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Cellular protective mechanisms exist to ensure survival of the cells and are a fundamental

feature of all cells that is necessary for adapting to changes in the environment. Indeed,

evolution has ensured that each cell is equipped with multiple overlapping families of

genes that safeguard against pathogens, injury, stress, and dysfunctional metabolic

processes. Two of the better-known enzymatic systems, conserved through all species,

include the heme oxygenases (HO-1/HO-2), and the ectonucleotidases (CD39/73). Each

of these systems generates critical bioactive products that regulate the cellular response

to a stressor. Absence of these molecules results in the cell being extremely predisposed

to collapse and, in most cases, results in the death of the cell. Recent reports have

begun to link these twometabolic pathways, and what were once exclusively stand-alone

are now being found to be intimately interrelated and do so through their innate ability

to generate bioactive products including adenosine, carbon monoxide, and bilirubin.

These simple small molecules elicit profound cellular physiologic responses that impact a

number of innate immune responses, and participate in the regulation of inflammation and

tissue repair. Collectively these enzymes are linked not only because of the mitochondria

being the source of their substrates, but perhapsmore importantly, because of the impact

of their products on specific cellular responses. This review will provide a synopsis of the

current state of the field regarding how these systems are linked and how they are now

being leveraged as therapeutic modalities in the clinic.
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INTRODUCTION

Metabolism requires complex relationships among substrates, the enzymes that catalyze their
transformation and ultimately the products that are generated, to maintain cellular physiological
functions. This is perhaps best illustrated by the intricacies of glycolysis and the Krebs cycle where
glucose is ultimately converted to energy to fuel all cellular activities. Such pathways and cycles
are intimately interrelated with others and in many instances cooperate to promote efficiency
ultimately ensuring survival of the cell and organism. Heme and adenosine can be considered
as cornerstones of the cell as well, fundamental components that sustain cellular homeostasis
and contend with changes in the environment. Essential are the enzymes responsible for their
generation and catabolism, which include the heme oxygenases (HO), and the ectonucleotidases
(CD39/CD73). There is a relative paucity of evidence on the direct communication between HO
and CD39. However, there are several groups that have studied the relationship between the
products generated as a result of heme metabolism by HO, and those from the purinergic signaling
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pathway. Reports by us and others demonstrate that there is
a clear relationship between these two systems and how they
regulate the reaction of the cell to stress. Further, the products
of their activity are potent bioactive molecules that in tandem
regulate specific signaling events in the cell. If the enzymes,
and therefore their products are absent, devastating outcomes
result as the cell becomes highly susceptible to injury, and
succumbs to death. In contrast, exogenous supplementation of
each product results in powerful protection of the cellular and
tissue realm.

THE BIOLOGY OF HEME

Synthesis
Heme, a ubiquitous molecular complex comprised of ferrous
iron (Fe2+), and protoporphyrin IX, is found in all species
in a transkingdom manner. In eukaryotes, it serves multiple
physiological functions in support of cellular metabolism and
survival when complexed as a hemoprotein. In hemoglobin
and myoglobin, heme is critical for appropriate oxygen binding
and delivery to remote site and without the heme contained
within the hemoglobin tetramer, multicellular organisms would
be unable to survive. As a part of mitochondrial cytochrome
complexes, heme is responsible for transporting electrons that
ultimately support aerobic respiration resulting in oxidative
phosphorylation, and the generation of ATP. Heme is present
in nitric oxide synthases, catalases, guanylate cyclases as well as
mitochondrial oxidases and transcription factors such as Bach1
and RevErbα (1).

Synthesis of heme is a highly conserved enzymatic process
that takes place predominantly in erythroid cells of the bone
marrow and hepatocytes. Beginning in the mitochondrial
matrix, glycine and succinyl-CoA derived from the citric
acid cycle are condensed to form delta-aminolevulinic acid
(ALA) by the enzyme 5-aminolevulinic acid synthase (ALAS)
(Figure 1). ALA synthase is a rate-limiting enzyme whose
activity is negatively regulated by the levels of iron and heme
present in the cell. Once ALA is formed, it is transported
into the cytosol where it undergoes additional enzymatic
processing, forming the intermediates porphobilinogen (PBM),
1-hydroxymethylbilane (HMB), uroporphyrinogen III (URO
III), and coproporphyrinogen III (COP III), driven by the
enzymes PBM synthase, PBM deaminase, URO III synthase, and
URO III decarboxylase, respectively. COP III is then transported
back into the mitochondrial matrix, where it is converted
into protoporphyrinogen IX, catalyzed by COP oxidase, and
then into protoporphyrin IX by protoporphyrinogen oxidase
(2). Subsequently, Fe2+, which is acquired from the diet or
recycled from senescent erythrocytes that have been engulfed
by macrophages, a process known as erythrophagocytosis, is
inserted into protoporphyrin IX by the enzyme ferrochelatase
forming the final heme tetrapyrol configuration (Figure 1) (3,
4). Defects in this tightly concerted process of heme synthesis
can result in a series of clinical pathophysiological phenotypes
including anemia, defective erythropoiesis, and porphyrias (5).

