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The diagnosis of schizophrenia is thought to embrace sev-
eral distinct subgroups. The manifold entities in a single 
clinical patient group increase the variance of biological 
measures, deflate the group-level estimates of causal fac-
tors, and mask the presence of treatment effects. However, 
reliable neurobiological boundaries to differentiate these 
subgroups remain elusive. Since cortical thinning is a 
well-established feature in schizophrenia, we investi-
gated if individuals (patients and healthy controls) with 
similar patterns of regional cortical thickness form nat-
urally occurring morphological subtypes. K-means algo-
rithm clustering was applied to regional cortical thickness 
values obtained from 256 structural MRI scans (179 pa-
tients with schizophrenia and 77 healthy controls [HCs]). 
GAP statistics revealed three clusters with distinct re-
gional thickness patterns. The specific patterns of cortical 
thinning, clinical characteristics, and cognitive function 
of each clustered subgroup were assessed. The three clus-
ters based on thickness patterns comprised of a morpho-
logically impoverished subgroup (25% patients, 1% HCs), 
an intermediate subgroup (47% patients, 46% HCs), and 
an intact subgroup (28% patients, 53% HCs). The differ-
ences of clinical features among three clusters pertained to 
age-of-onset, N-back performance, duration exposure to 
treatment, total burden of positive symptoms, and severity 
of delusions. Particularly, the morphologically impover-
ished group had deficits in N-back performance and less 
severe positive symptom burden. The data-driven neuroim-
aging approach illustrates the occurrence of morphologi-
cally separable subgroups in schizophrenia, with distinct 
clinical characteristics. We infer that the anatomical 

heterogeneity of schizophrenia arises from both patho-
logical deviance and physiological variance. We advocate 
using MRI-guided stratification for clinical trials as well 
as case–control investigations in schizophrenia.

Key words:  heterogeneity of schizophrenia/cortical 
thickness/clustering analysis

Introduction

Schizophrenia is a complex and persistent mental dis-
order with a variable course, often associated with 
dramatic deterioration in functioning. Unfortunately, de-
spite decades of clinical research, only one in six patients 
with schizophrenia achieve rates of clinical and com-
munity functioning on par with their premorbid levels.1 
This variability in treatment response has led a number 
of studies to posit that schizophrenia, rather than a 
single disorder, may represent a group of distinct entities 
with overlapping clinical phenotypes.2–4 The idea of het-
erogeneity in schizophrenia is not new, with Kraepelin 
admitting that dementia praecox is “the expression of a 
single morbid process, though outwardly they often di-
verge very far from one another.” 5 However, despite con-
tinued effort, focus on subclassifying patients based on 
strictly clinical presentation has shown little prognostic 
value. Advances in Magnetic Resonance Imaging (MRI) 
technology have provided researchers with a widely avail-
able and biologically safe method to investigate the pos-
ited presence of neurobiologically derived subgroups in 
patient populations.

http://creativecommons.org/licenses/by-nc-nd/4.0/
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In a large-scale multisite study, Clementz et al used mul-
tivariate taxometric analyses of MRI to identify specific 
biotypes of psychosis and found three neurobiologically 
distinct psychosis biotypes that did not conform to 
typical diagnostic boundaries between schizophrenia, 
schizoaffective disorder, and bipolar disorder.6 This 
suggests that biomarker-based stratification could ne-
cessitate a reconceptualization of traditional diagnostic 
classifications.1–3

Recent imaging studies have revealed that schizo-
phrenia patients show regional cortical thinning in 
several brain areas,4 and this has become an area of 
interest to assess the potential for neurobiological 
heterogeneity in schizophrenia.5–8 Although this is a 
promising line of  inquiry, identifying the appropriate 
number of  subtypes has proven difficult, with ranges 
from 3 to 6 groups being identified in previous anatom-
ical MRI studies.5–8 Furthermore, the degree to which 
ethnicity will affect assessments of  neurobiological sub-
groups should be assessed as many ethnic differences 
exist in incidence rates, illness severity, and degree of 
functional recovery.9

