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The spiral ligament in the cochlea has been suggested to play a significant role in the

pathophysiology of different etiologies of strial hearing loss. Spiral ligament fibrocytes

(SLFs), the main cell type in the lateral wall, are crucial in maintaining the endocochlear

potential and regulating blood flow. SLF dysfunction can therefore cause cochlear

dysfunction and thus hearing impairment. Recent studies have highlighted the role of

SLFs in the immune response of the cochlea. In contrast to sensory cells in the inner ear,

SLFs (more specifically type III fibrocytes) have also demonstrated the ability to regenerate

after different types of trauma such as drug toxicity and noise. SLFs are responsible for

producing proteins, such as collagen and cochlin, that create an adequate extracellular

matrix to thrive in. Any dysfunction of SLFs or structural changes to the extracellular

matrix can significantly impact hearing function. However, SLFs may prove useful in

restoring hearing by their potential to regenerate cells in the spiral ligament.

Keywords: spiral ligament of the cochlea, cochlea, immune system, sensorineural hearing loss, noise-induced

hearing loss

INTRODUCTION

The global prevalence of hearing impairment is increasing significantly. In 1985, around 42 million
people suffered from moderate to profound hearing impairment according to the World Health
Organization (WHO). This number has risen to ∼466 million people in 2018 and is expected to
rise to 900 million by 2050 (1). Hearing loss as a consequence of lateral wall dysfunction is often
categorized as sensorineural hearing loss. However, it would be more appropriate to refer to this
as strial hearing loss, which is caused by both fibrocyte and strial degeneration (2). Due to a lack
of sensitive diagnostic testing, the prevalence of strial hearing loss is likely underestimated and
therefore often classified as sensorineural hearing loss (3). Hearing loss has a great impact on daily
life as it has health (increased rates of hospitalization, higher rates of dementia . . . ), psychosocial
and economic effects (4).

THE AUDITORY SYSTEM

The auditory system is the body’s sensory system responsible for hearing. It consists of three main
parts: the outer ear, the middle ear and the inner ear. The outer ear is the external part of the ear and
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consists of the pinna and the ear canal. It ends at the tympanic
membrane, which is the beginning of the middle ear. This
contains three ossicles (malleus, incus, and stapes) which are
responsible for transferring the vibrations of the tympanic
membrane into the inner ear. The inner ear consists of the
vestibular apparatus and the cochlea, necessary for balance and
sound detection respectively. Defects in the outer and middle ear
cause conductive hearing loss, while defects in the inner ear lead
to sensorineural hearing loss (SNHL) (5, 6).

The Cochlea: Anatomy and Histology
The cochlea resembles the shape of a snail shell and consists
of three fluid-filled canals that run parallel with each other: the
scala vestibuli, the scala media, and the scala tympani. The scala
vestibuli and tympani contain perilymph while the scala media
is filled with endolymph (Figure 1). These two fluids differ in
their ionic composition: perilymph resembles extracellular fluid,
with a high concentration of sodium, while endolymph resembles
intracellular fluid, with a high potassium concentration. The scala
media and scala tympani are separated by the basilar membrane.
The basilar membrane does not have a uniform thickness which
causes different regions to be sensitive to different frequencies.
It is widest at the apex of the cochlea and most narrow at
the basal region. This causes low-frequency sounds to resonate
at the apex, while high-frequency sounds localize at the basal
region (8). On top of the basilar membrane sits the organ of
Corti, which translates movement of the basilar membrane into
electrical impulses. The organ of Corti is also known as the
sensory epithelium of the cochlea and consists of a single row of
inner hair cells (IHC) and three rows of outer hair cells (OHC)
separated by the tunnel of Corti (9). Each hair cell contains
stereocilia that deflect with the movement of waves through the
endolymph, which will lead to electric impulses that reach the
brain via the vestibulocochlear nerve (8).

Histology of the Spiral Limbus
The spiral limbus is situated on the osseous spiral lamina
which extends from the modiolus. The spiral limbus mainly
consists of fibrocytes which are vulnerable to several stresses
such as middle ear infections and acoustic trauma. Interdental

Abbreviations: CBF, Cochlear blood flow; CII, Type II collagen; COX,

Cyclooxygenase; Cx, Connexin; DAMP, Damage-associated molecular pattern;

EP, Endocochlear potential; GC, Glucocorticoid; GC-R, Glucocorticoid receptor;
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molecule-1; IHC, Inner hair cell; IMED, Immune-mediated inner ear disease;

iNOS, Inducible nitric oxide synthase; IS, Intrastrial space; ISP, Intrastrial space

potential; ivd, Intervening domain; LCCL, Limulus Factor C, Cochlin and Lgl1;

LPS, Lipopolysaccharide; LW, Lateral wall; MC-R, Mineralocorticoid receptor;

MCP-1, Monocyte chemoattractant protein-1; MIP-2, Macrophage inflammatory

protein-2; MSC, Mesenchymal stem cell; NF-κB, Nuclear Factor kappa-light-
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Pattern recognition receptor; PTS, Permanent threshold shift; PVM, Perivascular
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Tumor necrosis factor α; TTS, Temporary threshold shift; VEGF, Vascular

endothelial growth factor; vWFA, von Willebrand factor A-like.