Once the heme molecule is synthesized inside the
mitochondrial matrix, it must be transported to other cellular

compartments to support different physiological functions. For
instance, heme needs to reach the mitochondrial intermembrane
space to bind to cytochrome C or the mitochondrial
intermembrane to bind to cytochrome complex III or IV
so that these enzymes can properly perform mitochondrial
respiration (6). In order to be combined with cytosolic proteins
such as globins, nitric oxide synthases, and guanylyl cyclases,
heme is exported into the cytosol from the mitochondrial matrix,
most likely via the transporter feline leukemia virus subgroup
C receptor (FLVCR) 1b (7, 8).

Heme also plays a critical role in gene regulation. In
the nucleus, heme inhibits the activity of the transcription
repressor Bach1 through direct binding (9) or participates in
microRNA processing by binding to the RNA-binding protein
DiGeorge critical region-8 (10). Additionally, heme is delivered
to other organelles within the cell to be incorporated as a
hemoprotein for other purposes. For instance, heme is required
in peroxisomes to form catalase, an antioxidant enzyme that is
actively made and secreted by hepatocytes and erythrocytes (11).
In neutrophils and to a lesser degree in monocytes, heme is
transported to azurophilic granules to form myeloperoxidase, a
peroxidase that is secreted in response to microbial challenges
(12). Besides the newly synthesized heme in the mitochondria,
cells can obtain heme from the extracellular space through
the heme carrier protein-1/proton-coupled folate transporter
(HCP1/PCFT), or FLVCR2 (13, 14). To ensure proper delivery
to target hemoproteins and organelles within the cell, heme is
thought to be chaperoned by various cytosolic heme-binding
proteins (HBPs), such as glutathione S-transferase (15), liver fatty
acid binding protein 1 (16), heme-binding protein 23 (17), and
p22 HBP (18). More investigations are needed to fully elucidate
the exact mechanism by which hememolecules are moved within
the cell and incorporated into hemoproteins.

Elimination and Catabolism
When not bound to hemoproteins, intracellular free heme can
be detected under physiological conditions at concentrations of
100 nM (19). However, when levels exceed this amount as a result
of cellular injury or due to lack of clearance, it becomes dangerous
mainly due to the ability of the otherwise caged iron atom,
facilitating generation of toxic oxygen free radicals via Fenton
chemistry. Here ferrous iron reacts with hydrogen peroxide to
generate the highly toxic hydroxyl radical. Additionally, due
to its lipophilic nature, heme can readily intercalate into cell
membranes, resulting in lipid peroxidation, destabilization of
the cell membrane, and eventually cell rupture, making it a
powerful hemolytic, and cytolytic agent. Heme is also recognized
by the Toll-4 receptor (TLR4) acting as a Damage-Associated
Molecular Pattern (DAMP) to activate leukocytes and trigger
pro-inflammatory cytokine secretion (1, 20). Heme has also been
shown to increase expression of adhesion molecules including
ICAM-1, VCAM-1, E-selection, and P-selectin resulting in
endothelial cell activation that leads to leukocyte mobilization,
and recruitment (21, 22). In addition to the Fenton reaction,
heme can promote formation of reactive oxygen species (ROS)
through enzymatic reactions that involve NADPH oxidase or
through non-enzymatic reactions by converting hydroperoxides
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FIGURE 1 | Heme synthesis and catabolism. Free heme is synthesized through a cascade of enzymatic reactions in the mitochondria and the cytosol.

Once synthesized inside the mitochondria matrix, free heme is exported into the cytosol via the FLVCR1b transporter. Heme is then exported to the extracellular space

via FLVCR1a or ABCG2, or chaperoned by various heme-binding proteins to be incorporated into hemoproteins within the cell. Heme uptake by the cell is mediated

by a number of receptors including FLVCR2, HCP1/PCFT, or through the CD91/LRP receptor in complex with hemopexin. Heme has also been shown to be

recognized by TLR4. Once inside the cells, heme is metabolized by HO-1 into biliverdin, Fe2+, and CO. Biliverdin is converted to bilirubin via biliverdin reductase. The

Fe2+ is secreted through the exporter FRP, sequestered into ferritin, or recycled and utilized for heme synthesis (dotted line). ALAS, 5-aminolevulinic acid synthase;

