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Abstract—Novel types of the vaccines with high immunogenicity and low risks, including epitope-based vac-
cines, are sought. Among zoonotic disease, Q fever caused by Coxiella burnetii is an important target due to
numerous outbreaks and the pandemic potential. Here we present a synthetic multi-epitope vaccine against
Coxiella burnetii. This vaccine was developed using immunoinformatics approach. Antigenic proteins were
studied, and five T cell epitopes were selected. Antigenicity, allergenicity, and toxicity of the selected epitopes
were evaluated using the VaxiJen 2.0, AllerTOP, and ToxinPred servers, respectively. Selected epitopes were
joined in a peptide sequence, with the cholera toxin B subunit (CTXB) as an adjuvant. The affinity of the pro-
posed vaccine to MHC I and II molecules was measured in a molecular docking study. Resultant vaccine has
high antigenicity, stability, and a half-life compatible with utilization in vaccination programs. In conclusion,
the validated epitope sequences may be used as a potential vaccine to ensure protection against Q fever agent.
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INTRODUCTION
Q fever is a globally prevalent zoonotic disease. It is

caused by Coxiella burnetii, which is a gram-negative,
obligate intracellular bacterium identified by Harold
Cox and MacFarlane Burnet in 1935 [1, 2]. This bac-
terium belongs to the Coxiellaceae family capable of
an intracellular intravacuolar persistence in both
invertebrate and vertebrate hosts. C. burnetii tolerates
a variety of environments, including acidic conditions
of up to the pH of about 4.5, high temperatures of up
to 62°C for 30 min, UV irradiation, and pressure up to
300 000 kPa [3, 4]. Domestic animals such as cattle,
sheep, and goats are the main reservoirs of C. burnetii.
This infection may transmit to humans through
infected insects such as ticks and mosquitoes, or the
direct contact with infected animals, or the consump-
tion of meat and other food products from infected
animals [3, 5]. Symptoms of Q fever in humans are ini-
tially similar to influenza, but may later lead to sec-
ondary chronic conditions such as hepatitis, acute
endocarditis, vasculitis, lymphadenitis, etc. [6]. So far,
this bacterial zoonosis has caused three major out-
breaks: In 1955, the first cases of Q fever were reported
in nine African countries. Between 2007 and 2010, the
Netherlands faced with the large wave of Q fever infec-
tions. The largest zoonotic outbreak of Q fever took
place in Cayenne, the capital of French Guiana [6, 7].

As mentioned earlier, Q fever may transmit to
humans or other animals by direct contact or through
infected dairy products. However, horizontal
(human-to-human) transmission of this disease has
not been reported [1]. Since major outbreaks of the
infection have been reported, it is important to
decrease the rate of the infection and develop vaccine-
based prevention. So far, only one vaccine against Q
fever, Q-VAX, was available as a whole-cell formalin-
inactivated preparation of phase 1 Heinzerling strain
of C. burnetii [8].

Recent advances in genomic sequencing have
improved our understanding of microorganisms [9, 10],
and led to creating the organism-specific protein and
nucleotide sequence databases and the servers for epitope
prediction [11, 12]. The prediction of B cell epitopes and
the T cell epitopes was done separately [13, 14]. In pres-
ent reverse vaccinology study, several databases and serv-
ers were used to design immunogenic peptides/proteins
as vaccine candidates against C. burnetii.

EXPERIMENTAL
Epitopes data collection. In this section, suggested

epitopes were investigated in the IEDB database
(https://www.iedb.org/) and some surface epitopes
were chosen. Notice that filters were adjusted based on
the human vaccine for Coxiella burnetii (strain RSA 493)
with all linear and structural epitopes. The result of1 The text was submitted by the author(s) in English.
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Fig. 1. The designed peptide includes sequences of adjuvant and linkers. Adjuvant sequence is colored in blue, epitopes are in
black, KK-linkers that connect the epitopes are in green, and PAPAP-linkers that are attached to adjuvant sequence are in red.