FIGURE 1 | Mid-modiolar section of a human cochlea showing the modiolus

(MOD), containing spiral ganglion neurons with axons to and from the auditory

nerve (AN). The basilar membrane (*) and Reissner’s membrane (•) define three

fluid-filled spaces: scala tympani (ST), scala media (SM), and scala vestibuli

(SV). The lateral wall (�) connects the basilar membrane to the otic capsule (7).

cells, located in the top of the limbus, are epithelial cells that
anchor the tectorial membrane, a gelatinous structure secreted
by the interdental cells that connects to the organ of Corti. It is
important for the coupling of sound-induced vibrations to the
hair cell stereocilia (10).

Histology of Lateral Wall Structures
The scala media is lined by the lateral wall (LW) and includes the
spiral ligament and the stria vascularis (Figure 2).

The Stria Vascularis
Contains three cell types: marginal, intermediate, and basal cells.
Marginal cells form the epithelial lining of the scala media. They
are the main source of potassium in the endolymph as they
accumulate K+ ions from the intrastrial space (IS) and export
them via KCNQ1 channels to the scala media. Intermediate cells
are located below the marginal cells and form a network of
processes with the marginal cells to maximize the surface for ion
exchange. The third cell population are the basal cells which line
the lateral surface of the stria. The basal cells are connected to
each other by tight junctions that form an ionic barrier between
the intrastrial space and the spiral ligament that is filled with
perilymph [5, (11)].

The Spiral Ligament
Forms the outer wall of the scala media and is connected to
the basilar membrane and the Reissner’s membrane. It contains
blood vessels and five different types of fibrocytes, based on
differences in histology and location. Type I and II spiral ligament
fibrocytes (SLFs) make up most of the spiral ligament. Type I
SLFs are located adjacent to the stria vascularis and are closely
associated with tightly packed collagen bundles. Type I SLFs
contain relatively few cellular organelles in contrast to type
II SLFs. Type II SLFs are located near the spiral prominence
between the basilar crest and the stria and play an important
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FIGURE 2 | Anatomy of the spiral ligament. (Left) Localization of the different fibrocytes subtypes in the spiral ligament. Cochlin is most abundantly expressed in the

region of the type IV fibrocytes. (Right) Schematic representation of the different layers in the stria vascularis consisting of marginal cells, intermediate cells, and basal

cells. Marginal and intermediate cells form cell processes. Circles represent blood vessels.

role in potassium recycling. Type III SLFs (also called tension
fibroblasts) are small elongated cells that line the bony otic
capsule. Type IV SLFs are small spindle-shaped cells located
inferior toward the crista basilaris. Finally, type V SLFs are very
similar to type II SLFs and are located at the apical tip, where
they are in direct contact with the perilymph of the scala vestibuli.
Several ion transporters and proteins are expressed in these SLFs
which further differentiate the different types of fibrocytes. These
will be discussed in the following section. Numerous intercellular
connections are also found which suggest electrical or ionic
coupling between the SLFs, important for their functioning
(10–13).

PHYSIOLOGY OF DIFFERENT CELL TYPES
IN THE SPIRAL LIGAMENT

SLFs play an important role in ion homeostasis, immune
response and regulating blood flow.

Ion Homeostasis and the EP
One crucial function is the maintenance of an endocochlear
potential (EP) of +80mV in the scale media (14). To enable
this, SLFs display a unique ion permeability system. Usually, the
resting potential (RMP) of cells is negative under physiological
conditions. However, a positive RMP has been observed in SLFs.
This is the result of an unusually high permeability to Na+,
much higher than the permeability to other ions such as K+ and
Cl−. This may play a key role in maintaining a positive RMP
of +5 to +12mV in SLF (15). As a result, the positive RMP
contributes to ionic gradients that enable the development of an
EP of +80mV in the endolymph, which is needed for normal
hearing function (14).

TABLE 1 | Summary of ion channels and proteins expressed in spiral ligament

fibrocytes.

Type I Type II Type III Type IV Type V

Na,K/ATPase - + - +/- +

NKCC - + - + +

Connexin 26 + + - - +

Connexin 30 + + - - +

NKCC, Na,K-2Cl co-transporter.