ALA, delta-aminolevulinic acid; PBM, porphobilinogen; HMB, 1-hydroxymethylbilane; URO III, uroporphyrinogen III; COP III, coproporphyrinogen III; PPROGEN IX,

protoporphyrinogen IX; PPR IX, protoporphyrin IX; FLVCR, feline leukemia virus subgroup C receptor; ABCG2, ATP-binding cassette sub-family G member 2; HBP,

heme binding protein; HCP1/PCFT, heme carrier protein 1/proton-coupled folate transporter; LRP, low-density lipoprotein receptor-related protein; Hpx, hemopexin;

TLR4, toll-like receptor 4; HO-1, heme oxygenase-1; CO, carbon monoxide; BVR, biliverdin reductase; FRP, ferroportin; ER, endoplasmic reticulum.

into toxic free radicals that can cause cell and tissue damage
(23). These cytotoxic properties of free heme point to its role
in the pathogenesis of many immune-mediated inflammatory
diseases such as sickle cell anemia, malaria, hemorrhage, ischemia
reperfusion injury, and infection (24).

To protect cells and tissues from the aforementioned toxicity
of free heme, its levels are tightly regulated systemically. To
prevent the free heme from accumulating within the cell, it can be
exported via FLVCR or ABCG2 (ATP-binding cassette subfamily
G member 2) (25, 26). A surplus amount of extracellular
free heme is principally eliminated from the serum through
the heme-binding protein hemopexin, which recognizes and
internalizes free heme by the CD91/LRP1 scavenger receptor,
but also through its ability to bind to haptoglobin, and
albumin (27, 28). The internalization of the heme-hemopexin
complex and the subsequent recycling of heme is performed
by hepatocytes and macrophages of the liver and the spleen
(27, 29). Liver is thought to be the primary site that clears the
heme-hemopexin complex but other tissues such as the human

placenta and the brain are also reported to clear it (30, 31).
The high expression of CD91/LRP1 in the placenta during
pregnancy and the activity of the heme-hemopexin clearance
system in the brain after subarachnoid hemorrhage suggest that
various forms of stress, where there are changes in vascular
permeability, organs other than the liver may see the heme-
hemopexin complex entering tissue parenchyma. Therein, it can
be internalized and processed by resident macrophages and other
cell types (32, 33). After internalization, intracellular free heme
is principally metabolized by HO and every cell contains one
or both isoforms of heme oxygenase. HO-1 is the inducible
form regulated in large part by the transcription factors Nrf2
and Bach1 while HO-2 is constitutive and primarily found
in the brain, testes and endothelium where it contributes to
vasomotor tone and oxygen sensing (34–36). Within the cell,
heme can be rapidly degraded into iron, biliverdin, and carbon
monoxide (CO). Iron is sequentially sequestered into ferritin and
biliverdin is further converted to bilirubin by biliverdin reductase
(Figure 1) (37).
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HEME OXYGENASE-1 AND
CELLULAR PROTECTION

In addition to its primary role in hememetabolism, HO-1 is well-
known as a “master” stress-response gene due to its central role
in the host’s response to changes in the environment, where it
serves to preserve homeostatic maintenance of cells and tissues
under pathophysiological conditions. In addition to heme, other
stimuli induce HO-1, such as pathogens (38), tissue damage
(37, 39), hypoxia (40), hyperoxia (41), inflammatory cytokines
(42), ultraviolet light (43), and oxidants (44). The effects of
HO-1 have been cemented as being cytoprotective, especially
under inflammatory conditions. There are well-documented
studies showing that the induction of HO-1 leads to remarkably
better survival in numerous in vivo models of tissue injury and
infection, while the lack of HO-1 is highly detrimental (45–48).
HO-1 deficient individuals exhibit heightened susceptibility to
stress and increased inflammatory indices such as leukocytosis
and thrombocytosis with a significantly shortened life span
(49–51). HO-1 deficient mice mimic the human phenotype
with increased sensitivity to a plethora of stressors (52).
Increasing data have clearly solidified that the mechanism of
HO-1 cytoprotection is mediated through the generation of
one or more of its products, including the bile pigments,
biliverdin/bilirubin, and CO, and likely through the removal
of prooxidant iron. Each of these bioactive products has been
well-studied and functions through various signaling pathways
depending on the cell type and model system being studied.