In most case–control studies, there is an absence of clear 
biological demarcation between patients and controls due 
to small effect sizes or a high degree of variance among 
patients. Nevertheless, most clustering studies seek bio-
logical boundaries only among patients, assuming that 
a natural distinction exists between patients and healthy 
controls.10,11 Thus, the effect of variation in the healthy 
brain (i.e., normative modeling) has not been utilized 
fully when studying the heterogeneity of schizophrenia.12 
Healthy controls do not form a neurobiologically homo-
geneous group that deviates from the patient subgroups, 
as within-group heterogeneity of features such as cortical 
thickness in healthy controls is substantial.13

Using a data set-based clustering approach for all par-
ticipants (schizophrenia patients and healthy controls), 
we aim to resolve the inconsistency around the identity 
of biologically heterogeneous subtypes of schizophrenia. 
After clustering, the characteristics of each cluster will be 
revealed through clinical information such as diagnosis 
and symptoms and cognitive tasks. We sought to use a 
data-driven approach based on neurobiological traits to 
explore the distinct patterns of morphological variation 
and the nature of schizophrenia subtypes.

Methods

Participants

Patients (n  =  179) with a diagnosis of schizophrenia 
(using the Structured Clinical Interview for DSM-IV-
patient version [SCID-P]14) were recruited from the inpa-
tient and outpatient units at Second Xiangya Hospital of 
Central South University, Changsha, China from 2009 
to 2017. All patients: (1) met the DSM-IV diagnostic 
criteria for schizophrenia; (2) were 12–45  years of age; 

(3) right-handed; and (4) had 9 or more years of formal 
schooling. The exclusion criteria included: (1) diagnosis 
of a substance-related disorders, neurological disorder, 
or a serious physical illness; (2) any contraindication for 
MRI; and (3) previous electroconvulsive therapy.

In addition to our patient population, we recruited 
n = 77 healthy controls (HCs) from a community sample 
in Changsha city. The inclusion and exclusion criteria were 
the same as those of the patient group, with the exception 
that controls were (1) not diagnosed with any mental ill-
ness according to the DSM-IV when interviewed using 
the SCID nonpatient version (2) did not have first-de-
gree relatives with a psychotic illness. All participants 
gave their written informed consent to participate in our 
study after a detailed description of the risks and bene-
fits. The study was approved by the ethics committee of 
the Second Xiangya Hospital, Central South University.

Clinical Assessment

Diagnoses were made by qualified psychiatrists according 
to DSM-IV criteria. On the same day as the MRI session, 
the severity of symptoms was evaluated through the Scale 
for The Assessment of Positive Symptoms (SAPS),15 
the Scale for The Assessment of Negative Symptoms 
(SANS),15 and the Schizophrenia Suicide Risk Scale 
(SSRS).16 The duration of illness, antipsychotic load 
(converted into chlorpromazine equivalent per day), and 
duration of psychotic medication were recorded.

MRI Acquisition

MRI scanning was conducted on a Philips Gyroscan 
Achieva 3.0 Tesla MRI scanner at the Institute of Mental 
Health, Second Xiangya Hospital. High-resolution 
T1-weighted images were also acquired with a three-di-
mensional spoiled gradient echo (SPGR) pulse sequence 
from the sagittal plane, scanning parameter: TR = 7.5 ms, 
TE = 3.7 ms, FA = 8°, 180 slices, matrix = 256 × 200, the 
field of view (FOV)  =  240  × 240  mm2, and slices were 
contiguous with a slice thickness of 1 mm. Importantly, 
during the T1-weighted image acquisition, participants 
were asked to remain still, and if  any motion-related arti-
facts were detected, the scans were repeated.