Multiple ion channels and proteins are expressed on the
surface of different types of SLFs, to further increase the RMP
(Table 1). Note that there are several other proteins expressed in
SLF that are not included in this summary.

Another factor that contributes to the development of the EP
is the potential of the intrastrial space (ISP). The lateral wall
can be outlined as a double-layered epithelial system consisting
of strial marginal cells and a syncytium composed of SLFs,
intermediate and basal cells. In between lies the intrastrial space
which has a low K+ concentration (16). This is necessary to
create a large K+ diffusion potential of 90mV maintained by
Na,K/ATPases and NKCCs in the basolateral membrane of
marginal cells (17).

Because of this dual system in the LW, the EP can be seen
as the sum of two different K+ diffusion potentials. First, a
diffusion potential that originates from inwardly rectifying K+

channels Kir4.1 on the apical membrane of intermediate cells.
The second potential comes from KCNQ1 channels apically on
the marginal cells. Under physiological conditions, there is a
potential difference of 10mV between the ISP and EP. This is
likely generated by K+ diffusion as the result of a higher activity
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of K+ in the endolymph compared to the activity of K+ inside
the marginal cells (16, 18).

The importance of K+ diffusion can be observed when
blocking Na,K/ATPases either in the syncytium or in the
marginal cells (Figure 3). First, when blocking Na,K/ATPases in
the SLFs, the EP drops significantly but remains positive. This is
the result of a significant decrease in ISP due to a decrease of K+

activity in the syncytium (aK+
syn). As there is little effect on the

activity of K+ in the IS (aK+

IS), the K
+ gradient greatly diminishes

and thereby decreases the K+ diffusion potential across the apical
surface of the syncytium (17). However, blocking Na,K/ATPases
on the basolateral membrane of marginal cells, results in a
negative EP. This is due to a decrease in ISP and an increase in
the potential difference across the apical membrane of marginal
cells (18). For a more detailed description on the molecular and
physiological bases of the K+ recycling pathways, please refer to
Hibino et al. (19).

Na,K/ATPase
An important ion channel is the Na,K/ATPase, which is mostly
expressed in the type II SLFs, and to some extent in type I and
V SLFs (20). It pumps K+ ions into the cell and Na+ ions out
of the cell at the expense of ATP. As this is a form of active
transport, a normal function of mitochondria is important to
produce sufficient ATP. As a consequence, these SLFs are very
susceptible to energy failure, which can cause loss of EP and thus
hearing loss. (21)

Na,K-2Cl Co-transporter (NKCC)
NKCC is an integral membrane protein consisting of two
isoforms. NKCC1 is expressed in many tissues and plays a role
in ion homeostasis and cell volume regulation, whereas NKCC2
is expressed solely in the kidney. In the inner ear, NKCC1 is
predominantly located in the strial marginal cells and type II
and V SLF. A NKCC1-knockout mouse model demonstrated a
collapse of the lumen of the cochlear duct. Loss of NKCC1 results
in a significant decrease of K+ secretion and its associated water,
which decreases the normal pressure in the perilymph and causes
a collapse of several structures and a drop in the EP (22). Type
IV SLFs show expression of NKCC1 but not of Na,K/ATPase.
This suggests that these cells are subject to osmotic stresses and
that NKCC1 is expressed to cope with these stresses to relieve
the cells (23). Reduced NKCC1 expression has been observed in
aging C57BL/6J mice and may play a role in cellular damage in
the stria vascularis and spiral ligament, as a cause of progressive
SNHL (24).

Connexins
To maintain proper functioning, intercellular communication
is critical. This is achieved by connexins (Cx), major players
in the formation of gap junctions that allow direct intercellular
electrical and metabolic communication. In the inner ear, two
separate gap junctional networks have been identified: (1) an
epithelial gap junctional network between supporting cells in the
sensory epithelium in the organ of Corti, and (2) a connective
tissue gap junctional network between connective tissue cells of
the lateral wall. Although there are many forms of connexin,

FIGURE 3 | Representation of the electrochemical milieu in the lateral wall (17)

Top, scheme of the lateral wall and K+ transport apparatus involved in the

generation of the endocochlear potential. The other panels show the predicted

potential and K+ activity in each compartment under normal circumstances

(second panel), during inhibition of Na,K/ATPase of SLFs (third panel) and

during inhibition of Na,K/ATPase in marginal cells (fourth panel).

Cx26, and Cx30 are the most important connexins in the spiral
ligament. Cx26 is mostly located at the apical tip and spiral
prominence, where type I, II, and V SLFs are located. On the
other hand, Cx30 is located more in the middle area. Type III
and type IV SLFs express neither Cx26 nor Cx30, suggesting they
are not involved in the gap junctional network and do not play
a direct role in K+ recycling (25). Mutations in the GjB2 gene
encoding Cx26 are the most frequent causes of non-syndromic
congenital hearing loss in the Western world (26).

