t{1 (with a critical value qc~8:71 t{1), a

general time scale of seconds would require values of incorpora-

tion rate constants above 8:71 s{1, whereas values over

8:71 h{1 (about 0:002 s{1) would be sufficient for reactions

occurring at a time scale of hours. This observation raises the

interesting question of the minimum general time scales that

would be compatible with the functioning of this protometabolism

in a prebiotic compartment.

Our experimental assays were focused on the permeability to

CF, due to its obvious advantages in terms of producing a

measurable fluorescence signal. We are aware of the lack of

prebiotic relevance for CF and of the fact that vesicle permeability

can change quite drastically, depending on the sort of solute

entering or exiting, and the actual composition of the membrane

[40]. However, CF can be taken as a suitable point of reference for

our purposes here: it is a negatively-charged, relatively large

molecule, so most nutrients or precursors (at least those that one

would expect to be initially necessary for such a primitive

metabolic network) should permeate into fatty acid vesicles of a

similar composition faster than CF. In other words, in a

generalized permeability chart (like the one provided in Fig. 3 of

[40]) most molecular species would present higher values than

those obtained for CF. Under this assumption and for the sake of

simplicity, we will therefore consider that the experimental results

with CF can serve as an adequate control (a ‘‘less-favorable

estimate’’) for the passage of prebiotically available organic

nutrients through plausible primitive compartment boundaries.

But, in any case, the implications, insofar as the non-trivial self-

maintenance of the internal reaction network is concerned, will be

circumscribed to the particular model–and the particular region of

parameter space–explored above.

According to the previous premises, once the diffusion of CF has

been experimentally determined, we can substitute the values of

qS, qT and qU in the protometabolic model by the measured value

of k for LA vesicles, first, as the most primitive and precarious case

(in other words, qS~qT~qU~2:60|10{5 s{1). In this way,

the restriction on the time scale of the internal protometabolic

network can be estimated by comparing qS, qT and qU with qc.

For instance, taking again the condition in which

k4~k8~k11~0:3 t{1, it can be easily shown that neither the

time scale of seconds nor the time scale of hours would be long

enough to allow the maintenance of the system with relatively high

concentrations of intermediates, for qS~qT~qUvqc with either

Figure 4. Preparation of fatty acid vesicles encapsulating CF, visualized by epifluorescence microscopy. (A) Micrograph showing the
formation of vesicular structures of polydisperse sizes and diverse degree of lamellarity from an aqueous solution of 21 mM LA in 100 mM bicine
buffer, pH 7.95. (B) Another LA vesicle suspension, but 1 h after extrusion through polycarbonate filters of 400 nm pore diameter. (C) LA vesicles of
monodisperse size just after size exclusion chromatography. Once the non-entrapped material has been removed, vesicles retaining CF exhibit a
characteristic green color. (D) The fluorescence spreads throughout the sample after addition of a detergent such as Triton-X100. Samples A and B are
stained with the lipophilic dye Nile red. All panels are at the same magnification.
doi:10.1371/journal.pone.0039480.g004
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unit. Indeed, 2:60|10{5 s{1
v8:71 s{1, and

2:60|10{5 s{1
v0:002 s{1. In those circumstances, the

general time scale for protometabolic reactions should be longer

(i.e. slower processes): it should span at least 8:71=(2:60|10{5)

seconds, i.e. 3:35|105 s. As shown in Table 3, this is first met by

a time scale of weeks (1 week~6:05|105 s). Then,

Figure 5. Experimental release profiles of CF from vesicles at 456C. (A) Time evolution of the concentration of released CF, normalized to the
concentration at equilibrium, i.e. after final addition of detergent. The resulting exponential curves were linearized in a semi-logarithmic plot for the
first 30 min (B). Linear tendencies are obtained in agreement to Eq. 4 in Text S2, identifying the slope as the rate constant of release k.
kLA~2:60|10{5 s{1 (R2~0:97); kOA=GMO~0:39|10{5 s{1 (R2~0:98). Red triangles: vesicles made of LA. Blue circles: vesicles made of OA/
GMO in a molar ratio 2:1.
doi:10.1371/journal.pone.0039480.g005

Table 2. Permeability coefficients calculated from the release of entrapped CF at 45uC.