Cognitive Function Assessment

On the same day of the MRI acquisition, Verbal Fluency, 
N-back task and Contour Integration Test were admin-
istered. Verbal Fluency was tested by asking participants 
to report as many animals as possible within 60  s. The 
N-back task was widely used in previous studies of our 
research group.17–19 All participants performed a par-
ametric n-back task on Nordic Neurolab’s fMRI hard-
ware system for 8 minutes and 16 seconds. All stimuli 
were sequences of white capital letters on a black back-
ground, presented centrally (500  ms duration, 1500  ms 
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inter-stimulus interval) in a pseudo-random order. The 
task performance, as represented by the reaction time 
[RT] and accuracy [AC], of each participant was recorded 
electronically.

The Contour Integration Test is designed to measure 
perceptual organization.20–22 This test is typically a 
task to recognize a closed contour circle made up of 
noncontiguous elements, embedded within a display of 
randomly oriented elements in a card. Further details of 
the test administration are provided in the Supplementary 
Figure 1.

Principal component analysis (PCA) was applied 
across the whole patient group to reduce multiple com-
parisons by extracting the components that accounted 
for the majority of variance for each cognitive task. For 
N-back target accuracy of 0 back, 2 back, for the whole 
test and N-back nontarget accuracy (error rate of whole 
test) were entered into PCA; for contour task, the number 
of total correct, incorrect, and failure for random testing, 
total correct, incorrect, and failure for standard testing, 
were entered into PCA; for verbal fluency task, number 
of correct responses, wrong responses, and repetitions 
were entered into PCA. We extracted one principal com-
ponent for the N-back scores (accounted for 59% of var-
iance); two components were extracted for the contour 
task scores (component 1 accounted for 50% of variance 
and component 2 accounted for 24% of variance) with 
four items in component 1(omitted score) and three items 
in component 2 (correct committed score). Two compo-
nents were extracted for the verbal fluency scores (com-
ponent 1 accounted for 43% of variance and component 
2 accounted for 33% of variance) with two items in com-
ponent 1(correct response score) and one item in com-
ponent 2 (noncategory responses score). We used PCA 
as the original variables within each test are correlated 
highly with each other and only the latent components 
of overall test performance were needed for our purpose 
of correlating with external variable (in this case cluster 
membership). Furthermore, there are no universally 
agreed single composite indices for reporting n-back and 
contour integration test performance.

Preprocessing of MRI Data

A surface-based approach using Free-Surfer (http://
surfer.nmr.harvard.edu, version 5.3.0) was used to calcu-
late the cortical thickness in the whole brain. Following 
skull-stripping and intensity correction, the gray–white 
matter boundary for each cortical hemisphere was deter-
mined by tissue intensity and neighborhood constraints. 
The resulting surface boundary was tessellated to gen-
erate multiple vertices across the whole brain before 
inflating. Using a deformable surface algorithm guided by 
the gray–CSF intensity gradient, the resulting gray–white 
interface was expanded to create the pial surface. The in-
flated surface was then morphed into a sphere followed 

by registration to an average spherical surface for op-
timal sulcogyral alignment. After the above procedures, 
Desikan–Kiliany Atlas (68 regions) was used to extract 
cortical thickness of each region using the FreeSurfer 
software.23 Topological defects were corrected manually 
by two members of the research staff.

Statistical Analysis

Using cortical thickness of 68 regions, we used the 
K-means clustering method and GAP statistics to iden-
tify clusters of participants who shared similar patterns 
of cortical thickness. K-means clustering was applied to 
all participants, including HCs. We set K number from 1 
to 6 and GAP statistics to estimate the optimal number 
of clusters in our data. Then we chose the smallest K 
number that conformed to Gap(k) ≥ Gap(k + 1) − sk+1 as 
the solution of cluster analysis based on the 1-standard-
error method suggested by Tibshirani.24 Based on the 
coordinates of each cluster center, we computed the dis-
tance from each individual to each of the three centers.

One-way ANOVA (SPSS 20.0) was used to compare 
morphological, clinicodemographic, and cognitive in-
dices, with Bonferroni correction to address inflated type 
1 error. For data with non-normal distribution (e.g., per-
centile data on the accuracy of N-back), we used nonpa-
rametric Kruskal–Wallis test for statistical analysis. We 
also investigated the correlation between distance from 
each cluster center and clinical and cognitive scores. At 
last, a multivariate generalized linear model with the sub-
group based on clusters as the fixed factor was used to 
test the effect size of all factors including morphological 
data and phenotypic characteristics.