Immune Response
SLFs play an important role in the inflammatory response toward
environmental insults such as bacterial infections, noise trauma,
ototoxic drugs, etc. SLFs are able to secrete anti-inflammatory
chemokines to protect the cochlea from inflammation leading to
hearing impairment (14, 27). Several studies have demonstrated
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that SLFs secrete monocyte chemoattractant protein-1 (MCP-
1), macrophage inflammatory protein-2 (MIP-2), intercellular
adhesion molecule-1 (ICAM-1), and vascular endothelial growth
factor (VEGF) after stimulation by interleukin 1 (IL-1) and/or
tumor necrosis factor α (TNF- α). MCP-1 is a chemoattractant
for monocytes and lymphocytes. MIP-2, on the other hand, is
a strong chemoattractant for neutrophils (28). TNF-α not only
causes SLF to secrete cytokines and chemokines but also plays
a role in the activation of Nuclear Factor kappa-light-chain-
enhancer of activated B cells (NF-κB). NF-κB is a polymorphic
transcription factor that regulates several genes involved in
inflammation, cell death, proliferation, etc. The NF-κB pathway
is expressed in SLFs but the mechanism of activation and which
SLF type expresses NF-κB can differ. Adams et al. reported the
highest activation of NF-κB in type II SLFs after administration of
lipopolysaccharide (LPS), found on the outermembrane of gram-
negative bacteria. However, after noise exposure type I SLFs are
the predominant cell type to show NF-κB activation (29).

After acoustic trauma, injured cells may release damage-
associated molecular patterns (DAMPs) which are recognized
by pattern recognition receptors (PRR) such as Toll-like
receptor 4 (TLR-4). Binding of DAMPs to TLR4 recruits and
activates cytoplasmic adapter molecules, MyD88 [e.g., (30)]. This
results in degradation of I-κBα, an inhibitor of NF-κB, and
nuclear translocation of p65 which activates NF-κB and thereby
upregulates the transcription of pro-inflammatory cytokines.
Type I and II SLFs have demonstrated an increased nuclear
translocation of p65 after acoustic trauma, suggesting that NF-κB
plays an important role in the regulation of immune responses
after noise exposure (31).

Regulating Cochlear Blood Flow
When an acoustic stimulus activates hair cells, the energy
demand in the cochlea increases, which is controlled by the
cochlear blood flow (CBF). The CBF is regulated by the end-
arterial system of the cochlea (spiral modiolar artery and its
arterioles) and by a capillary-based control system. There are
two distinct capillary networks in the cochlea. The capillaries
of the stria vascularis form the blood-labyrinth barrier, which is
crucial for the homeostasis in the cochlea. The second network
consists of the capillaries of the spiral ligament, which regulate
the CBF. A study by Dai et al., showed evidence of a physical
connection between fibrocytes in the suprastrial area (type V
SLFs) and capillaries in the spiral ligament through end-foot
structures. Moreover, SLFs and vascular cells are also suggested
to be coupled by local metabolic signals. Sound stimulation,
for example, causes a release of calcium in SLFs and activates
the cyclooxygenase (COX) signaling pathway. Consequently,
blood vessels are dilated by conversion of arachidonic acid
into prostaglandin PGE2. Furthermore, COX-1 is selectively
expressed in type V SLFs but not in vascular cells, confirming the
role of the SLF in CBF regulation (32). Another factor that plays a
role in CBF regulation is nitric oxide (NO) (33), which can induce
vasodilatation in response to lactate. Lactate is a major product of
our metabolism and plays a role in the regulation of blood flow in
various organs. In the cochlea, the perilymph contains increased
levels of lactate compared to blood and CSF and is upregulated

after acoustic stimulation. Extracellular lactate activates neuronal
nitric oxide synthase (nNOS) in SLFs through amonocarboxylate
transporter, MCT1, and thus stimulates NO production causing
vasodilatation (34).

Glutamate Homeostasis
SLFs are very susceptible to changes in glutamate concentration.
The major glutamate transporter of the cochlea is the glutamate-
aspartate transporter (GLAST), a high affinity Na+-dependent
transporter. Glutamate is the major excitatory neurotransmitter
between inner hair cells and the spiral ganglion neurons (35).
Nonetheless, glutamate uptake is crucial to prevent accumulation
which can lead to tonic activation of receptors and thus cause
excitotoxicity (36). In mice and several other animal models,
GLAST has been identified in the spiral ligament (mainly type
II and V SLFs), satellite cells of the spiral ganglia, and supporting
cells of the organ of Corti (37, 38). However, a study on human
temporal bones was only able to identify GLAST in the spiral
ligament and more specifically in type III and IV SLFs (36).
GLAST expression in the spiral ligament is necessary to keep
the glutamate concentration in the perilymph below damaging
levels as the normal concentration of glutamate in the perilymph
is low (35). Further relevance of GLAST can be observed in
GLAST-deficient mice which demonstrate increased baseline
glutamate levels in perilymph and are more susceptible to noise
damage (39).

