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Abstract

The comparative genomics of the transition of the opportunistic pathogen Pseudomonas aeruginosa from a free-living
environmental strain to one that causes chronic infection in the airways of cystic fibrosis (CF) patients remain poorly
studied. Chronic infections are thought to originate from colonization by a single strain sampled from a diverse, globally
distributed population, followed by adaptive evolution to the novel, stressful conditions of the CF lung. However, we do
not know whether certain clades are more likely to form chronic infections than others and we lack a comprehensive
view of the suite of genes under positive selection in the CF lung. We analyzed whole-genome sequence data from
1,000 P. aeruginosa strains with diverse ecological provenances including the CF lung. CF isolates were distributed across
the phylogeny, indicating little genetic predisposition for any one clade to cause chronic infection. Isolates from the CF
niche experienced stronger positive selection on core genes than those derived from environmental or acute infection
sources, consistent with recent adaptation to the lung environment. Genes with the greatest differential positive selection
in the CF niche include those involved in core cellular processes such as metabolism, energy production, and stress
response as well as those linked to patho-adaptive processes such as antibiotic resistance, cell wall and membrane
modification, quorum sensing, biofilms, mucoidy, motility, and iron homeostasis. Many genes under CF-specific differ-
ential positive selection had regulatory functions, consistent with the idea that regulatory mutations play an important
role in rapid adaptation to novel environments.
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Introduction
Pseudomonas aeruginosa is a ubiquitous gamma-
proteobacterium commonly recovered from a wide range
of niches including environmental sources such as soil and
water, and various plant and animal hosts. In humans,
P. aeruginosa is an opportunistic pathogen causing acute
infections and chronic respiratory tract infections in patients
with the genetic disorder cystic fibrosis (CF). Approximately
65–70% of adult CF patients carry P. aeruginosa and chronic
infection is the leading prognostic indicator of morbidity and
mortality in this patient population (Aaron et al. 2010;
LiPuma 2010). Most chronic infections are acquired through
colonization from environmental sources, although highly
transmissible epidemic strains are an important source of
patient-to-patient transmission which, in combination with
the spread of multidrug resistance (Miyoshi-Akiyama et al.
2017; Parkins et al. 2018), contributes to growing public health
concerns around this pathogen for both CF and non-CF
patients alike.

The factors responsible for the transition from environ-
mental strain to chronic endobronchial infection in CF
patients remain poorly understood. Pseudomonas aeruginosa

is believed to exist as a large, global, recombining population
where individual strains opportunistically colonize the CF air-
ways. There seems to be little association between a strain’s
genotype and the niche of its isolation source (Pirnay et al.
2009; Kidd et al. 2012), with the exception of epidemic strains,
suggesting that the ability to infect humans is not a charac-
teristic of specific P. aeruginosa lineages. Permanent establish-
ment in the CF airway is thought to be the result of rapid,
mutation-driven adaptation within the host without substan-
tial genetic exchange between strains from different hosts or
environmental sources (Hauser et al. 2011; Folkesson et al.
2012). Hallmark phenotypic changes associated with chronic
infection include loss of motility, reduced expression of viru-
lence factors, mucoidy, and tolerance to stresses including
antibiotics and immune system attack. These putatively
patho-adaptive trait changes are underlain by a suite of ge-
netic changes resulting from within-host evolution over the
course of an infection (Smith et al. 2006; Yang et al. 2011;
Diaz-Caballero et al. 2015; Marvig et al. 2015; Winstanley et al.
2016; Bartell et al. 2019). However, whole-genome popula-
tion-level analyses to date have been restricted mainly to
clinical isolates, so little is known about which of these genetic
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or functional pathways are uniquely associated with
P. aeruginosa adaptation to the CF respiratory tract.

Here, we leverage the wealth of publicly available genome
sequence data for P. aeruginosa derived from different niches
to study niche-specific adaptation during the development of
chronic infections in CF patients. Significant genomic resour-
ces for P. aeruginosa have accumulated over the last decade,
with international sequencing consortia and online databases
now providing public access to over 1,000 genomes from
both clinical strains isolated from human infections and en-
vironmental sources (Freschi et al. 2015, 2019; Kos et al. 2015;
Shrestha et al. 2017). We focus attention on two outstanding
issues regarding the origin and development of chronic infec-
tions in CF patients. First, we evaluate the relationship be-
tween phylogenetic structure and ecological niche, to test
whether CF isolates are derived from independent lineages
across the phylogenetic spectrum of the species. Second, we
compare the strength and distribution of selection pressures
across the genome for three different niches (CF, acute, and
environmental) to identify genes with greatest evidence for
differential positive selection in the CF niche, without any a
priori knowledge of their potential function or importance.
We then survey the functions of these CF-selected genes,
perform enrichment analyses to identify overrepresented
functional classes or pathways, and discuss their potential
relevance to CF-P. aeruginosa pathosystem.