P

this search was about 62 epitopes and surface protein
epitopes that were selected from the suggested epi-
topes. In addition, the primary amino acid sequence
of Vibrio cholerae toxin (B subunit) was obtained from
NCBI (https://www.ncbi.nlm.nih.gov/protein/) with the
accession number of AAV67882.1. Also, the three-dimen-
sion structure of MHC I and MHC II were retrieved from
Protein Data Bank (https://www.rcsb.org/) in PDB for-
mat with PDB entry of 4UQ3 and 1DLH, respectively.

Multiple sequence alignment and antigen selection.
The complete sequence of the target surface protein
was retrieved from the UniPort database
(https://www.uniprot.org/) in FASTA format [15]. In
the next step, the sequences were blasted with human
proteins using NCBI BLAST (https://blast.ncbi.
nlm.nih.gov/Blast.cgi) and the results confirmed that
there were no similarities between them.

Antigenicity of predicted epitopes. Antigenicity of
both B cell and T cell epitopes was predicted using the
VaxiJen 2.0 server with a prediction accuracy of 70 to 89%
(http://www.ddg-pharmfac.net/vaxijen/VaxiJen/) [16].

Allergenicity and toxicity prediction. The allerge-
nicity and toxicity properties of the epitopes are crucial in
peptide-based vaccines because some suggested epitopes
are allergen or toxic and this may cause cross-reactions
by the immune system. The related peptide was checked
for the allergenicity properties using the AllerTOP server
(https://www.ddgpharmfac.net/AllerTOP/) [17]. Also,
the toxicity of epitopes was analyzed using (https://
webs.iiitd.edu.in/raghava/toxinpred/algo.php) database.

Peptide designing for the chimeric protein. In this
part, candidate epitopes were arranged in a peptide
sequence and were attached together via KK rigid
linker as shown in Fig 1. In the next step, adjuvant
sequences (AAV67882.1) of toxin B subunit related to
Vibrio cholerae were added to the first and the end of
the sequence to improve the immunization of the
suggested peptide. Also, PAPAP linkers were used to
connect the adjuvant sequences to the sequence of
the epitope.

Physicochemical properties and stability of related
protein. To study the protein chemical and physical
properties such as molecular weight, net charge, and
half-life, the protein sequence was considered in the
MOLECULAR BIOLOGY  Vol. 55  No. 6  2021
PepCalc (https://pepcalc.com) [18] and ProtParam
(https://web.expasy.org/cgi-bin/protparam/protparam)
databases. The protein stability was considered and sim-
ulated using the IUpred 2.0 (https://iupred2a.elte.hu/)
[19], IsUnstruct (v2.02) (http://bioinfo.protres.ru/
IsUnstruct/) [20] and FoldUnfold server (http://bio-
info.protres.ru/ogu/) [21].

Secondary to tertiary structure prediction. The sec-
ondary structure of the designed peptide was predicted
by the PRABI database using the GorIV method
(https://npsa-prabi.ibcp.fr/cgibin/npsa_automat.pl?
page=/NPSA/npsa_gor4.html). Also, the three-
dimensional structure of the protein was predicted
using the ITASSER database (https://zhanglab.
ccmb.med.umich.edu/I-TASSER/) [22]. This server
predicted the three-dimensional structure of the pro-
tein using de novo modeling. I-TASSER is a ranked
approach to protein structure and function prediction
based on the similarity level of the input and template
structures available in PDB.

Model refinement and quality assessment. Refine-
ment of the predicted model was done using the 3Dre-
fine server (http://sysbio.rnet.missouri.edu/3Drefine/)
to decrease the possible structural mistakes in the pre-
dicted tertiary structure of the related protein vaccine.
Also, the geometry quality of the vaccine was validated
based on the Ramachandran plot using the RAPAGE
server (https://servicesn.mbi.ucla.edu/SAVES/) and
Z-score of the ProSA server (https://prosa.services.
came.sbg.ac.at/prosa.php ) [23].