Protective Products
The bile pigments are powerful antioxidants as well as
signaling molecules that regulate inflammation, cell survival
and innate immune responses. Exogenous administration of
the green pigment biliverdin is protective against diverse
pathophysiological conditions in vivo including endotoxin-
induced lung injury (53), colitis (54), cecal ligation and
puncture-induced sepsis (55), corneal epithelial injury (56, 57),
hepatic ischemia-reperfusion injury (IRI) (58), and intestinal
transplantation (59). In these models, biliverdin improved
survival and ameliorated disease progression and complications
by attenuating pro-inflammatory cascades, such as leukocyte
infiltration, secretion of pro-inflammatory cytokines IL-6, IL-
1β, and TNF, and reducing the oxidative burden, while
simultaneously enhancing anti-inflammatory responses such as
secretion of IL-10 and promoting tissue repair. Biliverdin has also
been shown to confer protection by mediating T-cell responses
(60). In a model of cardiac transplantation in rats, exogenous
biliverdin promoted tolerance to cardiac allografts by halting
T cell proliferation, inhibiting activation of nuclear factor of
activated T-cells (NFAT), and the secretion of interferon-gamma
(IFN-γ) by T helper type 1 (Th1) cells (60). Additionally,
biliverdin can interfere with the complement system, specifically
at the C1 step in the classical pathway, and its anti-complement
role in the prevention of anaphylaxis has been demonstrated (61).
Biliverdin also possesses antiviral property (62, 63), inhibiting
hepatitis C viral replication and the activity of non-structural
3/4A protease (63). Administration of biliverdin ameliorated

vascular injury and the formation of intimal hyperplasia by
reducing endothelial cell apoptosis, and vascular smooth muscle
cell migration (64). While these benefits can be attributed to
biliverdin’s antioxidant properties, they are actually supported
by data sets that show that biliverdin reductase is an important
contributor to cell function and survival. In macrophages,
binding of biliverdin to biliverdin reductase activates PI3K-
Akt signaling cascade that leads to the secretion of the anti-
inflammatory cytokine, IL-10 (65). In the animal model of
acute liver injury, binding to biliverdin reductase is required
for biliverdin to block TLR4 expression and in part regulate
macrophage chemotaxis to C5a (66, 67).

The salutary effects of biliverdin and biliverdin reductase
may also be mediated in part by the generation of bilirubin.
While an extremely high level of bilirubin is neurotoxic, a
moderately increased level of serum bilirubin has been shown
in numerous reports to be associated with reduced risk for
cardiovascular disease and diabetes (68–74). This potential
protective role of bilirubin can in part be explained by its
potent anti-oxidant properties (75). Bilirubin can efficiently
trap hydroperoxyl radicals and protect lipids from peroxidation
(76). Bilirubin is anti-inflammatory and immunosuppressive
and can inhibit adhesion of neutrophils to endothelium by
blocking TNF-induced upregulation of E-selectin, VCAM-1,
and ICAM-1 through inhibiting nuclear translocation of NF-
κB (77, 78). In an animal model of endotoxin challenge,
bilirubin blocks lipopolysaccharide (LPS)-induced tissue damage
by blocking the expression of inducible nitric oxide synthase
(iNOS), and thus the production of nitric oxide (79). Like
biliverdin, bilirubin also modulates T cell responses to exert
immunosuppressive effects. In an experimental model of islet
transplantation, exogenous bilirubin stimulated expansion of
Foxp3+ regulatory T cells (Tregs) at the site of the islet allografts,
improving the function of the transplanted allograft (80, 81).
In contrast, bilirubin induces apoptosis of reactive CD4+ T
cells, downregulatingMHCII and T-cell receptor (TCR) signaling
pathways (82). In T helper type 17 (Th17) cells, ligation of the
aryl hydrocarbon receptor to bilirubin results in abrogation of
inflammatory bowel disease (83). The salutary effects of bilirubin
are corroborated in additional preclinical animal models, such
as vascular injury (84), hyperoxia (85), organ transplantation
(81, 86, 87), and autoimmune encephalomyelitis (82), making
bilirubin a potential therapeutic target in diseases characterized
by oxidative stress and hyper-immune responses.

CO is a potent gasotransmitter with multiple functionalities
including regulation of cell survival and proliferation, and
innate immunity. As noted above, CO binds principally
to hemoproteins such as guanylate cyclase, nitric oxide
synthase, and the mitochondrial oxidases where it modulates
their activity either positively or negatively. In preclinical
models, exogenous CO provides potent salutary effects against
organ transplantation, ischemia reperfusion injury, shock
(endotoxin/infection/hemorrhagic), sepsis, vascular injury,
malaria, and acute lung or liver injury (46, 88, 89). Of the
three products generated during heme metabolism, CO has
been the most extensively studied in animal models and it
is the only one whose protective effect has been evaluated
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as a potential therapeutic agent in clinical trials to treat lung
fibrosis (NCT01214187), sickle cell disease (NCT02411708,
NCT02672540), and to reduce rejection of a transplanted organ
(NCT00531856, NCT02490202). Currently, there are ongoing
clinical trials that are testing the safety and the efficacy of CO
to treat acute respiratory distress syndrome (NCT03799874,
NCT02425579). In addition, the safety of an orally available
formulation of CO is being tested (NCT03926819).