Results and Discussion

A 1,000-Strain Phylogeny of P. aeruginosa Isolated
from Diverse Sources
We constructed a phylogeny of 1,000 strains of P. aeruginosa
isolated from diverse sources including the environment (En),
acute infection of a nonhuman animal (An), acute infection
of a human (Ac), and chronic infection of CF airways (CF).
First, we identified 1,523 genes present in all 1,000 analyzed
P. aeruginosa genomes, deemed “global strict-core” genes
(supplementary table S1, fig. S1, and supplementary text,
Supplementary Material online). To reduce the computa-
tional requirements for maximum likelihood (ML) tree con-
struction, every fourth global strict-core gene was chosen to
create a subset of 381 genes for alignment (357,509 nucleo-
tides long, 52,355 single-nucleotide polymorphisms) and phy-
logeny building (supplementary table S2, Supplementary
Material online). Phylogenetic trees constructed using ML
and Bayesian methods (fig. 1A) revealed five main phyloge-
netic groups, named Phylogroups 1–5 following Freschi et al.
(2019). The majority of strains fall within Phylogroup 1 (741
strains), which includes the common laboratory strain PAO1
and multiple epidemic CF strains, or Phylogroup 2 (238
strains), which includes the well-studied laboratory strain
PA14 and is more phylogenetically diverse than the larger
Phylogroup 1 (fig. 1C; supplementary table S3,
Supplementary Material online). The remaining 21 strains
fell into one of three less-sampled basal groups, the most
divergent being Phylogroup 3 that harbors the taxonomic
outlier strain PA7. Although the three basal phylogroups
were significantly supported, the exclusive monophyly of

the larger Phylogroups 1 and 2 received mixed support
from ML and Bayesian methods, due to the inconsistent
and poorly supported placement of a small number of early
diverging, long-branched taxa (marked with asterisks on
fig. 1A). When these early diverging lineages are excluded
from tree reconstruction, the monophyly of Phylogroups 1
and 2 was significantly supported (92% ML bootstrapping
and 1.0 Bayesian posterior probabilities for both; trees not
shown).

Ecological Niches and Phylogenetic Structure
The distribution of P. aeruginosa strains across the phylogeny
reveals little association between phylogenetic structure, in-
cluding phylogroups, and ecological niche (fig. 1A and C).
Lineages tend not to be specifically associated with a niche,
and isolates from the same niche could belong to different
phylogroups or smaller subgroups/clades within phylogroups.
For example, the 77 En and 17 An strains were distributed
fairly evenly across phylogeny. Furthermore, the extent of
within-niche diversity was similar across niches, despite the
fact that CF strains likely are derived from a more similar set of
habitat conditions—the CF respiratory tract—than strains
from the acute niche (sampled from infections of burns,
wounds, blood, eyes, ears, and urinary tracts) and the envi-
ronmental niche (sampled from soil, oceans, rivers, and plant
hosts). These results demonstrate that the ability to infect
humans is not lineage-specific, and there are no human-
specific pathovars that cause the majority of clinical infec-
tions. Moreover, our results suggest that any lineage or phy-
logroup can develop into a chronic infection of the CF
respiratory tract, consistent with the assumption that most
chronic CF infections originate from colonization by environ-
mental strains. These results notwithstanding, there is some
evidence for phylogenetic structure among CF strains, espe-
cially those causing epidemic infections. CF strains were over-
represented in Phylogroup 1 (124% of expectation) and
underrepresented in Phylogroup 2 (31% of expectation),
whereas the converse was true for Ac strains (chi-square value
47.3, P< 0.00001). This result is not due to biased sampling of
high-frequency strains, as could be the case if the same clinical
strain is sampled repeatedly from the same location (ward or
hospital) at the same time. Restricting the analyses to a clone-
corrected sample of 503 strains (supplementary text,
Supplementary Material online) showed that that original
results were robust: CF strains were significantly overrepre-
sented (114%) and underrepresented (51%) in Phylogroups 1
and 2, respectively (fig. 1D, chi-square value ¼ 9.095,
P< 0.0026).

All epidemic CF strains fell within Phylogroup 1 (fig. 1A),
including a cluster of 58 isolates corresponding to the CF-
specific Liverpool Epidemic Strain/Ontario Epidemic Strain A
(Aaron et al. 2010; Dettman et al. 2013). Phylogroup 1 also
contained the most common epidemic CF strains from other
locations, including Ontario Epidemic Strain B, Australia
Epidemic Strain 1, Manchester Epidemic Strain, and Danish
Epidemic strains (Parkins et al. 2018). This result suggests that
Phylogroup 1 strains are more likely to develop into epidemic
strains that become highly transmissible from patient to
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FIG. 1. (A) ML tree constructed from alignment of 381 strict-core genes. Selected branches along the tree backbone have ML bootstrap percentages
and Bayesian posterior probabilities shown above and below branches, respectively. An “X” indicates the branch was not present in the Bayesian
consensus tree. Taxon names are colored to indicate source niche (red ¼ CF, green ¼ acute, blue ¼ environment, black ¼ animal). Asterisks
indicate taxa that were removed to test their effect on support of main nodes. Branch leading to Phylogroup 3 is reduced to one-tenth of actual
length for display purposes. (B) Unrooted ML tree with unmodified branch lengths. (C) Distribution of strain sources per phylogroup. (D) Observed
strain numbers per niche compared with expected strain numbers per niche based on overall proportions in the clone-corrected strain set. Values
of 1.0 indicate observed equals expected. Data are shown only for the two phylogroups with the largest sample sizes.
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patient. Moreover, the polyphyletic origins of the epidemic
clades suggest that high transmissibility is a trait, or more
likely a suite of traits, that evolved independently multiple
times.

Inferring the History of Selection through Estimates of
Omega
The CF lung is thought to impose strong selection on
P. aeruginosa because it represents a novel environment to
which most colonizing strains, being derived from either the
environment or acute infections, are mal-adapted. This recent
history of adaptation should leave a signature of strong pos-
itive selection on some genes from CF isolates compared with
those from non-CF niches. To test this prediction, we esti-
mated the ratio of nonsynonymous to synonymous substitu-
tion (omega, or dN/dS; Yang and Bielawski 2000) for each of
�5,510 genes constituting the “relaxed-core” gene set per
niche (i.e., present in �95% genomes, supplementary table
S4, supplementary text, Supplementary Material online), rep-
resenting 92% of the average P. aeruginosa gene complement
of �6,000 genes. Selection analyses were performed on sub-
sets of �100 strains per niche (CF, n¼ 100; Ac, n¼ 100; En,
n¼ 77; supplementary table S1, Supplementary Material on-
line) in order to balance the breadth of phylogenetic diversity
within each niche, including representation from each major
clade, against the need for a computationally feasible data set.