Molecular docking study. The molecular docking
process was performed to validate the binding affinity
of the designed protein sequence to MHC I (with
HLA-A0201) with the entry of 4UQ3 and MHC II
(with HLA-DR) with PDB entry of 1DLH. Molecular
docking was carried out using the ClusPro online
server (https://cluspro.bu.edu/login.php?redir=/
queue.php) with default complex type [24‒26]. In the
next step, the docking process was repeated using
HEX 6.0 software. The selected parameters for the
docking study were FFT Mode—3D fast life, Distance
Range—40, Twist range—360, Correlation type—
Shape only, Grid Dimension—0.6, Receptor range—
180, and Ligand Range—180.
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Table 1. The selected epitopes in this study

Uniprot (Gene names) Protein Epitopes

H7C7D7 (CBU_1910) Com1

DIQSIVHHYLVNHPEVL
GNVTLVEFFDY
KYYAFHDALLS
SEQITLQTAEKVGLNVA
TPTFVIGNKALTKFGF

Q83DK8 (CBU_0718) Hypothetical membrane associated protein DDVAKLRGDLSSIIHKLTSFSKTEASM

Q83AL4 (CBU_1869) Hypothetical exported protein
PITKKQLKTMSNYEVIAK
IKLPRNRYRLVFTQQ
GKHFDGIKVLKLSPQNTI

Q83F71 (CBU_0077) Hypothetical membrane spanning protein EVLTLLLNWVNYHE

Q83EL2 (CBU_0307) Outer membrane protein GVAYTYNRANAGLPTNK
VPGYRNASSKRFVAP

Q83DT1 (OmpH) OmpH QELFVAQNKAMSDFM

Q83CG1 CBU_1157 Hypothetical exported protein ISLLVFKNSHRVQLWAK
RFDLSLMLNYPNSADRY
Peptide reverses translation and ORF checking.
Finally, the peptide sequence was reverse translated
from amino acid sequence to nucleotide sequence
using (https://www.bioinformatics.org/sms2/rev_
trans.html) database. The open reading frame (ORF)
of the related sequence with the default of Escherichia
coli was investigated in the ORFfinder database
(https://www.ncbi.nlm.nih.gov/orffinder).

RESULTS

Epitope Selection and Sequence Alignment

Table 1 shows the epitopes selected from the IEDB
server. The peptide (epitopes) sequence for C. burnetii
vaccine was designed, selected, and used with a pro-
tein BLAST. Also, to confirm that there is no similar-
ity between the peptide and human protein sequences,
complete sequences from candidate epitopes contain-
ing surface proteins were matched to human proteins.
The results of protein BLAST are shown in Table 2.

Prediction and Selection of T cell Epitopes

Intracellular nature of infection with C. burnetii
prompted us to limiting our candidate peptides to T cell
epitopes only. To predict T cell epitopes, a three-step
screening of antigenicity (Threshold: 0.4), allergenic-
ity of the epitopes was implemented (Table 3). All epi-
topes were predicted to be non-toxic.
Vaccine Engineering and Physicochemical Properties

According to immunoinformatics analysis, five T cell
epitopes were selected. The designed vaccine candi-
date included 344 amino acids, which were divided
into the segments as follows: CTxB as an adjuvant, T cell
epitopes, and appropriate linkers. Physical and chem-
ical properties of the final construct were predicted
using the PepCalc server. The results confirmed that
the vaccine protein with a molecular mass of about
38261.89 Da is a stable soluble protein with a pI of 9.92
and estimated net charge at about 14.7 (Fig. 2a).

The Protein Stability

The stability of the related protein was considered
using the IUpred 2.0, IsUnstruct (v2:02) and FoldUnfold
server (Scale: Expected number of contacts 8 Å,
Threshold: 20.4, Averaging frame: 11). The designed
protein stability was confirmed respectively according
to Figs. 2b–2d.