Composition pH k (|10{5 s{1) PX (|10{10 cm=s) DX (|105 dm2 s{1 mol{1)

LA 7.95 2.60 1.73 2.92

OA/GMO 2:1 9.10 0.39 0.0328 0.0791

doi:10.1371/journal.pone.0039480.t002
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qc~8:71 week{1~1:44|10{5 s{1 and, as a result,

qS~qT~qUwqc. This would imply the restriction that first-order

kinetic constants in the model, such as k7, should take at least units

of the order of week{1 and the second-order kinetic constants,

such as k1, units of mM{1 week{1.

The analysis to specify or delimit the characteristic reaction time

scales of protometabolic processes can be extended to other values

of the decay rates k4, k8 and k11. In general terms, we saw that,

since the minimum values of trans-membrane diffusion constants

required to preserve a functional steady state in the model are

located within a narrow range (generally between 10{1 and

10 t{1), the corresponding critical time scale does not change

significantly from one situation to another. In fact, even a

hypothetical limit case in which qc~10{1 t{1 would involve a

minimum time scale of days, considering the permeability

properties of LA vesicles. The situation becomes more restrictive

(in terms of longer time scales–or slower processes–required) if we

apply a similar reasoning to the model protometabolism when it is

enclosed by OA/GMO vesicles, given the lower permeability of

this type of compartment (Table 3). Nevertheless, one should not

forget that we are dealing with a ‘‘less-favorable estimate’’ (given

by permeability values to CF): many nutrients could cross the

membrane more easily than CF and, hence, allow faster processes

to occur within the system boundaries.

The actual influence of the time scale on the maintenance of

relatively high concentrations of the metabolic intermediates was

finally analyzed by numerical integration. Fig. 6 illustrates the time

evolution of the concentration of ST for k4~k8~k11~0:3 t{1

and qS~qT~qU~2:60|10{5 s{1 (i.e. assuming that compo-

nent precursors like CF had to access LA vesicles) for various cases,

each with a different time scale for internal protometabolic reactions

(including degradation steps). In all of them the initial condition

corresponds to those concentrations found at the ‘‘functional’’ (or

non-trivial/non-residual) steady state for non-limiting diffusion of

precursors (qX??). It is shown that, under those conditions, only for

ametabolic timescaleofweeksdoes the systemendup inasteady state

with non-vanishing values of intermediates. These results demon-

strate how an adequate relationship between qS, qT, qU and qc is

fundamental to preserve functional concentration levels in the

system, confirming that more attention should be given to the

chemical constraints involved in compartmentalized prebiotic

chemistries, as discussed more extensively below.

Discussion

Regardless of the specific characteristics of the system explored

here (both in terms of the particular type of protometabolic network

and membrane/solute permeability duplex), a fairly general

conclusion may be drawn from our analysis: it makes little sense to

investigate separately the properties of compartments and the

chemistries that take place within and around them. From our

perspective, it is dangerous to neglect the problem of the

encapsulation of complex reaction pathways (regulated through

sophisticated catalysts), and to consider their appearance indepen-

dent from the development of compartments. Indeed, a highly

efficient protometabolism (i.e. with enhanced catalytic rates) would

most probably perish by self-suffocation, as its need for nutrients and

raw materials might not be satisfied by the passive influx of

substrates. Conversely, the control of the properties and dynamic

plasticity of the boundary of a system becomes really significant

when the amphiphilic or lipidic compounds of the membrane are

endogenously synthesized (as is the case in biological cells), rather

than directly taken from the set of molecules available from the

environment. The latter side of the coin becomes more obvious in

the context of the transition from self-assembling to self-producing

compartments, analyzed elsewhere [44].