The distribution of omega values from all 16,530 gene
alignments (fig. 2A) has a mean of 0.132 (SE¼ 0.003), similar
to that described in previous comparative genomics studies
of P. aeruginosa (Dettman et al. 2013, mean ¼ 0.10;
Mosquera-Rend�on et al. 2016, median ¼ 0.1). The distribu-
tion is strongly left-skewed, with 61.4% of omega values�0.1,
implying that the majority of genes in the P. aeruginosa ge-
nome have a history of predominantly purifying selection.
Notably, mean omega was higher for the CF niche overall
(ANOVA, F¼ 3.75, P< 0.024) and in pairwise tests against
both the Ac and En niches (fig. 2B; supplementary table S5,
Supplementary Material online; Tukey–Kramer HSD
P< 0.047 for both), even following log10-transformation for
normality (fig. 2C, ANOVA, F¼ 4.22, P< 0.015, Tukey–
Kramer HSD P< 0.033 for both), consistent with strains
from the CF niche having experienced a more recent and/
or stronger history of positive selection than those from the
Ac or En niche.

Genetic Targets of Positive Selection across Niches
Our genomic sampling scheme affords a unique opportunity
to examine the spectrum of shared and unique genetic tar-
gets of positive selection across niches. The union of lists of
the top 500 genes (top �9%) with the highest omega values
in each niche resulted in a total of 690 genes, 342 (49.6%) of
which were shared among all three niches (intersection,
fig. 2D). Gene ontology (GO) term combined graphs revealed
these shared genes participated in various biological pro-
cesses, such as transport, gene expression, and biosynthesis
of macromolecules (supplementary fig. S3A, Supplementary
Material online), although none of the GO terms was signif-
icantly enriched after false discovery rate (FDR) correction

(supplementary fig. S3D, Supplementary Material online).
Genes displaying high positive selection in all three niches
commonly had functions in protein secretion (type III: psc
and pcr genes; type II: hxc genes) and pilus organization, in
particular, fimbriae assembled by the chaperone–usher path-
way (cup genes; supplementary table S6, Supplementary
Material online).

When comparing top-500 omega lists, the CF niche had
more unique genes experiencing relatively strong positive se-
lection than either the Ac or En list, who together shared
more genes with each other than with the CF list (fig. 2D;
supplementary table S7, Supplementary Material online). GO
term combined graphs of the 92 genes unique to the CF list
revealed similar biological processes as the shared list (e.g.,
transport, gene expression) and additional processes such as
RNA metabolism and oxidation–reduction (supplementary
fig. S4A, Supplementary Material online). Well-represented
molecular functions included oxidoreductase activity and
substrate binding for nucleic acids, ATP, metal ions, and drugs
(supplementary fig. S4B, Supplementary Material online);
however, no GO terms were significantly enriched after
FDR correction due to low samples sizes (supplementary
fig. S4D, Supplementary Material online). Notably, different
genes from a single operon for phenazine biosynthesis
(phzA1-G1) were under strong positive selection in each niche
(CF, phzA1; Ac, phzF1; En, phzE1; supplementary table S7,
Supplementary Material online), demonstrating how differ-
ent parts of the same pathway may be under positive selec-
tion in different niches. Phenazine production and type III
secretion are considered virulence factors for P. aeruginosa
(Filloux 2011; Recinos et al. 2012) and are typically studied in
the context of CF infections. Our results confirm that both
pathways are positively selected in the CF niche but suggest
that selection on these systems is not CF specific, with these
functions playing a role in adaptation more broadly.

Differential Positive Selection between Niches
Which genes are under stronger positive selection in the CF
niche? To answer this question, absolute omega values were
converted to relative omega values by calculating standard-
ized Z-scores within each niche, then differential selection at
each gene i (DSi) was calculated as the pairwise difference in
Z-scores between two niches [DSi(niche1 � niche2) ¼
Zi(niche1) � Zi(niche2)]. Comparing relative omega values
across niches allows us to sidestep complications associated
with interpreting absolute values of omega, such as when
gene-wide omega is <1 despite strong positive selection on
a small number of amino acid sites within the gene (Bielawski
and Yang 2001; Rodrigue and Lartillot 2017), or when reduced
divergence of within-species population samples like ours
underestimates the strength of positive selection
(Kryazhimskiy and Plotkin 2008).

We then considered three scenarios representing possible
routes to the development of chronic infection in the CF
niche: 1) Stepwise evolutionary progression from environ-
mental strain to acute infection strain to chronic CF infection
strain (En!Ac!CF), such that the top 500 genes with the
highest DS(CF�Ac) values represent those with the greatest
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positive selection in the CF niche relative to the Ac niche; 2)
Environmental strains transition directly into either acute in-
fection strains or CF infection strains (En!Ac or En!CF, but
not Ac!CF), implying that the selective pressures experi-
enced by Ac strains are independent of those experienced
by CF strains. To identify genes that had greater relative pos-
itive selection in the CF niche but not in the AC niche, we

determined the top 500 genes with the greatest difference
between DS(CF�En) and DS(Ac�En); 3) No evolutionary
directionality, with CF strains being uniquely adapted to
the CF respiratory tract independently of their niche of origin,
revealed as those genes with the top 500 positive CF residuals
from a multiple regression of log10-transformed CF omega
values against En and Ac omega values. There is no clear
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consensus on which scenario is the most suitable for model-
ing the transition to a CF strain. For example, the phyloge-
netic tree indicates that CF strains can share a most recent
common ancestor with Ac or En strains, suggesting that the
first scenario (En!Ac!CF) and second scenario (En!CF
and Ac!CF) are both applicable. To ensure that our con-
clusions were not heavily skewed by one scenario, we took the
liberal approach of creating a union of the three lists to find
the 724 genes that were identified by at least one metric
(supplementary table S8, Supplementary Material online),
hereafter referred to as “CF-selected” genes.