CO can exert protective effects by being pro- or anti-apoptotic,
pro- or anti- proliferative, and pro- or anti-inflammatory
depending on the target cells and the host’s pathophysiological
status. In T cells, CO exposure leads to Fas/CD95-induced
apoptosis by activating caspase-8,-9, and−3 and upregulating
the pro-apoptotic protein FADD while down-regulating the
anti-apoptotic protein Bcl-2 (90). In contrast, CO protects
endothelial cells from apoptosis by activating the p38 mitogen-
activated protein kinase (MAPK) signaling pathway (91). In the
presence of pathogens, CO can exert pro-inflammatory effects
on macrophages by boosting their capacity to phagocytose by
upregulating TLR4 (92), and the NLRP3 inflammasome (38). On
the other hand, when administered prior to an inflammatory
insult, CO imparts anti-inflammatory effects on macrophages by
inhibiting TNF and IL-1β secretion and promoting production
of the anti-inflammatory cytokine IL-10 via the activation of
MAPK signaling (93). CO is both pro- and anti-proliferative
in the vascular compartment. In models of vascular stenosis,
CO prevents smooth muscle cell growth, and in scenarios
where there has been endothelial cell denudation such as after
balloon angioplasty, CO promotes endothelial cell proliferation
(94, 95). Pulmonary hypertension results in part via dysregulated
proliferation of the pulmonary artery smooth muscle cells. CO
treatment, when initiated at the peak of stenosis and right heart
hypertrophy, elicits a pro-apoptotic response to eliminate the
smooth muscle cell mass, in part by increasing the generation of
endothelium-derived nitric oxide production (96).

Iron, another byproduct of HO-1, plays a critical role
in fundamental physiological functions. As mentioned above,
iron is a central component of the heme structure, and
therefore is required for the wide range of biological activities
that hemoproteins perform including mitochondrial function,
respiration, oxygen delivery, and storage. Iron is also needed
as a cofactor in iron-sulfur cluster proteins, such as DNA
polymerases, DNA helicases, and DNA primases, in order to
carry out DNA replication and repair (97). Moreover, iron is
utilized by oxo di-iron (Fe-O-Fe)-containing enzymes, such as
ribonucleotide reductase, to support DNA synthesis (98). Iron is
acquired through the diet absorbed by intestinal cells, but the
majority is recycled from senescent red blood cells by splenic
macrophages as heme is degraded (98).

An imbalance in the level of iron available for cells can be
detrimental to the host. Insufficient amount of iron prevents the
cell from performing basic functions that support life, especially
erythropoiesis and can result in anemia. Likewise, iron overload
is damaging to cells due to its ability to rapidly initiate the Fenton
reaction with hydrogen peroxide, generating toxic ROS. Due
to this reactive nature, iron in excess is implicated in chronic
inflammation, cardiovascular, and neurodegenerative diseases

(99). To maintain iron homeostasis, cells are continuously fine-
tuning the intracellular levels either by exporting free iron
through the exporter ferroportin or sequestering it into a redox-
inactive form that occurs in the cytosol by ferritin (100).

As heme is metabolized by HO-1, free iron is released,
increasing the expression of ferroportin and ferritin, showing a
close link between the iron-clearance system, and the activity of
HO-1 (101, 102). Although the ferrous iron itself is a harmful
byproduct of heme metabolism, it is the subsequent expression
of ferroportin, and ferritin that contributes to the protective effect
of HO-1. In fact, it has been shown that the cytoprotective effect
of HO-1 is dependent on the expression of ferritin. For example,
in a model of cisplatin-induced nephrotoxicity, the loss of ferritin
led to aggravation of acute kidney injury, despite high expression
of HO-1 that is otherwise renoprotective (103, 104). Further,
the role of ferritin in mediating the protective effect of HO-1
against oxidative stress is corroborated in lupus nephritis (105).
Collectively, these reports demonstrate that the protective effects
of HO-1 requires ferritin to chelate the iron.

Heme turnover is a key component of cell survival both as
an active component of numerous proteins, but also as it is
metabolically deconstructed by HO-1 into powerful products
with effective signaling mechanisms that regulate important
cellular functions.

THE BIOLOGY OF
ADENOSINE TRIPHOSPHATE

Adenosine 5′-triphosphate (ATP) is indispensable for continued
cellular metabolism and survival of the organism. As the
universal “energy currency,” ATP is required to sustain the
majority, if not all of physiological processes ongoing in living
organisms. As this topic is the theme of many of the reviews
in this series, we touch upon the biochemistry and biology
minimally here, and refer the reader to these other reports
for more detail. Basic physiological processes such as muscle
contraction, synthesis of macromolecules, active transport, and
thermogenesis require energy from ATP. As with heme, ATP is
generated primarily in the mitochondria where its generation
relies strictly on cytochrome c oxidase, a transmembrane
hemoprotein complex that serves as the terminal enzyme in the
respiratory electron transport chain and is regarded as one of the
major sites for oxidative phosphorylation.