Here we have mainly dealt with the former issue: the viability

conditions that compartmentation imposes on reaction networks

and, more precisely, with the problem of how membrane

permeability to nutrients may limit the characteristic time scale

of the protometabolic processes taking place within a prebiotic

vesicle. This problem, theoretically posed and discussed in [31],

but still lacking a more detailed and specific treatment, has been

now addressed with a concrete example. In general terms, we

found that even highly permeable compartments, such as LA

vesicles, could already entail a remarkable restriction on the time

scale of an internally-developing protometabolism, depending on

the size and type of compounds that this requires as starting

materials. Quite reasonably, these restrictions become more acute

as the permeability of the boundary, overall, decreases (e.g. when

the membrane is made of more complex or evolved lipid

components, like mixtures of OA/GMO). The main corollary of

this work, in any case, supports the central idea put forward by

Szathmáry [31]: the need to envision a coevolutionary scenario for

the development of compartments, hand in hand with the

development of catalytic mechanisms. As catalysis becomes

increasingly efficient in the system (e.g. through the development

of stereospecific molecular recognition mechanisms), compart-

ments should also become increasingly robust and enhance their

selective-permeability properties (e.g. through the insertion of

specific transport mechanisms that ensure a sufficiently fast entry,

across the membrane, of all necessary precursors).

This scenario accords quite well with recent experiments on the

relative leakiness of prebiotic, fatty acid compartments [16–18,45],

as compared to standard liposomes (biomembrane models) made

Table 3. Time scales compatible with self-maintenance.

Time scale qc (s{1) Functional in LA vesicles Functional in OA/GMO vesicles

Second 8.71 2 2

Minute 1.4561021 2 2

Hour 2.4261023 2 2

Day 1.0161024 2 2

Week 1.4461025 + 2

Month 3.3661026 + +

+Time scales that would allow, in realistic compartmentalized conditions, the maintenance of a functional protometabolism within LA or OA/GMO vesicles, considering
the parameter region given by k4~k8~k11~0:3 t{1 and precursor compounds whose permeability properties would be similar to that of CF.
doi:10.1371/journal.pone.0039480.t003
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of more complex amphiphilic molecules, such as phospholipids.

Accordingly, the first compartments would be quite permeable to

organic compounds of different kinds, imposing relatively ‘‘soft’’

constraints on the possible chemistries within them, but unable to

retain within them many of the products of those chemistries

(except for the larger compounds). Then, progressively, the lipid

bilayer would become less and less permeable, capable of more

efficient encapsulation and, in general terms, also more stable. Yet,

at the same time as that transition takes place, specific transport

mechanism would most probably have to start being developed,

among other reasons for the one we have concentrated on in this

contribution: the avoidance of a self-suffocating, dead end. In any

case, the heterotrophic scenario for the origins of life, favored in

principle by Szostak’s group [16], ought to be more carefully

assessed, taking into account the specific chemistry of the

protometabolic reaction network.

In the present work, the focus has been set on the problem of

nutrient accessibility to a compartmentalized protometabolism.

We have limited the analysis to a simple, abstract (M,R)-system

[34], considering its interest from a theoretical point of view

(catalytic closure ensures the production and maintenance of all

catalysts present in the network, a fundamental requirement for

metabolism) as well as our previous analysis of this reaction

network in open-solution conditions, which confirmed its capacity

for robust self-maintenance. Nevertheless, it is necessary to carry

out further work on the same general problem using other internal

reaction schemes that also support self-production and, whenever

possible, take into account the physical-chemical nature of the

components involved. In addition, in this first approximation we

have disregarded, among other issues, the possible leakage of

metabolic intermediates across the membrane, together with the

dynamic nature of the compartment itself and the osmotic effects

that internally produced species could have, which might turn out

to be critical for the global stability of the system. For instance, the

rapid accumulation of waste products could lead to an osmotic

imbalance, even to a complete disruption of the compartment. We

plan to include all these important aspects in future work, since we

are aware that they will contribute to gain a better understanding

of the early interplay between metabolism and membranes.