Functions of CF-Specific Differentially Positively
Selected Genes
High-level combined graphs of GO term annotations (sup-
plementary fig. S5A, Supplementary Material online) revealed
that the 724 CF-selected genes were involved in biological
processes such as response to stimulus, transport, gene ex-
pression, and metabolism of nucleic acids and proteins. Well-
represented molecular functions included transmembrane
transport, catalytic activity (oxidoreductase, hydrolase, and
transferase), and binding of various substrates, such as nucleic
acids, ATP, metal ions, and drugs (supplementary fig. S5B,
Supplementary Material online). Statistical comparison of
GO terms for the 724 CF-selected genes against all genes
revealed significant enrichment for 214 GO terms (supple-
mentary table S9A, Supplementary Material online), or 62
when reduced to the most-specific GO terms (supplementary
table S9B, Supplementary Material online). Many of the sig-
nificantly enriched biological processes (fig. 3) have known
links to P. aeruginosa’s pathogenic lifestyle, the most obvious
example being “pathogenesis,” and other processes related to
cellular homeostasis, response to stress, cell motility, and bio-
film formation that can affect pathogenic potential. Similar
results were obtained using the more conservative approach
of analyzing only the 306 CF-selected genes that were iden-
tified by all three differential selection metrics (list intersec-
tion, supplementary table S8, Supplementary Material
online). Significantly enriched GO annotations largely mir-
rored the more liberal, union-based approach (supplemen-
tary fig. S6, Supplementary Material online), with the addition
of a few notable functions, such as alginic acid biosynthesis.

Pathways of Adaptation to the CF Lung
We supplemented the often-incomplete GO annotations
with manual annotation using BLAST, homolog, and litera-
ture searches. Integrating this additional information (supple-
mentary table S8, Supplementary Material online) with our
previous analyses (fig. 3; supplementary fig. S5 and table S9,
Supplementary Material online) produced a comprehensive
picture of the spectrum of genetic targets under differential
positive selection in the CF airway. We summarize these
results in figure 4 and briefly discuss the relevance of these
pathways, as well as key genes involved (supplementary table
S10, Supplementary Material online), to the evolutionary ad-
aptation of P. aeruginosa to the CF niche.

Central Metabolic Pathways
The complex, amino acid-rich, nutritional conditions of the
CF lung are thought to provide ample opportunity for re-
source specialization (La Rosa et al. 2018) and adaptive diver-
sification (Schick and Kassen 2018). Consistent with this
hypothesis, key regulators of preferential carbon source utili-
zation (Sonnleitner et al. 2012), including crc (catabolite re-
pression control) and the CbrAB two-component system
(cbrA), as well as nitrogen utilization (ntrB, ntrC), were under
strong differential positive selection in the CF niche.
Additional metabolic targets included genes in the glycolysis
and pentose phosphate pathways (fda, eno, acsA, kguK) and
those involved in transport and metabolism of branched
chain amino acids (bra and bkd genes). The regulation of
central metabolism has been linked to expression of
P. aeruginosa virulence factors such as biofilm formation, cy-
totoxicity, and antibiotic resistance (Yeung et al. 2011), sug-
gesting a high level of pleiotropy among these putatively
patho-adaptive traits.

Respiration and Energy Production
The combination of thick, viscous mucus of the CF airway
and growth in structured biofilms leads to greatly reduced
oxygen availability to the pathogen. Evidence suggests that
P. aeruginosa adapts to such oxygen limitation by not only
upregulating anaerobic respiration and fermentation
(Hoboth et al. 2009; Dettman et al. 2013) but also increasing
the uptake of oxygen for aerobic respiration (La Rosa et al.
2018). We find evidence for adaptation via both pathways in
our data set. Genes involved in anaerobic respiration through
the denitrification pathway (Schobert and Jahn 2010) such as
nitrate and nitric oxide reductases (nar and nor genes) were
under strong differential selection. Suites of CF-selected genes
associated with aerobic respiration ranged from electron
donors for the generation of NADH during the tricarboxylic
acid cycle (citrate, gltA; malate, mqoA; succinate, suc and sdh
genes; Riquelme et al. 2019), seven subunits of the NADH
dehydrogenase complex (nuo genes), components of the
electron transport chain (wrbA, ubiE), cytochromes (cox,
cco, cyo, and ccm genes), to those for ATP synthesis (atp
genes). Our results suggest that, as P. aeruginosa adapts to
the energetic conditions of the CF lung, modification of aer-
obic respiration is a more common adaptive solution than
the anaerobic pathway.