Results

Demographic and Clinical Characteristics of All 
Participants

A total of 256 participants (179 SCH, 77 HC) were re-
cruited for the study. The demographic and clinical vari-
ables of participants are presented in Table 1. Significant 
differences were found in gender (P = .014), Information-
WAIS (P < .00001), Digit symbol-WAIS (P < .00001), 
and education (P < .00001), but not in age (P  =  .288) 
between the two diagnostic groups. As expected patients 
showed significant cognitive impairment compared with 
HC in three cognitive tasks, including contour task (visual 
integration), verbal fluency task (language fluency), and 
N-back task (working memory) (Table 1).

K-Means Clustering and GAP Statistics

We explored the possibility of the existence of one to six 
clusters and identified the ideal cluster solution based 
on GAP statistics to be 3 (Figure 1A). According to 
the proportion of patients compared with controls in 

http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sbz112#supplementary-data
http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sbz112#supplementary-data
http://surfer.nmr.harvard.edu
http://surfer.nmr.harvard.edu
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each cluster, we deduced that cluster 1 (98% are schiz-
ophrenia) was “schizophrenia-like,” cluster 2 (67% are 
schizophrenia) was “HCs-like,” and cluster 3 (59% are 
schizophrenia) was intermediate (Figure 1B). When the 
individual features (regional thickness) were examined 
in patients compared with all HCs, patients had cortical 
thinning patterns that differed according to their cluster 
membership. Schizophrenia patients in cluster 2 appeared 
to be “morphologically intact,” with a pattern of cortical 
thickness similar to HCs; schizophrenia patients in cluster 
1, “morphologically impoverished,” appeared to have a 
pattern of widespread cortical thinning. Schizophrenia 

patients in cluster 3, “intermediate,” showed regional cor-
tical thinning compared with HCs (Figure 1C). The cen-
tral point (CP) of each cluster supported above different 
patterns of clusters (Supplementary Figure 5).

Among the three subgroups clusters, the effect size 
of differences (partial eta squared) in thickness for left 
parstriangularis area, left temporal pole, right fusiform 
area, bilateral middle temporal cortex, and bilateral supe-
rior temporal cortex was >0.5 (Supplementary Table 3), 
indicating a critical role for these regions in the observed 
heterogeneity of schizophrenia.

Characteristics of Each Cluster

There was no significant overall effect of subgrouping 
on gender, education, and cognition (Tables 2 and 3). 
However, there was a significant difference in age between 
clusters (P = .000) (Table 2). Post hoc analysis (performed 
for ANOVA P < .15) showed that the participants in 
cluster 2 were younger compared with those in clusters 1 
and 3 (P = .000 and .043, respectively). Besides, Kruskal–
Wallis analysis showed that the participants in cluster 2 
had greater performance of N-back (P = .04).

In schizophrenia patients, there were no significant 
effects of cluster on SANS total and SRSS total (Table 
2). However, there were significant effects of cluster on 
duration of medication exposure (DoM) and delusion 
(P  =  .041 and .049, respectively) (Table 2). Post hoc 
analysis showed that patients in cluster 1 (the “morpho-
logically impoverished” group) had lower score in digit 
symbol-WAIS (P = .046), longer duration of illness (DoI), 
and DoM (P  =  .044 and .023, respectively), but lower 
scores in SAPS total and delusion (P = .033 and .016, re-
spectively) (Table 2) compared with those in cluster 2 (the 
“morphologically intact” group). In addition, patients in 
cluster 3 (the “intermediate” group) had older onset age 
compared with those in cluster 2 (the “morphologically 
intact” group).