PHYSIOLOGY OF THE EXTRACELLULAR
MATRIX IN THE SPIRAL LIGAMENT

Collagen and cochlin are the most abundant proteins, secreted by
SLFs to create a healthy extracellular matrix.

Collagen
Collagen is the main component of the extracellular matrix in
the inner ear. Several types of collagen are expressed but type
II collagen (CII) is the most abundant throughout the cochlea
and the SL. CII is a fibrillar collagen and the main component
of cartilage but is also found in non-cartilaginous tissue such as
the cochlea (40). In the spiral ligament, it forms cross-striated,
irregularly oriented, thin collagen fibrils which provides stability
and strength to the extracellular matrix. It is essential for the
integrity of the ion transport systems in the spiral ligament.
Furthermore, as it is produced by SLFs, a decrease in CII
staining could be a sign of SLF pathology (41, 42). Mutations
in COL2A1, encoding CII, have been reported to contribute to
hearing disorders, such as Stickler syndrome (43). CII has also
been proposed to play a role in autoimmune disease associated
with hearing loss and vertigo (40). It causes an immune reaction
primarily in the tunnel of Corti resulting in a loss of hair cells and
degeneration of spiral ganglion cells (44). Other types of collagen
such as type V, IX, and XI have also been demonstrated in the
inner ear but to a lesser extent in the spiral ligament (45).

Cochlin
Cochlin, encoded by the COCH gene, is a protein that is
abundantly expressed in the inner ear, spleen and eye. In the inner
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ear it is predominantly situated in the spiral ligament and spiral
limbus. Next to collagen, it is the most abundant protein in the
extracellular matrix of the inner ear. Cochlin is highly conserved
among species suggesting that it has crucial functions in cellular
processes. However, the exact function of cochlin in the inner ear
is not yet fully understood (46, 47).

Its protein structure consists of a signal peptide (SP), a Limulus
Factor C, Cochlin, and Lgl1 (LCCL/FCH) domain, an intervening
domain (ivd1), and two von Willebrand factor A-like domains
(vWFA1 and vWFA2), separated by a second intervening domain
(ivd2) (48). The vWFA domains show an affinity for specific
extracellular matrix components, especially for type I, type II,
and type IV collagens. However, the LCCL domain shows no
affinity toward these components (49). The LCCL domain has
a strong homology to Limulus factor C, which is an endotoxin-
sensitive serine proteinase involved in the immune response in
the horseshoe crab (50, 51).

Previous research has demonstrated that mutations in the
COCH gene cause DFNA9, an autosomal dominant disorder
that causes progressive sensorineural hearing loss associated
with vestibular dysfunction (50, 52–55). Mutations can cause
misfolding and progressive accumulation of mutant proteins
leading to degeneration of dendrites and loss of vestibular and
cochlear neurons. However, this explanation does not account
for all observed phenotypes as some mutations of cochlin still
result in correctly folded protein. A possible explanation for
these cases could be the incorrect incorporation of the mutant
cochlin in the extracellular matrix of the inner ear (49). Besides
DFNA9, cochlin is involved in several other disorders such
as Menière’s disease and immune-mediated inner ear disease
(IMED). IMED is a type of sensorineural hearing loss that causes
bilateral hearing impairment and often vestibular symptoms (56).
It can occur as an isolated inner ear disease or as an result of a
systemic auto-immune disease (57). Cochlin is thought to play an
important role in the pathogenesis of IMED, since significantly
higher levels of anti-cochlin antibodies have been observed in
serum. Furthermore, there are also higher frequencies of IFN-
?? producing T-cells and IL-5 producing T cells in response to
cochlin (46, 58).