Cellular Homeostasis and Stress Response
Multiple sources of stress in the CF airway can impose
strong selection for the maintenance of cellular homeostasis
in P. aeruginosa. Genes from multiple stress response path-
ways, including DNA repair (recA, uvrB), stringent response
(relA, spoT, obgE), heat shock (htpX), and universal stress
proteins (uspA), were among those under strong CF-specific
differential positive selection. In particular, stable mainte-
nance of redox balance is required to remediate multiple
oxidative stressors, such as respiration-derived reactive oxy-
gen species production, host macrophage-derived oxidative
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burst, and antibiotics with redox-related mechanisms of ac-
tion. Consistent with previous work (Dettman et al. 2013),
our CF-selected gene list contained many genes associated
with maintaining redox homeostasis in response to oxida-
tive stress (msrB, nrdA, nrdB), including the central oxidative
stress regulator, oxyR, and several genes it regulates (ahpC,
ankB, dps, rpsL; Wei et al. 2012). Other oxidative stress-
associated genes included multifunction redox proteins
such as thioredoxins, ferredoxins, glutaredoxins, and gluta-
thione S-transferases, respiration-related genes such as cyto-
chromes (see previous section), and over 20 additional
genes with clear redox functions such as oxidases, reduc-
tases, dehydrogenases, and dioxygenases. The accumulation
of viscous mucus, along with electrolyte imbalances due to
defective ion transport in the host, leads to increased

osmotic stress in CF airway secretions (Henderson et al.
2014). We find several genes involved with osmoregulation
under differential positive selection (osmC, opgG, aqpZ), in-
cluding the sensor and response regulator (envZ and ompR;
Cai and Inouye 2002) of the central regulator of osmotic
stress response (also known as amgS/amgR). Notably, CF-
specific selection was found on the pathway that produces
the potent osmoprotectant glycine betaine (Wargo 2013),
including six genes acting on three different substrates in
this pathway (choline [betA, betI], glycine betaine [gbcB],
and sarcosine [soxB, soxD, soxG]), and two subunits of the
glycine betaine transporter itself (cbcV, cbcW). Maintaining
cellular homeostasis in the face of multiple sources of stress
thus appears to be an important adaptive strategy for the
survival of P. aeruginosa in CF lungs.

Percentage of genes

Percentage of genesGO Term

GO TermA   Biological Process

B   Molecular Function

0.0 1.0 2.0 3.0 4.0 5.0 6.0 
cellular component organization 

negative regulation of biological process 
bacterial-type flagellum-dependent cell motility 

pathogenesis 
cellular homeostasis 

purine ribonucleotide biosynthetic process 
positive regulation of cellular metabolic process 

regulation of single-species biofilm formation 
regulation of cell motility 

tricarboxylic acid cycle 
positive regulation of locomotion 

positive regulation of multi-organism process 
regulation of cellular protein metabolic process 

regulation of proteolysis 
D-amino acid transport 

purine ribonucleoside triphosphate biosynthetic process 
response to heat 

translational elongation 
DNA topological change 

positive regulation of lipid biosynthetic process 
regulation of response to reactive oxygen species 

sarcosine catabolic process 
cellular response to cell envelope stress 

chorismate metabolic process 

CF-selected list All PA14 genes 

0.0 2.0 4.0 6.0 8.0 10.0 12.0 14.0 
DNA binding 
ATP binding 
RNA binding 

structural constituent of ribosome 
GTP binding 

sigma factor activity 
cyclic-di-GMP binding 

NADH dehydrogenase (ubiquinone) activity 
oxidoreductase activity, acting on CH or CH2 groups 

acid-thiol ligase activity 
DNA-directed 5'-3' RNA polymerase activity 

translation elongation factor activity 
DNA topoisomerase type II (ATP-hydrolyzing) activity 

sarcosine oxidase activity 

CF-selected list All PA14 genes 

FIG. 3. Bar graphs displaying GO terms (reduced to most specific) that were enriched in the 724 genes with high differential positive selection in the
CF niche. (A) Biological processes. (B) Molecular functions. Only GO terms that were significant after FDR correction, and had three or more gene
entries, are shown (see supplementary table S6, Supplementary Material online, for all GO terms and the “Cellular Component” data).
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Antibiotic Resistance
Treatment regimes for CF patients typically include regular
doses of antibiotics to control infection, so it is no surprise
that our analyses identified multiple CF-selected genes asso-
ciated with antibiotic resistance. Relevant targets include
genes implicated in resistance to quinolones (gyrA, gyrB,
topA, parE; Bruchmann et al. 2013), beta-lactams (ftsI,
penicillin-binding protein 3; Jorth et al. 2017), aminoglyco-
sides (amiB, hflC; Hinz et al. 2011), and general resistance
through multidrug efflux, such as mexA from the MexAB-
OprM efflux pump and mexT, the regulator of the MexEF-
OprN efflux pump (Köhler et al. 1999). We also find many
genes associated with transcription and protein synthesis,
which are inhibition targets for tetracyclines, aminoglycosides,
and macrolides (Arenz and Wilson 2016; Ma et al. 2016).
Examples include three subunits of RNA polymerase core
enzyme (rpo genes), transcriptional elongation and anti/ter-
mination factors (rho, gre genes, and nus genes), translation
elongation factors (fusA1, tsf, tufA, tufB), and multiple proteins
that comprise the 30S and 50S ribosomal subunits (rps and
rpl genes, respectively). Note that most genes conferring an-
tibiotic resistance play important roles in other essential cel-
lular processes, so the source of selective pressure on the
aforementioned genes may be a composite of antibiotic re-
sistance and other factors experienced in the CF lung.

Cell Wall and Membranes
Many genes related to the cell wall and outer membrane
showed evidence of CF-specific positive selection, although
it is not always clear whether the selective cause is the integ-
rity of these structures themselves, or resistance to the

manifold challenges of the CF lung such as high osmotic
stress. CF-selected genes included several involved in the syn-
thesis (acc genes) and metabolism (fad and fab genes; Fujita
et al. 2007) of fatty acids, a component of membrane phos-
pholipids. We find a number of genes associated with lip-
opolysaccharides (wapH, lpxO2, galU), a main constituent
of the outer membrane of Gram-negative bacteria that is
important as a virulence factor (endotoxin) and in recogni-
tion by the host’s adaptive immune response (Hauser et al.
2011). The biosynthesis of peptidoglycan, a main component
of bacterial cell walls, is inhibited by beta-lactam antibiotics
and selection for resistance often manifests as modification in
the targeted pathway, as evidenced in our sample by CF-
selected genes, such as glmM, oprL, erfK, murC, and uppS.