The demographic, cognitive, and clinical characteris-
tics were summarized in Figure 2 (also see Supplementary 
Table 2 for cluster differences among the healthy con-
trols). And the differences among the 3 clusters were 
observed in Age, N-back, DoI, DoM, Onset age, SAPS 
total, and Delusions. We also collected 5-year outcome 
data on positive symptom relapses and education/em-
ployment status using telephone interview and hospital 
chart review for 59 of 179 patients in this study. These 
results are presented in the Supplementary Figure 4.

Distance From Individuals to Cluster Central Point

Squared Euclidean distance was used to express dis-
tance from individual to cluster central point. According 
to the solution of K-means clustering, there were three 
central points (CP) corresponding to three clusters 
(Supplementary Figure 5). Significant differences were 

Table 1. Participant Demographic Information, Symptom, and 
Cognitive Scores

SCH 
(mean ± SD)

HCs 
(mean ± SD)

P value 
(uncorrected)

N 179 77  
Age [range] 23.63 ± 5.77 

[13–44]
24.52 ± 5.63 

[18–42]
.288

Gender (female/ 
male)

61/117 39/38 .014*

Education 11.58 ± 2.42 14.05 ± 2.25 <.00001**
Information-WAIS 15.81 ± 5.30 21.16 ± 4.53 <.00001**
Digit symbol-WAIS 62.30 ± 15.45 89.46 ± 14.53 <.00001**
Duration_of_ 
Medicine (Days)

198 ± 445 — —

Dosage_of_Medicine 
(CPZ equivalent)

134 ± 117 — —

Duration_ 
of_illness (months)

25.42 ± 32.66 — —

Onset_age 21.59 ± 5.48 — —
SAPS scores 20.60 ± 15.63 — —
SANS scores 33.54 ± 26.52 — —
Cognitive task
  N-back 

Textdisplay2_ACC
0.78 ± 0.25 0.92 ± 0.15 .000007**

  N-back 
Textdisplay1_ACC

0.83 ± 0.27 0.94 ± 0.16 .000296**

  N-back Target_ 
ACC

0.52 ± 0.25 0.76 ± 0.19 <.00001**

  N-back 
Nontarget_ACC

0.86 ± 0.19 0.78 ± 0.22 .001*

  Contour Random 
total correct

43.75 ± 4.16 46.07 ± 3.69 .001655*

  Contour Random 
total wrong

3.32 ± 6.31 2.38 ± 3.90 .2486

  Contour Standard 
total correct

70.77 ± 8.81 77.54 ± 7.74 .00002**

  Contour Standard 
total wrong

7.15 ± 10.84 6.49 ± 6.52 .62772

  Verbal fluency 
correct

13.98 ± 5.06 20.37 ± 5.46 <.00001**

  Verbal fluency 
wrong

0.17 ± 0.40 0.10 ± 0.31 .373

  Verbal fluency  
repeat

0.68 ± 0.94 0.81 ± 0.98 .397

Note: After Bonferroni correction, the significant difference level 
was 4.16e-4.
*P < .05; **P < 4.16e-4.

http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sbz112#supplementary-data
http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sbz112#supplementary-data
https://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sbz112#supplementary-data
https://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sbz112#supplementary-data
http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sbz112#supplementary-data
http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sbz112#supplementary-data
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observed in distance to the CP of each cluster. Distance 
from schizophrenia patients to CP1 was significantly 
(P = .03) lower than the distance from HCs to CP1; dis-
tance from schizophrenia patients to CP2 and CP3 was 
significantly higher than the distance from HCs to CP2 
and CP3 (Figure 3A). Thus, CP1 subgroup more closely 
reflected the clinical description of schizophrenia while 
CP2 and CP3 were closer to HCs in their profile. Besides, 
the correlation between the characteristics of clusters and 

distance to CP of all samples is presented in Figure 3B. 
See Supplementary Figure 2 for the stability of cluster 
membership to sample size balance, age, and sex.

