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Using a nontargeted metabolomics approach of 447 fasting
plasma metabolites, we searched for novel molecular markers
that arise before and after hyperglycemia in a large population-
based cohort of 2,204 females (115 type 2 diabetic [T2D] case
subjects, 192 individuals with impaired fasting glucose [IFG], and
1,897 control subjects) from TwinsUK. Forty-two metabolites
from three major fuel sources (carbohydrates, lipids, and
proteins) were found to significantly correlate with T2D after
adjusting for multiple testing; of these, 22 were previously
reported as associated with T2D or insulin resistance. Fourteen
metabolites were found to be associated with IFG. Among the
metabolites identified, the branched-chain keto-acid metabolite
3-methyl-2-oxovalerate was the strongest predictive biomarker
for IFG after glucose (odds ratio [OR] 1.65 [95% CI 1.39–1.95], P =
8.46 3 1029) and was moderately heritable (h2 = 0.20). The as-
sociation was replicated in an independent population (n = 720,
OR 1.68 [ 1.34–2.11], P = 6.52 3 1026) and validated in 189 twins
with urine metabolomics taken at the same time as plasma (OR
1.87 [1.27–2.75], P = 1 3 1023). Results confirm an important role
for catabolism of branched-chain amino acids in T2D and IFG. In
conclusion, this T2D-IFG biomarker study has surveyed the
broadest panel of nontargeted metabolites to date, revealing both
novel and known associated metabolites and providing potential
novel targets for clinical prediction and a deeper understanding
of causal mechanisms. Diabetes 62:4270–4276, 2013

C
urrently, stratification of individuals at risk for
type 2 diabetes (T2D) within the general pop-
ulation is based on well-established factors such
as age, BMI, and fasting glucose (1). Although

these factors contribute considerably to disease risk, they
may not identify at-risk individuals before the disease
process is well under way.

Recently, a number of studies have found several
metabolites to be correlated with insulin resistance and
T2D (2–6), and T2D-associated metabolic profiles have
been identified 10–15 years before the diagnosis/onset of
the disease (7–9). To help preventive strategies, and
maximize the potential for existing effective interventions,
it is important to characterize the molecular changes that
take place in the development of T2D.

We aim to understand other biochemical changes, in
addition to hyperglycemia, that take place at the onset of
T2D using the largest metabolomic screening approach to
date. We assessed .400 metabolites to determine which
metabolomic profiles are correlated with T2D and im-
paired fasting glucose (IFG) in a large cohort of females
from TwinsUK with independent replication.

RESEARCH DESIGN AND METHODS

We analyzed data from 2,204 females from TwinsUK for whom nontargeted
plasma metabolomic profiling was available along with glucose/diabetic in-
formation (10). Subjects were classified into three groups based on fasting
glucose levels at time of initial sampling and at subsequent visits (on average
2.08 [1.21] visits): T2D case subjects (fasting glucose $7 mmol/L or physician’s
letter confirming diagnosis), individuals with IFG (5.6 mmol/L, fasting
glucose ,7 mmol/L), and T2D control subjects (3.9 mmol/L, fasting glu-
cose ,5 mmol/L).
Metabolomics measurements (on plasma and urine). Nontargeted me-
tabolite detection and quantification was conducted by the metabolomics
provider Metabolon, Inc. (Durham, NC) on TwinsUK fasting plasma samples as
described previously (11) and on 187 spot urine samples taken at the same
time as plasma.
Replication cohort for 3-methyl-2-oxovalerate. We included 536 individ-
uals with IFG and 184 control subjects identified via fasting glucose from the
follow-up study KORA F4 (Cooperative Health Research in the Region of
Augsburg) (12) with fasting metabolomic profiles for 3-methyl-2-oxovalerate.
Statistical analysis. We inverse normalized the data as the metabolite con-
centrations were not normally distributed. To avoid spurious false-positive
associations due to small sample size, we excluded metabolic traits with .20%
missing values.

For each T2D-control and IFG-control contrast, we ran random intercept
logistic regressions adjusting for age and BMI at the time of sampling, me-
tabolite batch, and family relatedness. We used a conservative Bonferroni
correction to account for multiple testing, thus giving a significant threshold of
1 3 1024 (0.05/447).

Taking advantage of the twin design of our study, for each metabolite
significantly associated with one or more contrasts, we estimated heritability
using structural equation modeling. For contrasts between each disease class
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and controls, we ran a stepwise linear regression including all the significant
metabolites to look for metabolites independently associated with T2D and IFG
respectively.