Alginate and the Mucoid Phenotype
Conversion to mucoid phenotype is a common adaptive
change observed in P. aeruginosa strains that chronically in-
fect CF lungs. The overproduction of alginate creates an ex-
tracellular matrix protecting bacteria from the host immune
response, antibiotic activity, and environmental cell envelope
stressors (Hauser et al. 2011). Our CF-selected list included
several components of the alginate pathway (alg genes), as
well as its main regulators (mucA, algR, algU). The algU gene
(also known as algT) encodes a sigma factor that binds with
RNA polymerase to specifically activate alginate biosynthesis
genes, whereas mucA encodes the anti-sigma factor that
sequesters algU and prevents alginate production.
Mutations in mucA and algU are the most common causes
of mucoidy and reversion to nonmucoidy, respectively
(Caçador et al. 2018).

lipopolysaccharides

peptidoglycan

cell membranes

central 
metabolism

oxidative 
stress

osmotic 
stress

transcription

protein 
synthesis

quorum 
sensing

efflux 
pumpsrespiration and 

energy production

transport

alginate production

flagella

pili

FIG. 4. Processes and functions that were common to genes under CF-specific differential positive selection.
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Quorum Sensing, Biofilms, and Motility
Cell-to-cell communication via quorum sensing allows bac-
teria to synchronize behaviors based on population density.
This process impacts diverse phenotypes linked to pathoge-
nicity and virulence, such as stress responses, mucoidy (see
above), biofilm formation, and motility (Miller and Bassler
2001), which are coordinated by a complex, hierarchical reg-
ulatory network (Lee and Zhang 2015). Our analyses found
that the master regulators of each of the three main systems
regulating quorum sensing and virulence factors in
P. aeruginosa (las, rhl, and pqs systems) were under CF-
specific differential positive selection: lasR, rhlR, and pqsR
(mvfR) genes, respectively. In addition, many transcriptional
regulators of quorum sensing, biofilm formation, and motility
phenotypes were also CF-selected (dksA, gacA, rsmN, vfr;
sigma factors rpoN and rpoS). Other genes with presumably
more phenotype-specific effects were those for synthesis of
quorum-sensing signaling molecules (lasI, pheA, phnB) and
secondary regulation (cysB, pmpR), metabolism of the signal-
ing molecule cyclic diguanylate important for biofilm forma-
tion and mucoidy (siaD, bifA, rbdA, cmpX), and the synthesis
of flagella (flg, fli, and fle genes) and pili (pil genes). In addition
to roles in motility and adhesion, flagella and pili are also
immunogenic structures, so selection for diversity may assist
P. aeruginosa in evading the adaptive immune response.

Iron Homeostasis
Iron is often scarce in the lung because it is chelated or bound
to hemoproteins, so mechanisms for acquiring sufficient iron,
such as iron-scavenging siderophores, are considered viru-
lence factors for most bacterial pathogens (Minandri et al.
2016). Although only two siderophore-related genes showed
evidence of differential positive selection in the CF niche
(pyochelin, pchB; pyoverdine, pvcB), many other genes on
our list were involved in iron transport, storage, or homeo-
stasis (ferric enterobactin, fepD; bacterioferritin, bfrB; femI). A
suite of genes for bacterial heme biosynthesis and transport
(phuU and hem genes) were also CF-selected, suggesting that
heme synthesis may be as important as heme acquisition
from host sources (Choby and Skaar 2016). Given that
many redox and stress response proteins from the previous
sections require iron–sulfur clusters or heme moieties as
cofactors, and heme is an essential component of the respi-
ratory cytochromes discussed above, the maintenance of in-
tracellular iron homeostasis may be under selection by
multiple sources in P. aeruginosa.

Regulation
A common theme emerging from our analyses is that differ-
ential positive selection on the regulation of various pathways
or processes makes an important contribution to CF-specific
adaptive evolution. Indeed, 42% (10/24) of the significantly
enriched GO terms in figure 3A involved “regulation,” and the
CF-selected regulatory genes were often high-level master
regulators, such as nine different sigma factors that each affect
the expression of potentially thousands of downstream genes.
We also found at least 46 transcriptional regulators from

families such as AraC, GntR, LysR, MarR, RpiR, and TetR,
and at least 13 sensors or response regulators of two-
component systems that regulate multiple virulence factors
and antibiotic resistance in P. aeruginosa (Gooderham and
Hancock 2009). These results are not unusual: Regulatory
mutations are commonly recovered from the early stages of
adaptation to novel, stressful laboratory environments
in vitro, presumably because they restore the balance be-
tween stress responses and vegetative growth (Ferenci
2005; Dettman et al. 2012). If correct, this interpretation sug-
gests that the early stages in the development of chronic
infections can be understood as a special case of adaptation
to the novel, stressful conditions of the CF lung.

Unknown Functions
The above discussion is heavily biased toward named genes
that already have well-characterized, or at least putative, func-
tions (supplementary tables S8 and S10, Supplementary
Material online). Of the 724 genes on our CF-selected list,
we were able to find gene names for only 405 (56%) of
them. Many unnamed genes have homology to known pro-
tein families, whose functions fall clearly into some of the
relevant categories above. Even more interesting may be
the 224 CF-selected genes that are listed as “hypothetical
proteins.” After various homolog and database searches, we
could not determine even a putative function for 138 of these
genes.