Discussion

To the best of our knowledge, this is the first study using 
a data-driven approach to reveal subgroups in relatively 
early stage of schizophrenia (77.6% patients having 

Figure 1. (A) Gap statistic to measure the number of optimum cluster in the data set using K-means clustering. The optimal solution 
for the morphological data from both patients and controls is the presence of three clusters. (B) The composition of each cluster, with 
98%, 59%, and 67% of each cluster being comprised of patients, is shown. (C) Different patterns of cortical thinning in three clusters 
of patients (Cl, C2, and C3). The age- and gender-adjusted differences between patients in each cluster and the total sample of HCs are 
shown by the coloured cells (with red indicating Bonferroni-adjusted P < .05). The name of the corresponding regions from the Desikan–
KIlliany atlas is shown in Supplementary Table 3.

http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sbz112#supplementary-data
http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sbz112#supplementary-data
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<3 years of illness) based on cortical thickness. Applying 
data-driven clustering to a combined sample of HCs and 
patients, we identified three subgroups of schizophrenia 
with distinct patterns of cortical thinning. One subgroup 
was homogeneously comprised of patients (except for 
one HC) with widespread reduction in regional cortical 
thickness. A substantial proportion (33% and 41%) of the 
other two subgroups comprised of HCs, with patients in 
cluster 2 exhibiting a highly preserved thickness profile, 
whereas cluster 3 being intermediate (as shown in Figure 
1). This result suggests that anatomical heterogeneity is 

not solely an inherent disease feature, but rather represen-
tative of variation that can exist in HCs as well. In fact, 
only 25% of all patients were from the morphologically 
impoverished group, whereas the rest had cortical thick-
ness features that were shared with healthy controls.

We observe that patients in the morphologically 
intact subgroup (cluster 2)  are more symptomatic 
(SAPS total, delusions) with a shorter duration of 
illness and intact cognition (n-back) than the impov-
erished group (cluster 1), though there were no dif-
ferences in sex, negative symptom burden, verbal 

Table 2. Characteristics of Each Cluster

N(HCs/SCH)

Cluster1 Cluster 2 Cluster 3

F/χ 2 value
P value 
(uncorrected) Post Hoc

46(1/45) 85(35/50) 125(41/84)

Mean SD Mean SD Mean SD

Age 24.02 6.11 21.95 4.30 25.13 6.03 8.31 .00032* 1>2*, 2<3**
Gender 1.39 0.49 1.35 0.48 1.41 0.49 0.73 .695 —
Education 12.13 2.71 12.34 2.49 12.33 2.71 0.12 .889 —
Information-WAIS 16.40 6.17 18.00 5.88 17.34 5.21 1.069 .345  
Digit symbol-WAIS 64.50 12.74 72.08 19.32 71.10 21.60 2.252 .108 1<2*
DoI (months) 32.6 40.1 18.6 25.4 25.5 31.5 2.186 .115 1>2*
DoM (days) 328 665 98 194 186 389 3.263 .041* 1>2*
Onset_age 21.6 5.2 20.3 5.1 22.4 5.7 2.242 .109 2<3*
SAPS total 17.69 15.54 24.56 16.96 19.84 14.57 2.501 .085 1<2*
 Hallucinations 1.24 1.65 1.22 1.54 1.34 1.62 0.108 .898 —
 Delusions 1.73 1.59 2.53 1.67 2.02 1.55 3.069 .049* 1<2*
 Bizarre Behavior 0.98 1.35 1.10 1.26 1.17 1.31 0.306 .737 —
 Positive FTD 0.73 1.13 0.91 1.28 0.82 1.17 0.281 .755 —
SANS total 29.58 17.78 31.65 24.18 36.76 27.04 1.249 .289 —
 Affective Flattening 1.29 1.41 1.33 1.36 1.75 1.45 2.171 .117 —
 Alogia 1.09 1.35 1.43 1.32 1.52 1.45 1.462 .235 —
 Avolition-Apathy 1.62 1.54 1.90 1.46 2.00 1.58 0.888 .413 —
 Anhedonia-Asociality 1.82 1.54 2.10 1.56 2.28 1.47 1.380 .254 —
 Attention 1.16 1.52 1.37 1.30 1.50 1.44 0.855 .427 —
SSRS total 13.58 9.54 15.28 9.65 13.53 7.56 0.633 .532 —

Note: Clinical ratings were administered only to participants with schizophrenia diagnose.
SCH, schizophrenia patients; HCs, healthy controls; DoI, duration of illness; DoM, duration of medication; FTD, formal thought dis-
order.
After Bonferroni correction, the significant difference level was 2.63e-4.
*P < .05; **P < 2.63e-4.