It has been reported that cochlin in the spleen promotes
the systemic innate immune reaction against bacterial infection.
This is done by cleavage of the LCCL domain from spleen-
derived cochlin by aggrecanases and secretion in the blood so
the LCCL domain can accumulate in the inflammatory lesions
to promote innate immunity (51). Via this mechanism cochlin
plays a role in the systemic immune response. In the cochlea,
the innate immune response is critical to prevent sensory organ
damage to protect the auditory function. Similar to the spleen, the
LCCL of cochlea-derived cochlin is cleaved and secreted into the
scala tympani to promote an immune response against bacterial
infection via pathogen segregation. A recent study by Jung
et al. demonstrated that Coch-knockout mice show less immune
response after infection with different bacteria in the scala
tympani, incl. Pseudomonas aeruginosa, Staphylococcus aureus,
Haemophilus influenzae, and Streptococcus pneumoniae, and
therefore have more problems clearing the bacterial infection.
LCCL acts a chemoattractant of neutrophils and monocytes

and recruits them to detect and eliminate the pathogens and
promotes cytokine secretion while reducing the bacterial load
to the organ of Corti. Furthermore, LCCL appears to directly
interact with the bacteria, however, it is still unclear if it binds
to LPS or its component, lipid A (50).

PATHOPHYSIOLOGY RELATED TO THE
SPIRAL LIGAMENT

Infection
It has long been thought that the inner ear was an
immunologically privileged organ because it is separated
from the systemic immune system by the blood-labyrinth barrier
and it contains relatively few resident macrophages. However,
this hypothesis has been challenged arguing that the cochlea
is capable of rapidly recruiting immune cells and therefore
inducing an immune response (59). The cochlea contains
resident macrophages in the spiral ligament, spiral ganglion,
basilar membrane, and stria vascularis. However, they are absent
in the scala media and organ of Corti. Macrophages are the
major type of immune cells in the cochlea and play several,
important roles. They produce pro-inflammatory cytokines
and chemokines, participate in immunoregulation, regulate
the integrity and permeability of the blood-labyrinth barrier,
perform phagocytosis and present antigens. In the basilar
membrane, different morphologies can be observed depending
on the location. Apically, macrophages show a more ramified
and dendritic appearance. While, in the basal part, they have a
more amoeboid morphology. After noise exposure, the number
of macrophages in the cochlea increases and shows a peak level
between 3 and 7 days post exposure (60). This is not due to
proliferation of the resident macrophages but due to migration
of hematopoietic cells via blood vessels in the lateral wall. This
migration is caused by secretion of inflammatory mediators
by SLFs and other resident cochlear cell types, as mentioned
previously. TNF-α plays a major role in the development of
cochlear inflammation as it is able to induce the infiltration of
inflammatory cells from the systemic circulation into the cochlea
even in absence antigens or pathogens. Furthermore, TNF-α
is also expressed by leukocytes, which suggests that there is a
positive feedback loop to increase recruitment of inflammatory
cells. Interestingly, the influx of immune cells is the most
significant in the spiral ligament and more precisely, the inferior
region where type I and type IV SLFs are situated (59, 61, 62).

Perivascular melanocyte-like macrophages (PVMs) are
exclusively found in the stria vascularis and play a role in the
immune defense to local noise-induced damage and consecutive
repair. PVMs are also responsible for the integrity of the
intrastrial fluid-blood barrier which separates the stria vascularis
from the peripheral circulation. After acoustic trauma, PVMs
can detach from the stria vascularis and cause a significant
downregulation of pigment epithelium growth factor (PEGF),
which regulates the expression of several tight junction-
associated proteins. As a consequence, the permeability of the
fluid-blood barrier increases which may lead to influx of toxic
substances into the cochlea and a drop in EP (59, 63).
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Noise Trauma
Noise exposure can cause damage to both sensory and non-
sensory cells in the inner ear which may lead to decreased
hearing function and tinnitus, both reversible and irreversible.
Previous research has shown that type IV SLFs are most sensitive
to noise exposure and degenerate before hair cells do (11, 64).
Noise exposure can result in noise-induced hearing loss (NIHL)
by causing threshold shifts, which may be temporary (TTS) or
permanent (PTS) (65). Hearing usually recovers within 24–48 h
after TTS, but it can last up until 2 weeks. A 94-dB exposure can
cause a peak threshold shift of 50 dB at 24 h, which recovered
almost completely after 2 weeks. Exposure to 100 dB or more,
however, showed irreversible changes (64, 66).

As mentioned previously, ion homeostasis is crucial for
maintaining the EP and thus hearing function. However, after
intense noise exposure, both the EP and K+ concentration in the
endolymph decrease dramatically. This decrease can be explained
by two mechanisms. First, as the result of an unrestricted
movement of K+ and Na+ between endolymph and perilymph
due to uncoupling of the tight junctions through cellular damage
in the reticular lamina. Secondly, due to a disrupted ion transport
in the stria vascularis and the spiral ligament (67, 68). Noise
exposure leads to a prolonged decrease in expression of Cx26
and Cx30 and thereby disrupts the gap junctional intercellular
communication (GJIC) (69). A disrupted GJIC can also cause a
loss of OHCs and thus decrease hearing function even further
(70). Furthermore, Na,K/ATPase activity was also significantly
decreased after noise exposure. This decrease could be abolished
by both tempol, a free radical-scavenging agent, and a NOS
inhibitor suggesting the decrease is either the result of oxidative
stress or nitric oxide (69).