Conclusions/Summary
Our results provide three important insights into the
P. aeruginosa/CF pathosystem and the natural history of se-
lection during in vivo evolution. First, isolates forming chronic
infections are, with the exception of the highly transmissible
epidemic strains, derived from multiple sources that likely
include both acute infections and the environment. Our anal-
yses of whole-genome sequence data from a broad sampling
of 1,000 diverse P. aeruginosa strains support previous infer-
ences on the population structure of this opportunistic path-
ogen (Pirnay et al. 2009; Kidd et al. 2012; Dettman et al. 2013;
Grosso-Becerra et al. 2014). Our increased sampling power
confirms the “non-clonal epidemic” nature of P. aeruginosa, in
which there exists a background of genetically diverse strains
from which CF-adapted strains, including highly successful
epidemic clones, occasionally arise. This result suggests that
isolates from chronic CF infections can be understood as
examples of convergent evolution resulting from diverse ge-
netic sources and evolving more or less independently from
each other within a single host.

Second, strains from the CF niche have experienced a
stronger or more recent history of positive selection than
strains from acute or environmental niches. A growing
body of literature compares isolates sampled longitudinally
through time from individual CF patients to document the
changes occurring over the course of an infection (Smith et al.
2006; Yang et al. 2011; Diaz-Caballero et al. 2015; Marvig et al.
2015; La Rosa et al. 2018; Bartell et al. 2019). Although these
studies provide insight into the spectrum of genetic and
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regulatory changes occurring during chronic infection, they
cannot by themselves make strong inferences regarding the
strength of selection. Our results support the assumption
that the CF lung represents a novel environment for isolates
of P. aeruginosa from diverse sources, and that adaptation to
the conditions of the CF lung is a process that is essential for
the establishment of chronic infections. Furthermore, this
finding validates the main goal of many previous studies,
which is to identify the patterns and mechanisms of adaptive
evolution that occur during the transition from a free-living,
environmental strain to one that chronically infects CF lungs
(Hauser et al. 2011; Folkesson et al. 2012). Why P. aeruginosa
can adapt more readily than any other microbial species col-
onizing the CF lung remains unresolved.

Third, our study is the first to make direct comparisons
between large samples of P. aeruginosa strains collected from
different ecological niches, allowing us to distinguish CF-
specific selection from selection across all niches, and to chal-
lenge hypotheses from previous work that focused only on
clinical strains. Studies relying on longitudinally sampled CF
strains can make inferences about the genetic targets of se-
lection; however, different strains often take distinct evolu-
tionary paths to reach convergent patho-adaptive
phenotypes, even within the lungs of a single CF patient
(La Rosa et al. 2018). To overcome this problem, we per-
formed comparative analyses of a broad, cross-sectional sam-
ple of strains that have already adapted to individual CF-
patient lungs, each with complex and potentially unique
conditions. Our approach relies on the signatures of selection
summed over the multiple independent evolutionary paths
taken by a diverse set of strains that have each successfully
adapted to form chronic infections of CF airway niche, and
contrasts these results against those that were isolated from
distinct, non-CF niches. Our analyses identified multiple path-
ways under differential positive selection the CF niche: 1)
central metabolism; 2) respiration and energy production;
3) cellular homeostasis and stress response; 4) antibiotic re-
sistance; 5) cell wall and membranes; 6) alginate and mucoidy;
7) quorum sensing, biofilms, and motility; 8) iron homeosta-
sis; and 9) regulation. Many of these pathways have been
previously implicated in the adaptation of P. aeruginosa to
the CF airways (Hauser et al. 2011; Folkesson et al. 2012).
Importantly, a large number of CF-specific genes we objec-
tively identified here have independent corroborating evi-
dence for positive selection and roles in adaptation (e.g.,
antibiotic resistance), providing proof-of-concept for our
novel, blind approach. Conversely, many genes have no
known relation to the P. aeruginosa/CF pathosystem, and
some have no known function at all. Our analysis has gener-
ated an objective list of prime candidates for further investi-
gation of their roles in the CF-specific adaptation of
P. aeruginosa, regardless of a priori knowledge.

Our study provides a unique view of the phylogenetic
sources of P. aeruginosa isolates colonizing the CF lung and
the spectrum of genetic pathways under selection as they
undergo transition to chronic infection. The picture that
emerges is one of repeated, convergent evolution by diverse
colonizing strains as they adapt to the uniquely stressful

conditions of the CF lung resulting ultimately in the devel-
opment of chronic infections recalcitrant to further treat-
ment. Any therapy that can prevent, or at least delay, this
process would be of outstanding benefit to CF patients.

Materials and Methods

Strains and Genome Data
Genome sequence data for a collection of 1,000 unique
P. aeruginosa strains were downloaded from public databases
or obtained directly from authors in other research groups
(supplementary table S1, Supplementary Material online).
Based on the available information, each strain was assigned
to a niche of origin: cystic fibrosis airways (CF; n¼ 229), acute
infection of a human host (Ac; n¼ 677), acute infection of a
nonhuman animal (An; n¼ 17), and the environment (En;
n¼ 77).

Orthologs
A list of orthologs was compiled from OrtholugeDB
(Whiteside et al. 2013) using pairwise comparisons between
annotated genomes of acute strains PA14 and PAO1, CF
strains LESB58 and DK2, and environmental strain M18 (sup-
plementary text, Supplementary Material online). Presence of
each of the 6,874 orthologs in all genomes was assessed using
BlastN searches with a minimum expectation value (e) of
0.0001, and retaining only those with a sequence identity
�80%, a length of �75 nucleotides, and a length �25% of
the number of nucleotides in the query gene sequence.