We further investigated the role of 3-methly-2-oxovalerate, the strongest
predictive biomarker after glucose, by 1) replicating the result in an in-
dependent population (KORA), 2) validating the result in urine (TwinsUK), 3)
investigating the underlying genetic influences using genome-wide association
study (GWAS) data, and 4) assessing causality of the metabolite-IFG associ-
ation by Mendelian randomization.

As 3-methyl-2-oxovalerate was associated with single nucleotide poly-
morphism (SNP) rs1440581 (S.-Y.S., E.F., A.-K.P., et al., unpublished obser-
vations), we tested this SNP for association with T2D status using case and
control subjects from the Diabetes Genetics Replication and Meta-analysis
Consortium (DIAGRAM) and by genotyping rs1440581 in 4,961 T2D case subjects
and 5,948 control subjects from GoDarts (KASPar System; KBiosciences;
genotyping success rate .95%, Hardy-Weinberg Equilibrium P . 0.05).

RESULTS

Metabolites associated with T2D and IFG. Levels of
447 fasting plasma metabolites (281 known and 176 un-
known) were obtained for 115 T2D case subjects, 192
individuals with IFG, and 1,897 normoglycemic control
subjects. The demographic characteristics are presented
in Table 1. After adjusting for age, BMI, metabolite batch,
and family relatedness, 42 of the 447 metabolites tested
showed significant differences among T2D case and con-
trol subjects with a Bonferroni-corrected cutoff of 1 3 1024

(=0.05/447). As depicted in Fig. 1A, the 42 metabolites fall
into three principal classes: 12 are lipids (primarily me-
dium and long-chain free fatty acids), 7 are carbohydrates,
9 are branched-chain amino acids (BCAAs) or derivatives,
and 14 are unknown. Besides glucose, a one standard de-
viation change in metabolite level resulted in T2D effect

sizes ranging from odds ratio (OR) 1.05 to 3.36 for adrenate
(22:4n6) and mannose, respectively (Table 2).

We repeated the analysis for the IFG group contrasting
with control subjects. This revealed 14 significantly asso-
ciated metabolites, 8 of which were also identified for T2D
(Table 2). Six of the 14 metabolites are related to BCAA
catabolism, three are carbohydrates, and two are lipids
(Fig. 1B). Two metabolites were independently associated
with IFG in the stepwise regression, including these 14
metabolites: glucose and 3-methyl-2-oxovalerate. Using 1,297
monozygotic and 1,200 dizygotic twin pairs, we estimated
heritability for each metabolite identified in one or more
contrasts. The calculated heritabilities ranged from 0 to 65%.

Effect sizes, association statistics, heritability estimates,
and literature references for both contrasts are shown in
Table 2.
Investigating the role of 3-methyl-2-oxovalerate in
IFG. 3-Methyl-2-oxovalerate is the branched-chain keto-
acid (BCKA) derivative of isoleucine, one of three BCAAs.
We found it to be significantly associated with IFG in 536
individuals with IFG and 184 normoglycemic control
subjects from the KORA population (OR 1.68 [95% CI
1.34–2.11], P = 6.52 3 1026) and in the inverse-variance
fixed-effect meta-analysis of the results (1.66 [1.45–1.90],
P = 2.62 3 10213), thus replicating our result.

We next studied 94 individuals with IFG and 95 control
subjects from TwinsUK with urine metabolomic profiles
available at the same time as plasma sampling. 3-Methyl-2-
oxovalerate correlated significantly with IFG (OR 1.87
[95% CI 1.27–2.75], P = 1 3 1023), thus suggesting that
urine could also be used to test for elevated 3-methyl-2-
oxovalerate.
Genetics of 3-methyl-2-oxovalerate and GWAS.
3-Methyl-2-oxovalerate has a heritability h

2 = 0.20 (95% CI
0.08–0.33) (Table 2). Our companion metabolite GWAS
(S.-Y.S., E.F., A.-K.P., et al., unpublished observations) re-
vealed that 3-methyl-2-oxovalerate is strongly associated with
SNPs upstream of the PPM1K gene on chromosome 4 (top
hit SNP rs1440581, beta = 20.014 [0.017], P = 1.21 3 10216).