Despite its pivotal role in cellular metabolism, free ATP
in excess can be toxic to the host and lead to cell death
resulting from protracted stimulation of P2X7 receptors (106).
Intracellular ATP can be released into the extracellular space
under a variety of stress conditions such as autophagy,
inflammation, hypoxia or apoptosis. Similar to heme, ATP
is considered as a DAMP where it can act to signal to
adjacent or remote cells via specific sets of receptors. ATP is
a strong chemoattractant for phagocytes such as neutrophils
and monocytes in a P2Y2-receptor-dependent manner (107,
108). In dendritic cells (DCs), ATP can increase their mobility
through activation of P2X7 receptors as well as pannexin 1
channels and in the setting of allergen-driven lung inflammation,
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ATP has been shown to intensify T helper type 2 (Th2)
cell responses by activating and recruiting DCs (109, 110).
In the intestine, extracellular ATP can induce the release of
pro-inflammatory cytokines and chemokines from mast cells
through a P2X7-dependent manner, exacerbating intestinal
inflammation (111). Additionally, in kidney injury, the loss of
P2X7 remarkably improved the disease progression of unilateral
ureteral obstruction, as evidenced by a significant decrease in
inflammation, apoptosis in epithelial cells, and renal fibrosis
(112). These studies collectively show the detrimental effect of
the overstimulation of the purinergic receptor P2X7, with ATP
as the potent ligand. On the contrary, an excess amount of ATP
can confer immunosuppression by inhibiting proliferation and
inducing cell death in activated CD4+ T cells and enhancing
proliferation of Tregs (113). This contrasting response of
different subsets of T cells to high levels of ATP is most likely
adapted in order to dampen and resolve the hyper-inflammatory
conditions where cellular, and tissue necrosis leads to ATP
secretion. Immune cells are not the only cell type that is affected
by ATP. It has been shown that ATP promotes vasodilation by
activating the purinergic P2Y2 receptors on endothelial cells to
promote their release of prostacyclin and nitric oxide (114–116).
In the central and peripheral nervous system, ATP functions as a
neurotransmitter (117–119) and in part regulates sleep regulation
and memory formation (120, 121).

One example of a unique functional role for extracellular ATP
is host-pathogen recognition. We have shown that extracellular
ATP, by binding to P2X7 purinergic receptors on macrophages
induces an inflammatory by activating the NLRP3 inflammasome
that leads to subsequent caspase-1-dependent processing and
secretion of pro-inflammatory cytokine IL-1β and IL-18. Indeed,
macrophage-derived HO-1/CO compels bacteria to generate
large amounts of ATP that is then recognized by the host
as a danger signal and leads to enhanced activation of the
NLRP3-Caspase-1 pathway and effective bacterial recognition
and killing (122). This fundamental biological process by which
host cells recognize pathogens, which is likely ancient in design,
authenticates the intricate relationship between heme, ATP and
host cell physiology.

REGULATION OF ATP LEVELS: ROLE OF
CD39/CD73

Under physiological conditions, ATP is continuously secreted
into the extracellular space through active channel transport,
or packaged in vesicles (106). However, under perturbed
states, in order to prevent the cytotoxic and excessive pro-
inflammatory effects of ATP, its extracellular level is controlled
by the purinergic system involving two ectonucleotidases. 5′Ecto-
nucleoside triphosphate diphosphohydrolase (CD39) converts
ATP and ADP less efficiently to AMP. Ecto-5′nucleotidase
(CD73) further degrades AMP into adenosine (Figure 2).
CD39 is constitutively expressed in spleen, placenta, thymus,
lung, and various cell types such as endothelial cells, NK
cells, monocytes, lymphocytes, and Tregs. CD73 is principally
expressed in colon, brain, kidney, lung and heart as well

as on endothelial cells and Tregs (123). ADP, AMP, and
adenosine are all bioactive molecules that participate in diverse
cellular functions. Adenosine, generated by dephosphorylation
of the adenine nucleotides in response to stress regulates
numerous functions in the cell, but is perhaps been described
as an inhibitor of inflammatory responses of neutrophils and
monocytes/macrophages (124).