A widely used strategy to treat hearing and vestibular
disorders is the administration of glucocorticoids (GCs)
(71, 72). GCs bind to two types of steroid hormone receptors,
glucocorticoid receptors (GC-R) andmineralocorticoid receptors
(MC-R). These receptors are normally located in the cytoplasm
but after ligand binding, they translocate to the nucleus for
activation or repression of target genes. GC are thought to
participate in hearing recovery by maintaining ion homeostasis
and by their anti-inflammatory and immunosuppressive
functions. In the spiral ligament, GC-R are present in all SLF
subtypes but most abundant in type III SLFs, whereas MC-R
expression is only present in type I and V SLFs (33, 73).
Glucocorticoids show a direct effect on Na,K/ATPase expression:
increased serum levels of GC are correlated with increased
Na,K/ATPase in the lateral wall which suggests that GC regulates
the activity of Na,K/ATPase (71). GCs can also control NO
production through suppression of inducible nitric oxide
synthase (iNOS), which is normally activated after noise
exposure in response to TNF-α (33).

Histopathology of the Spiral Limbus and Lateral Wall
There are acute (i.e., within 24 h post exposure) and chronic
changes visible after noise exposure. In the spiral limbus,
degeneration of SLFs can be observed, starting within the apical
turn of the cochlea. This degeneration is characterized by nuclear
pyknosis and cytoplasmic vacuolation, which are the result of

apoptosis. A possible explanation for this loss of SLFs is that noise
exposure can lead to insufficiencies of CBF, causing ischemia
and damage to the capillaries. This results in an increased NO
production that harms the cochlear cells (74).

In the spiral ligament, loss of type IV SLFs can be observed
at all levels of noise exposure starting from 94 dB and no signs
of regeneration have been observed. In contrast, loss of type II
SLFs is only observed at 116 dB in the entire basal turn and there
are signs of regeneration after 8 weeks. In acute circumstances,
intracytoplasmic vacuoles are observed and in chronic cases, type
II SLFs have mostly disappeared from the spiral prominence and
the more inferior part of the ligament.

Immediately after noise exposure acute swelling can be
observed in the stria vascularis due to increase of the extracellular
space between marginal and intermediate cells and swelling
of marginal cells. There is also irreversible degeneration of
intermediate cells visible. Basal cells that normally form a
continuous layer, are more separated and form gaps separating
the strial component of the lateral wall from the spiral
ligament (11).

An interesting observation is that type III SLFs do not
degenerate significantly after noise exposure. In fact, the number
of proliferating cells increase in the type III SLF region. These
findings suggest that type III SLFs have some type of self-
protecting ability. A possible mechanism of this self-protection
is that type III SLFs have a strong antioxidant and antiapoptotic
function as low immunoreactivity for oxidative stress and
apoptosis is observed after trauma (75). Furthermore, type III
SLFs are capable of repopulating the type I SLFs region after
loss of these cells. One possibility is that because of the rapid
proliferation of type III SLFs, they simply replace the type I area.
Type III SLFs express aquaporin-1 (AQP1) which is involved in
many cell migratory mechanisms, suggesting migration of type
III SLFs into the type I area. Another theory is that type III SLFs
migrate to the type I SLF area and transdifferentiate in type I
SLFs as type III SLFs are considered to have stem cell abilities.
Therefore, type III SLFs could play a potential role in regenerative
therapies. However, more research is needed to confirm this
hypothesis (76).

Pou3f4
DNF3 is the most common form of X-chromosome linked,
non-syndromic hearing loss. It is characterized by conductive
hearing loss and progressive sensorineural deafness. Mutations
in Brn-4/Pou3f4, encoding a POU transcription factor, have
been identified as the underlying cause (77). During embryonic
development, Pou3f4 is expressed in mesenchymal cells of the
inner ear but is also associated with neuronal development (78).

Pou3f4-knockout mice are profoundly deaf and show an
impaired structure of SLFs, whereas the organ of Corti and
spiral ganglion appeared normal. Type IV and V SLFs were
lost (79), while other SLFs had fewer cytoplasmatic extensions,
a reduced volume of cytoplasm and a decrease in number of
mitochondria. (77) Furthermore, Pou3f4-deficiency also causes
disruption of the gap junction plaques (GJPs) resulting in
an abnormal morphology of cell-to-cell adhesion of SLFs.
Cx26, and Cx30 expression is remarkably reduced and GJPs

Frontiers in Neurology | www.frontiersin.org 7 October 2020 | Volume 11 | Article 580639

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Peeleman et al. (Patho)physiology of the Spiral Ligament

were significantly shorter, suggesting a degradation of the
gap junctional macromolecular complex (78). Expression of
Na,K/ATPase and AQP1 was also lost or misplaced in the spiral
ligament. In the stria vascularis, there was a decreased cellular
integrity and expression of Kir4.1, an inward rectifier K+ channel
in intermediate cells was lost. As a result of these alterations, the
K+ transport is severely disrupted leading to a drop in EP and
thus hearing impairment (79).