We assessed whether the association between 3-methyl-2-
oxovalerate and IFG is consistent with a causal hypothesis.
Given the magnitude of effect between 3-methyl-2-
oxovalerate and T2D and between rs1440581 and 3-methyl-
2-oxovalerate, we theoretically estimated assuming causality
(using Mendelian randomization) that the biomarker rais-
ing allele C would be associated with increased risk of T2D
(OR 1.10 [95% CI 1.03–1.18]). We obtained in the actual
data a meta-analyzed test statistic of OR 1.03 ([1.00–1.05],
P = 0.08) after analyzing rs1440581 in 17,132 T2D cases and
62,810 control subjects (DIAGRAM consortium [13] plus
replication in GoDARTs [14]).

DISCUSSION

Using the largest biochemical screening approach to date
(447 metabolites), we searched for molecular markers that
arise before and after hyperglycemia in a large cross-
sectional population of women. We identified 42 metabo-
lites with high statistical significance associated with T2D
and 14 metabolites associated with IFG. Although diabetes
is considered to be primarily a disorder of glucose, we find
other dimensions, apart from carbohydrates, in the meta-
bolic space that associate with T2D and IFG, namely lipids
and amino acids.

Although many metabolites identified have previously
been associated with T2D or insulin resistance (Table 2),

TABLE 1
Demographic characteristics of the study populations

Case
subjects

Individuals
with IFG

Control
subjects

TwinsUK plasma
n 115 192 1,897
Females, n (%) 115 (100) 192 (100) 1,897 (100)
Age (years) 63.00 (9.61) 60.01 (12.40) 50.02 (14.43)
BMI (kg/m2) 30.58 (6.32) 27.89 (5.66) 25.42 (4.55)
Fasting glucose
(mmol/L) 7.58 (2.90) 6.02 (0.36) 4.46 (0.29)

Fasting insulin
(mg/dL) 19.28 (22.77) 11.66 (10.81) 6.90 (4.43)

Creatinine 74.80 (15.98) 76.67 (13.09) 74.98 (17.76)
TwinsUK urine
n — 94 95
Females, n (%) — 94 (100) 95 (100)
Age (years) — 63.74 (8.03) 63.17 (9.32)
BMI (kg/m2) — 29.22 (5.17) 26.59 (4.65)
Fasting glucose
(mmol/L) — 5.94 (0.27) 4.53 (0.29)

Fasting insulin
(mg/dL) — 13.50 (11.74) 6.02 (2.76)

Creatinine — 76.50 (15.60) 78.00 (14.7)
KORA
n — 536 184
Females, n (%) — 197 (37) 124 (67)
Age (years) — 64.2 (5.3) 63.2 (5.7)
BMI (kg/m2) — 29.1 (4.1) 26.4 (3.8)
Fasting glucose
(mmol/L) — 6.04 (0.35) 4.75 (0.18)

Data presented as mean (SD), unless otherwise indicated.
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we are the first to report their associations with IFG.
Moreover as IFG presents itself before T2D in prospective
studies, this could improve disease prediction and early
intervention. Also, this is the first study on IFG using
a wide untargeted platform such as Metabolon (a previous
IFG study [15] used a different platform with little over-
lap). We also report the novel association of the BCKA
3-methyl-2-oxovalerate with IFG both in plasma and in urine.
Carbohydrates. As expected, glucose itself showed the
strongest association with both T2D and IFG, followed by
mannose, which is consistent with previous findings
(3,5,16–19) and emphasizes the importance of other glu-
cose and nonglucose pathways. In particular, dimethy-
larginine (SDMA and ADMA) has been more associated
with the micro- and macrovascular complications than
with the pathogenesis of diabetes itself; whereas the

association of malate and arabinose with T2D was never
reported.
Lipids. T2D patients often present with elevated lipid
profiles, and within this study, lipids (primarily the free
fatty acids) make up the second largest group of T2D/IFG-
associated metabolites.

Lipids with the longest chain (adrenate [22:4n6] and
arachidonate [20:4n6]) are elevated in IFG patients compared
with control subjects. Similarly, lipids with shorter chain
(5-dodecenoate [12:1n7], heptanoate [7:0], and pelargonate
[9:0]) are depleted in T2D patients relative to control subjects.

In contrast, the fatty acid chains found in triglyceride
molecules in diabetes seem to act differently. Rhee et al.
(9) found that triglycerides containing longer-chain fatty
acids were associated with a decreased risk of diabetes,
whereas triglycerides containing shorter chains were

FIG. 1. Metabolites associated with T2D case-control status (A) and with IFG control status (B). Each metabolite super-pathway is represented in
a different color.
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associated with an increased risk. This contrasting pattern
of association may reflect alterations in triglyceride lipol-
ysis, which could either contribute to or be a result of the
dysregulation of glucose metabolism.