Materials and Methods

Materials
Lauric acid (LA), oleic acid (OA), bicine, carboxyfluorescein

(CF) and Triton X-100 were purchased from Fluka, Switzerland.

rac-1-Oleoylglycerol (GMO) was obtained from Sigma, USA.

Preparation of Lipid Vesicles
Vesicle suspensions were prepared by adding the fatty acid, LA,

melted in advance, to a preheated 100 mM bicine buffer solution

containing 8 mM CF and following the pH vesiculation method

[46]: the pH was first increased up to complete transparency of the

sample, to maximize the solubility of the oily fatty acid, and then

acidified to a pH close to the pKa of the fatty acid (see values in

Table 2), where vesicular structures become stable. An important

point, however, is that samples had to be kept at temperatures over

32uC to avoid precipitation due to the high melting point of LA. A

value of about 21 mM for the final total concentration of

amphiphile was fixed (well above the critical vesicle concentration

or CVC). Mixed systems of OA/GMO were similarly prepared in

a 2:1 molar ratio of OA to GMO (total concentration: 30 mM),

but in this case samples could be kept at room temperature.

Figure 6. Time behavior of ST concentration. Time evolution of the internal concentration of ST obtained with diverse experiments differing in
the time scale of the internal reaction network, i.e. interconversion and degradation rates. In each case, kinetic constants are expressed in units
consistent with the respective time scale, e.g. for a time scale of weeks, first-order rate constants have units weeks{1 and second-order rate constants

have units mM{1 weeks{1 . The units in the abscissa axis remain undefined as they are determined by each particular time scale considered. In all
cases, k4~k8~k11~0:3 t{1 and qS~qT~qU~2:60|10{5 s{1 .
doi:10.1371/journal.pone.0039480.g006
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Solute Release Measurements
Vesicles were extruded with a small extruder from Avanti Polar

Lipids, USA, passing vesicle suspensions (21 times) through

polycarbonate filters with either 50 (for the OA/GMO system)

or 400 nm (for LA, given its lower stability for smaller sizes) pore

diameter. Non-encapsulated CF was removed by size-exclusion

chromatography, on an agarose column (Bio-Gel A1.5) previously

equilibrated with 100 mM bicine buffer at the corresponding pH.

To avoid vesicular disruption during separation, this buffer

contained a concentration of amphiphile close to the CVC in

the case of LA (for OA/GMO vesicles this was not necessary).

500 mL fractions were collected. The fifth fraction was

spectrophotometrically and microscopically determined to be the

one containing the largest concentration of vesicles. With this

fraction, the release of CF was monitored on a spectrofluorometer

(Cary Eclipse, Varian) (Ex. 450 nm/Em. 520 nm) at 45uC (above

the melting point of LA). A standard curve made from various

serial dilution solutions of CF in bicine buffer was used to calculate

the release in terms of concentration.

Computational Analysis and Simulations
A set of ordinary differential equations was defined to describe

the system dynamics (see Text S3). Stationary state solutions were

obtained by numerical solution of the nonlinear algebraic

equations that result from equating the whole set of equations to

zero. Solutions found in this way were collected for a wide range of

parameter values and eventually presented in the form of

bifurcation diagrams.

The stability of each of the stationary states found was checked

by means of variational analysis: the Jacobian matrix was

evaluated at the particular steady-state values, and the eigenvalues

and eigenvectors calculated. Those steady-state solutions having

all eigenvalues with negative real parts were identified as

asymptotically stable, whereas those with at least one eigenvalue

with positive real part correspond to unstable steady states.

Matlab was used for the previously detailed calculations as well

as for dynamical simulations, which consisted in experiments of

numerical integration of the set of ordinary differential equations

and were thus deterministic.
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