Mutations in Connexin Genes
GJB2 or GJB6, encoding for connexin 26 and 30, respectively,
are two major deafness genes that induce a high incidence of
non-syndromic hearing loss, both autosomal dominant (DFNA3)
as recessive (DFNB1). However, there is also an association in
syndromic hearing loss (80, 81). Mutations in GJB2 and GJB6
cause a wide variety of phenotypes resulting in pre- or post-
lingual hearing loss ranging frommild to profound deafness (82).
A deletion of Cx26 results in cochlear developmental disorders,
cell degeneration and reduction of the EP. Cx26 deficiency during
the embryonic development leads to attachment of the tectorial
membrane to the inner sulcus cells of the organ of Corti and
loss of the cochlear tunnel. However, deletion of Cx26 at a later
time point resulted in normal cochlear development, suggesting
a critical role of Cx26 in the early postnatal development. On the
other hand, Cx30 knockout causes increased hearing threshold
but results in a normal development of the cochlea and the
EP. It causes degeneration of the sensory epithelium postnatally
and leads to a decrease in Cx26 expression (83). However, a
new Cx30 knockout mouse model with preservation of 50%
of Cx26 expression resulted in normal hearing, suggesting that
a decrease in Cx26 expression is the main contributing factor
in hearing impairment (84) Furthermore, digenic Cx26 and
Cx30 heterozygous mutations also lead to hearing loss and a
decrease in EP, but no cochlear developmental disorders or cell
degeneration (82).

RECOVERY OF THE SPIRAL LIGAMENT
AFTER TRAUMA

There are three main mechanisms by which the spiral ligament
can recover after trauma. Degeneration of SLFs causes impaired
K+ recycling which decreases the EP. Therefore, it is assumed
that reconstruction of the K+ pathway by regeneration of SLFs
could lead to normalization of the EP and thereby hearing
recovery (85). A more general overview of potential therapies in
the cochlea against hearing loss can be found elsewhere (86).

First of all, SLFs are able to proliferate and regenerate after
trauma. The spontaneous regeneration is mainly the result

of mitosis of SLFs around the injured area (87), contrary
to spiral ganglion neurons and hair cells, which do not
regenerate. However, the self-renewal capacity of SLFs decreases
with advanced age (88). Secondly, after trauma has occurred,
there is often inflammation and influx of macrophages to
the injured region. Several studies have demonstrated that the
spiral ligament contains bone marrow-derived cells that can
differentiate into macrophages (89). Macrophages are known to
promote regeneration after injury (90).

Lastly, the third mechanism has been achieved in
experimental conditions and involves the transplantation
of mesenchymal stem cells (MSCs). MSCs are multipotent cells
that can be isolated from bone marrow (87, 91). The efficacy
of this treatment is controlled by the ability of the implanted
MSCs to differentiate into SLFs. A study by Kasagi et al. has
shown that this efficacy is higher in young mice than in aged
mice, which shows that it could be a very promising approach
in SNHL in children (91). After transplantation, most of the
MSCs can be found in the spiral ligament and differentiated
stem cells express several markers typical for SLFs such as
Na,K/ATPase and NKCC. However, no trans-differentiation has
been observed into spiral ganglion neurons or hair cells (87, 92).
Transplanted MSCs also seem to express gap junctions proteins
between neighboring cells, such as Cx26 and Cx30, suggesting a
reorganization and recovery of the gap junctional network (85).
However, validation of the differentiation of MSCs into SLFs was
based on immunohistochemistry at a light microscopic level so
further validation is still needed for this approach. In addition to
differentiating into SLFs, MSCs can also promote regeneration
or maintenance of surviving SLFs. MSCs are capable of secreting
trophic factors and immunomodulating cytokines and can
therefore stimulate regeneration via paracrine signaling (93).

CONCLUSIONS

SLFs are crucial in the cochlea as they are involved in
ion homeostasis, regulation of cochlear blood flow, immune
response, recovery after drug toxicity or noise, and maintaining
a healthy extracellular matrix. Any dysfunction of SLFs or
structural changes to the extracellular matrix can significantly
impact hearing function. However, SLFs may prove useful in
restoring hearing by regeneration of cells in the spiral ligament.
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