CD39/CD73 IN INFLAMMATION AND
IMMUNITY

Upregulation of CD39 and CD73 is observed in response to
various instances of tissue damage and inflammation and server
to degrade ATP to prevent the toxic and pro-inflammatory
effects of ATP and promote the formation of adenosine, a
potent anti-inflammatory molecule. Adenosine induces a series
of anti-inflammatory responses through various immune cells
by interacting with one or more G-protein coupled surface
adenosine receptors, A1, A2A, A2B, and A3. For example,
adenosine reduces leukocyte recruitment and adhesion to the
endothelium, as well as phagocytosis and ROS production by
neutrophils (124). Adenosine also inhibits M1 macrophage-
mediated pro-inflammatory responses, such as TNF and IL-6
secretion, predominantly through the A2A receptor. Moreover,
adenosine is a potent vasodilator at the site of injury, which
is thought to contribute, in part to reduced swelling (125).
Given the opposing effects of ATP and adenosine that exist
during an inflammatory response, the CD39/CD73 axis plays a
central role in mediating pro- and anti-inflammatory responses
that are tightly regulated to ensure cellular defense and
effective resolution.

RELATIONSHIP BETWEEN HEME AND ATP

Heme degradation and ATP metabolism mediated by HO-1, and
CD39/CD73, respectively, are essential physiological processes
required for cellular function and survival. As detailed above,
each enzymatic system generates products that impact cellular
function. Accumulating evidence in these two fields has unveiled
their substantial role in regulating immune responses to tissue
damage and inflammation. However, until recently no studies
have shown an interaction between HO-1, CD39/CD73, and
their products. What is emerging is a clear crosstalk between the
mediators of HO-1 metabolism and purinergic signaling.

Recent works by Haschemi et al. and Weigel et al. are
beginning to demonstrate an intricate physiologic link between
heme and purinergic signaling in inflammation (38, 126).
Haschemi et al. showed a positive feedback loop among HO-
1, CO, and adenosine receptors by which they collectively
impart immunomodulatory effects. Adenosine increases HO-1
in macrophages, which via CO, induces A2A receptor expression,
and leads to inhibition of LPS-induced TNF production. Absent
the A2A receptors, such immunomodulatory effects of HO-1, and
CO were abolished. This finding is in line with the findings from
the murine model of acute pulmonary inflammation where the
effects of HO-1 are mediated through the adenosine receptors

Frontiers in Immunology | www.frontiersin.org 6 July 2019 | Volume 10 | Article 1765

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Lee et al. Interrelationship Between HO-1 and CD39

FIGURE 2 | Crosstalk between heme and purine metabolism. Under conditions of stress, ATP levels rise and ATP is subsequently degraded into ADP and AMP by

CD39 and then into adenosine by CD73. Adenosine binding to A2AR leads to upregulation of HO-1, which increases the production of CO. CO in turn can further

amplify A2AR expression, leading to an enhanced anti-inflammatory response in macrophages. Exogenous administration of CO induces the expression of CD39 and

Per2, conferring cytoprotection against kidney ischemia/reperfusion injury. In Th17 cells, bilirubin binds to the AHR, which together upregulates CD39, providing

immunosuppressive, protective effects in experimental colitis. ATP, adenosine triphosphate; ADP, adenosine diphosphate; AMP, adenosine monophosphate; A2AR,

adenosine A2A receptor; AHR, aryl hydrocarbon receptor; HO-1, heme oxygenase-1; CO, carbon monoxide.

A2A, and A2B. Without these receptors, HO-1 induction failed to
reduce the LPS-induced production of chemokines, neutrophil
infiltration into the airway, and changes in the pulmonary
vascular permeability (127).

When initiated after a live bacterial infection, treatment with
CO enhances pro-inflammatory responses in macrophages and
more effective bacterial killing. In the presence of CO, either
endogenously generated, or administered exogenously compel
bacteria to generate more ATP. The ATP production in turn
binds to purinergic P2X7 receptors on macrophages, resulting
in activation of the NALP3 inflammasome. In this paradigm
the bacterial-derived ATP caused by the presence of CO is
not broken down into adenosine by CD39/73, at least not
initially, but is used to enhance macrophages’ pro-inflammatory
capabilities. Activation of the NALP3/Caspase1 leads to increase
processing of pro-IL-1β into active IL-1β that is secreted, and
contributes to the bacterial killing. Whether the bactericidal
effects are directly due to IL-1β or indirectly through an auto-
activation mechanism remains unclear. The model that was
elucidated involved a 2-hit system akin to that described in T
cell activation. Such a system prevents unnecessary activation
of leukocytes. Endotoxin increases HO-1 expression and the
generation of CO and is considered as the first signal. If a live
bacterium is present, CO will drive the increase in ATP vis-à-
vis its respiratory complexes, that then acts on the macrophage
P2X7 receptor which is signal two. Such a system is energy
efficient. Were only one signal required, host macrophages

would likely exist in a constant unfettered over-stimulated state,
particularly in the peritoneum where intestinal endotoxin levels
fluctuate with intestinal microbes in close proximity. In such
instances, mounting a full inflammatory response would be
metabolically costly, inefficient, and potentially detrimental to
the organism. A similar process may occur in neutrophils and
involves increased phagocytosis.