Table 3. Cognitive Comparison Between Clusters

Cluster1 Cluster 2 Cluster 3
Kruskal–Wallis  
χ 2 value

P value 
(uncorrected) Post HocMean SD Mean SD Mean SD

N-back component −0.11 0.84 0.21 0.86 −0.07 1.13 4.01 .14 1<2*
Contour task
 Component 1 −0.25 1.08 0.07 1.03 0.114 0.91 5.69 .58 —
 Component 2 0.15 0.92 −0.01 0.89 −0.09 1.11 2.46 .29 —
Verbal Fluency
 Component 1 0.06 0.97 −0.04 0.98 −0.03 1.04 0.28 .87 —
 Component 2 −0.04 1.07 0.33 1.17 −0.14 0.81 2.03 .36 —

Note: After Bonferroni correction, the significant difference level was 0.005.
*P < .05; **P < .005.
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Figure 2. The demographic, cognitive, and clinical characteristics of the three morphological subgroups. (A) Post hoc comparison 
between clusters in phenotypes. * represents uncorrected P < .05; (B) The Y-axis represents the Z-scores of each factor (N-back-axis was 
the results of PCA). Cluster 1, “morphologically impoverished subgroup,” exhibited older age, lower digit symbol score, worse working 
memory, and longer DoT and DoM; Cluster 2, “morphologically intact subgroup,” exhibited younger age, higher delusion, and severity 
of positive symptoms; Cluster 3, “intermediate subgroup,” exhibited older age and onset age.

Figure 3. Distance from individuals to cluster central point. (A) presents the difference of  distance between SCH (blue) and HCs (red). 
(B) presents correlations between characteristics of  clusters and distance to CP. For diagnosis, 1 = SCH, 2 = HCs. Note: Clinical ratings 
were available for patients only. After Bonfferoni correction, the significant difference level was P < .0017. * represent P < .05; ** means 
P < .0017.
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fluency, and contour recognition. The subgroup with 
maximal thickness reduction (cluster 1)  had the most 
pronounced cognitive deficits while the subgroup with 
the least thickness changes (cluster 2) had higher posi-
tive symptom burden (especially delusions) and some-
what higher frequency of  positive symptom relapses. 
While initially counterintuitive, these results are indeed 
consistent with Crow’s original dichotomy of  a mor-
phologically preserved type-1 schizophrenia with more 
positive symptom burden and a more chronic, cogni-
tively impaired and structurally altered type-2 schiz-
ophrenia with less positive symptoms.25 Furthermore, 
our results support various studies that reject the no-
tion that positive symptoms per se are neurotoxic (ie, 
presence of  delusions/hallucinations will adversely af-
fect the brain anatomy).26,27 Several recent longitudinal 
studies support the possibility of  a cortical reorgani-
zation or repair process that ameliorates morpholog-
ical deficits occurring after the onset of  psychosis (see 
ref. 28 for a review). Our observation suggests that it is 
likely that such reorganization processes, if  present, are 
more likely in patients with higher degree of  positive 
symptom burden, but lower degree of  cognitive im-
pairment. The preservation of  cognitive function in the 
morphologically intact subgroup is consistent with the 
well-replicated association between cognitive impair-
ment and morphological deficits in schizophrenia.29,30