Phylogeny Construction
All phylogenies were built from a set of 381 genes that com-
prised every fourth “global strict-core” gene in order along the
PA14 reference genome (supplementary table S2,
Supplementary Material online). Sequences were aligned us-
ing MUSCLE (version 3.8; Edgar 2004), and phylogenetic trees
were built using RAxML (version 8.2.4; Stamatakis 2014) and
ExaBayes (version 1.5; Aberer et al. 2014) (see supplementary
text, Supplementary Material online, for details).

Selection Analyses
The 1,523 “global strict-core” genes represented only�25% of
the average P. aeruginosa gene complement of�6,000 genes.
To extend our screen to a larger proportion of the genome,
and to include true core genes that may be missing due to
incomplete draft assemblies, selection analysis was performed
on “relaxed-core” genes, as defined by a �95% presence
threshold (�5,510 genes per niche; supplementary text,
Supplementary Material online). In addition to restricting se-
lection analysis to strain subsets from the CF, Ac, and En
niches (n� 100; supplementary table S1, Supplementary
Material online), the An niche was excluded due to small
sample size (n¼ 17). Selection analyses were performed using
an ML approach implemented by PAML (version 4.7; Yang
2007). For each alignment, gene-wide omega (dN/dS) was
calculated using the niche-specific ML tree (runmode ¼ 0),
ten rate categories (ncatG ¼ 10), and all sites constrained to
the same rate category (NSsites¼ 0). Recognizing that omega
estimates are sensitive to even minor alignment errors, two
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additional quality control steps were applied. First, prior to
selection analyses, all alignments were screened for proper
start codons and appropriate reading frames (alignment
lengths a multiple of three). Flagged alignments were manu-
ally inspected, and if necessary, edited to restore proper read-
ing frame. Second, after selection analyses, all alignments with
resulting omega values �0.30 were manually inspected and
verified to ensure alignment accuracy.

Differential Selection between Niches
To account for differences in mean omega values between
niches, standardized Z-scores were calculated within each
niche as Zi ¼ [(vi � v)/r], where vi is the raw omega value,
v is the sample mean, and r is the sample standard deviation.
Differential selection (DSi) between niches for gene i was es-
timated simply as the difference between Z-scores from the
two niches (DSi(niche1� niche2)¼ Zi(niche1)� Zi(niche2)).
For example, highly positive Z-scores in niche 1 and highly
negative Z-scores in niche 2 would indicate high differential,
positive selection in niche 1. Exploratory analyses using a
similar metric, the ratio of raw omega values from two niches,
gave similar results and so are not reported here. For multiple
regression analyses, omega values were first log10-
transformed then regressed using a generalized linear model
in the R statistical package (R Core Team 2013).

Gene Functions
Blast2GO (version 5.2.5; Götz et al. 2008) was used for func-
tional analyses of GO information, based on the GO infor-
mation for strain PA14, so PA14 gene names or identifiers are
used here for reference. Combined graphs (direct acyclic
graphs) were built to visualize the relationships and depen-
dencies among annotated genes. Fisher exact tests were used
to test whether specific GO terms were significantly enriched
in the queried gene lists, given GO terms were represented by
two or more genes in the query list. Correction for multiple
comparisons was applied using the Benjamini–Hochberg
method for calculating the FDR (Q¼ 0.10 for 10% false pos-
itives). When reported here, Fisher exact test P-values were
significant after FDR correction unless otherwise noted by “ns
after FDR.” Owing to the vertical dependence of hierarchically
related GO terms, significantly enriched lists were, in some
cases, reduced to the most specific GO terms.

Supplementary Material
Supplementary data are available at Molecular Biology and
Evolution online.
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Wei Q, Le Minh PN, Dötsch A, Hildebrand F, Panmanee W, Elfarash A,
Schulz S, Plaisance S, Charlier D, Hassett D, et al. 2012. Global regu-
lation of gene expression by OxyR in an important human oppor-
tunistic pathogen. Nucleic Acids Res. 40(10):4320–4333.

Whiteside MD, Winsor GL, Laird MR, Brinkman FSL. 2013. OrtholugeDB:
a bacterial and archaeal orthology resource for improved compara-
tive genomic analysis. Nucleic Acids Res. 41(D1):D366–D376.

Winstanley C, O’Brien S, Brockhurst MA. 2016. Pseudomonas aeruginosa
evolutionary adaptation and diversification in cystic fibrosis chronic
lung infections. Trends Microbiol. 24(5):327–337.

Yang L, Jelsbak L, Marvig RL, Damkiaer S, Workman CT, Rau MH, Hansen
SK, Folkesson A, Johansen HK, Ciofu O, et al. 2011. Evolutionary
dynamics of bacteria in a human host environment. Proc Natl
Acad Sci U S A. 108(18):7481–7486.

Yang Z. 2007. PAML 4: phylogenetic analysis by maximum likelihood.
Mol Biol Evol. 24(8):1586–1591.

Yang Z, Bielawski JR. 2000. Statistical methods for detecting molecular
adaptation. Trends Ecol Evol. 15(12):496–503.

Yeung ATY, Bains M, Hancock REW. 2011. The sensor kinase CbrA is a
global regulator that modulates metabolism, virulence, and antibi-
otic resistance in Pseudomonas aeruginosa. J Bacteriol.
193(4):918–931.

Evolutionary Genomics of Niche-Specific Adaptation to CF the Lung . doi:10.1093/molbev/msaa226 MBE

675

https://www.r-project.org