These two reports not only illustrate the elaborate connection
between these two seemingly independent pathways but also
depict how they can exert different immune responses that are
most favorable to host survival in a context-dependentmanner by
interacting with different components of the signaling pathway.

Products of HO-1 metabolism, specifically bilirubin, as well
as CD39/73 have been implicated as potential therapeutic
targets for inflammatory bowel disease (IBD). In the human
gastrointestinal tract, CD39 is expressed on various immune
cell types and endothelial cells and CD73 is predominantly
expressed on the apical surface of intestinal epithelial cells
(128). HO-1 is expressed in intestinal epithelial cells, endothelial
cells and mononuclear cells (129). In various preclinical models
of IBD, lack of either CD39/73, or HO-1 increases disease
severity (130–133). This effect is in part explained by the
accumulation of ATP due to lack of CD39/73. The loss of
protection observed with HO-1 deficiency is in part due to the
lack of product availability including biliverdin/bilirubin, and
CO. Exogenous administration of CO, biliverdin, or bilirubin was
protective against IBD. In the murine model of dextran sodium
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sulfate (DSS)-induced colitis, bilirubin prevented migration
of leukocytes and eosinophils to the intestine via VCAM-
1-mediated signaling (134). Longhi et al. reported that the
mechanism of bilirubin’s salutary action in IBD involves CD39
on Th17 cells (83). In IBD patients, the reduced ratio of Tregs
to Th17 cells and thus higher pro-inflammatory activities of
Th17 cells are thought to be important in the induction and
persistence of the disease (135, 136). Themechanism of bilirubin-
induced protection is in part related to upregulation of CD39
with an increase in the frequency of CD39+ Th17 cells in
the experimental colitis model. Further, this upregulation of
CD39 is mediated by the aryl hydrocarbon receptor (AHR)
because bilirubin, as a natural ligand for AHR, activates AHR
to upregulate CD39 expression in Th17 cells. Importantly,
Th17 cells isolated from IBD patients were unresponsive to the
immunomodulatory effects of bilirubin due in part to defective
AHR expression. This report features how a product of heme
metabolism regulates the expression of CD39 expression to
influence the pathogenesis of IBD. The examples described above
begin to elucidate and support the relationship between these two
cytoprotective gene systems (Figure 2).

The protective role of HO-1 and the purinergic signaling
pathway in renal IRI has been well-documented. Exogenous CO
at low concentrations administered by inhalation, or delivery
using a CO-releasing molecule or as a CO-saturated solution has
become an exciting therapeutic intervention to prevent renal IRI
(137). The mechanism of protection afforded by CO involves its
ability to inhibit apoptosis of endothelial cells and the infiltration
of immune cells through the downregulation of adhesion
molecules and enhanced presence of tolerogenic Foxp3+ Tregs.
Recently, Correa-Costa et al. demonstrated that CO protects
the kidney from IRI by modulating purinergic signaling (137).
Specifically, CO conferred protection by increasing serum levels
of erythropoietin and the expression of the circadian rhythm
protein Per2 via upregulation of CD39 and the A2B receptor
in the kidneys. In CD39 knockout mice, the protective effect
of CO was lost. In addition, the pharmacologic blockade of
A2 receptors reversed CO-induced renal protection. These are
the first data sets that show that purinergic mediators are
required for CO to confer protection against renal IRI, again

highlighting the tight link between heme metabolism and

purinergic signaling (Figure 2).
Over the last decade, our laboratory and others have begun

to elucidate the interrelationship between heme and purinergic
metabolism in preclinical models in inflammatory states in
all tissues and central to appropriate responses to pathologic
states such as sepsis, acute lung injury, IBD, and IRI. Our
increased understanding in this field will identify and foster new
therapeutic target and even devise new therapeutic interventions.
Indeed, CO is in multiple clinical trials as is modulation of
purinergic signaling. In summary, we have described in this
review a summary of two elementary, but essential metabolic
enzyme systems that act in large part through the generation
of their products to regulate cellular responses to stress. We
would argue that they are homeo “dynamic” in that they serve
in a manner that is optimal for survival and not necessarily
to restore the cell to an arbitrary basal homeo “static” state.
Indeed, unless the environment becomes static, the organism
is constantly in flux and adapting as necessary. As such, genes
such as the heme oxygenases and the ectonucleotidases subserve
this underlying need to adjust to befit the need of the tissue.
Furthering our understanding of how they interact will not
only provide novel discoveries toward understanding disease
pathogenesis, but more importantly contribute to the design
of potential therapies to protect the corporeal realm against
inflammatory disease.
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