Although we report three morphologically distin-
guishable subgroups of schizophrenia based on nor-
mative modeling that exploits the variations in healthy 
brain structure, it is important to note that this does not 
imply that only three morphological subtypes of schiz-
ophrenia exist. Prior studies have identified two11 to six 
subgroups.8 The exact numbers reported vary according 
to sampling and methodological differences (termed as 
apparent heterogeneity by Schnack12). We recruited medi-
cated patients in a relatively early stage of schizophrenia, 
all of same ethnicity (Han Chinese), limiting generaliz-
ability to more chronic samples from other parts of the 
world. We also chose to use k-means clustering instead of 
fuzzy clustering, so cluster membership (and clinical dis-
tinctions) of individual subjects can be meaningfully in-
terpreted, though the discrete classes thus generated may 
have less information than fuzzy solutions. We also did 
not seek a specific number of clusters, and remained ag-
nostic to the number of subgroups. The 3-cluster solution 
was found optimal based on the data-based gap statistic, 
which outperforms other cluster solution methods,24 and 
has the specific advantage of working in combination 
with an adaptive version of K-means clustering in finding 
elongated clusters.24,31

When studying the effect of  clinical phenotype on the 
cluster membership (distance from cluster centroids), 
we note that age has a distinct gradient in the most im-
poverished and intermediate subgroups, with older age 
indicating more pronounced cortical thinning. Such 

a relationship was not seen in the morphologically in-
tact cluster 2, wherein the duration of  exposure to anti-
psychotics was the most influential factor in deviation 
from the centroid. Furthermore, the cluster solution was 
stable even when adolescent subjects were excluded from 
the sample (Supplementary Figure 3 and Supplementary 
Table 1), indicating that the subgroups may be stable irre-
spective of  the age range of  the sample studied. The most 
morphologically impoverished cluster 1 had highest du-
ration of  illness as well as medication exposure, but these 
factors did not relate to the strength of  an individual’s 
cluster membership. This is consistent with the sus-
pected “detrimental” effects of  antipsychotics on brain 
morphology,32 as noted in other clustering studies4,8 but 
suggests that the medication-related variations are likely 
to be in line with the variability seen in healthy controls.

Limitations

The current study contained several limitations that 
should be considered. First, despite being agnostic with 
respect to the diagnostic differences in cortical thick-
ness, our clinical recruitment was based on established 
clinical criteria for schizophrenia and did not include a 
broader spectrum of psychosis. A large number of prior 
observations have indicated that the structural pattern in 
other psychotic disorders is not qualitatively different but 
appears to be intermediate between schizophrenia and 
healthy controls. Secondly, we lacked longitudinal data 
to confirm the stability of observed clusters. Mechanistic 
heterogeneity at the individual level may be present across 
time (ie, different pathways acting at different time points, 
producing the same phenotype for the individual).33 Given 
the cross-sectional nature of most clustering studies to 
date, the question of stability in cluster solutions remains 
unknown to date. Third, we were not able to untangle the 
association between antipsychotic exposure, age of onset, 
and illness duration, as we lacked a nonmedicated sample 
of patients. Although antipsychotic confounds are absent 
in untreated samples, cognitive and clinical symptoms are 
often unstable in acute stages of psychosis. Nevertheless, 
caution must be exercised in interpreting medication ef-
fects reported here.

We conclude that cortical thickness patterns in a large 
number of patients with schizophrenia (~75% in this 
sample) are not deviant but show variations parallel 
to healthy controls. This raises the interesting question 
of partitioning the anatomical heterogeneity in schiz-
ophrenia to a component of likely pathological per-
turbation and a component resulting from normative 
variations in healthy morphology. Given the challenges 
in reproducing case–control differences, a stratified ap-
proach towards identifying distinct sources of variation 
may be critical in our pursuit of the etiological hetero-
geneity of schizophrenia. Furthermore, interventional 
studies that aim to demonstrate structural changes in 

http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sbz112#supplementary-data
http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sbz112#supplementary-data
http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sbz112#supplementary-data
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schizophrenia are best designed with the consideration 
of the relative prevalence of subgroups of patients with 
normal variations as opposed to disease-specific per-
turbations in morphology.

Supplementary Material

Supplementary material is available at https://academic.
oup.com/schizophreniabulletin/.
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