Among the lipids identified, the novel associations in-
clude the fatty acid 15-methlypalmitate and the medium
fatty acid 5-dodecenoate (12:1n7).
Amino acids. The third major group of metabolites are
amino acids. Within this group, the BCAAs valine, isoleu-
cine, and leucine and their BCKAs 3-methyl-2-oxovalerate,
4-methyl-2-oxopentanoate, and 3-methyl-2-oxobutyrate are
significantly elevated in both individuals with IFG and
subjects with T2D compared with control subjects.

Elevated BCAA levels have previously been associated
with increased risk of incident T2D (3,5,7,20) and indepen-
dently predict future T2D onset (7). Breakdown products of
BCAAs (propionylcarnitine, a-methylbutyrylcarnitine, and
isovalerylcarnitine) were also found to be elevated (21).
However, whereas previous targeted panels did not include
BCKAs, the nontargeted approach used here highlighted
specific effects on these important intermediates in BCAA
catabolism (Fig. 2). These suggest that it may be the break-
down of BCAAs that is associated with diabetes and not
specifically the elevated levels of BCAAs themselves. Con-
sistent with this idea, a knockout of the mouse BCAT2 gene,
which blocks the first step in BCAA metabolism, results in
greatly elevated plasma levels of BCAAs, and yet these
animals have improved glucose control, insulin sensitivity,
and resistance to diet-induced obesity (22).
3-Methyl-2-oxovalerate. Among the metabolites identi-
fied, the BCKA 3-methyl-2-oxovalerate is the strongest
predictor of IFG after and independently of glucose. BCAA
catabolism occurs primarily in the mitochondria, pro-
ceeding through BCAA transaminase, and then through the
branched-chain a-keto-acid dehydrogenase, a complex of
three separate gene products. In our companion GWAS
(S.-Y.S., E.F., A.-K.P., et al., unpublished observations), SNP
rs1440581 had the strongest associations with all BCAAs, all
BCKAs, and the C3-acylcarnitine propionylcarnitine. This

SNP is upstream of PPM1K mitochondrial phosphatase,
which dephosphorylates and thereby activates the BCKD,
clearly highlighting the importance of mitochondrial
function for plasma levels of BCAAs and BCKAs (23). The
centrality of mitochondrial function to BCAA catabolism
and metabolic disease has been noted before (24). BCAA
dysregulation could be a cause and/or consequence of
mitochondrial dysfunction. Increased BCAA catabolism,
resulting in increased BCAA catabolic intermediates, may
impair mitochondrial oxidation of glucose and lipids, po-
tentially resulting in mitochondrial stress and impaired
insulin secretion and action. Reduced mitochondrial
function in T2D and IFG may reduce the capacity of the
mitochondria to break down BCAAs, resulting in elevated
levels of BCAAs and BCKAs.

The current study has several strengths. It used a non-
targeted metabolomic approach that identifies a wide range
of biochemicals besides lipids. TwinsUK has phenotypic
longitudinal data available that allowed us to accurately
classify subjects as case, IFG, and control subjects. The
availability of urine metabolites, genetic data, and twin
design enabled us to explore the biological implication of
3-methyl-2-oxovalerate further. Finally, the robustness of
our results is highlighted by the fact that we confirm
many previous findings, and our main association reported
is clearly replicated in an independent cohort and validated
in urine.

Our study has some limitations. Our discovery sample
consisted of women only, and some metabolites might be
influenced by sex-specific hormones. Unknown metabo-
lites might not really be new but merely not yet identified.
Finally, our Mendelian randomization analysis was unable
to firmly support or reject causality for the association of
3-methyl-2-oxovalerate and IFG. To explore this further,
additional 3-methyl-2-oxovalerate–associated variants need
to be identified and tested, boosting power and reducing the
impact of potential unwanted pleiotropic confounding.

Here we find evidence that multiple metabolites from three
major fuel sources (carbohydrates, lipids, and proteins)

FIG. 2. BCAA catabolism. The three BCAAs are first converted to BCKAs and eventually lead to the production of C3 and C5 acylcarnitines.
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are robust risk factors for the development of both IFG
and T2D. Further work is encouraged by these data, in-
cluding understanding the role of diet and microbiota on
the free fatty acid relationships with T2D.
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