In the following amino acid composition, protein
stability and half-life were predicted using the Prot-
Param. According to the results illustrated in Fig. 3,
the protein structure was in a stable form and the half-
life of protein was estimated about 30 h in mammalian
cells, more than 20 h in yeast, and more than 10 h in
E. coli (Fig. 3).
MOLECULAR BIOLOGY  Vol. 55  No. 6  2021
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Table 2. The results of C. burnetii proteins BLAST and antigenicity prediction

NCBI Blast

Epitopes Minimum identity (%)
Homo sapiens

Maximum identity (%)
Homo sapiens

Minimum identity (%)
Coxiella burnetii

Maximum identity (%)
Coxiella burnetiid

H7C7D7
(CBU_1910) 35.14 35.90 96.92 100.00

Q83DK8
(CBU_0718) 0 0 98.94 100.00

Q83AL4
(CBU_1869) 0 0 98.62 100.00

Q83F71
(CBU_0077 ) 0 0 99.24 100.00

Q83EL2
(CBU_0307) 0 0 35.11 100.00

Q83DT1
(ompH) 0 0 99.14 100.00

Q83CG1
CBU_1157 0 0 99.14 100.00

Table 3. Predicted properties of selected T cell epitopes

Epitopes The probable protective allergen (AllertTop) Antigen VaxiJen 2.0

DIQSIVHHYLVNHPEVL ALLERGEN ANTIGEN

GNVTLVEFFDY ALLERGEN ANTIGEN

KYYAFHDALLS NON-ALLERGEN NON-ANTIGEN

SEQITLQTAEKVGLNVA NON-ALLERGEN ANTIGEN

TPTFVIGNKALTKFGF NON-ALLERGEN ANTIGEN

DDVAKLRGDLSSIIHKLTSFSKTEASM NON-ALLERGEN NON-ANTIGEN

PITKKQLKTMSNYEVIAK NON-ALLERGEN NON-ANTIGEN

IKLPRNRYRLVFTQQ NON-ALLERGEN NON-ANTIGEN

GKHFDGIKVLKLSPQNTI ALLERGEN ANTIGEN

EVLTLLLNWVNYHE NON-ALLERGEN NON-ANTIGEN

GVAYTYNRANAGLPTNK NON-ALLERGEN NON-ANTIGEN

VPGYRNASSKRFVAP NON-ALLERGEN ANTIGEN

ISLLVFKNSHRVQLWAK ALLERGEN NON-ANTIGEN

RFDLSLMLNYPNSADRY NON-ALLERGEN ANTIGEN

QELFVAQNKAMSDFM NON-ALLERGEN NON-ANTIGEN
Prediction of the Secondary and Tertiary Structure

The prediction of the secondary and 3D structure
of chimeric peptide is illustrated in Fig. 4. The results
showed that 31.58, 19.30, and 49.12% of the total
344 amino acids were organized in alpha helix,
extended strand, and random coil, respectively. Fur-
thermore, the primary 3D model of the proposed
molecule was predicted by the I-TASSER online
server.
MOLECULAR BIOLOGY  Vol. 55  No. 6  2021
Model Refinement and Quality Assessment

Refinement processes were performed by 3Drefine
server for the selected peptide model of the related
immunogene. For this aim, the whole protein struc-
ture including secondary structure elements, loop
regions, and protein side-chains was refined. Five fac-
tors including 3Drefine score, GDT-TS, GDT-HA,
RMSD, RWplus, and MolProbity are the basic factors
for the refinement process, which indicated potential
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Fig. 2. Characteristics of the designed protein. Protein sequence (a). According to the results, the total number of residues is
344 amino acids with a molecular mass of 38281.89 Da and they are water-soluble. Also, the iso-electric point was 9.92, and net
charge at pH 7 was estimated to be about 14.7. (b) Plot of the protein stability that was designed using the IUpred2.0 server. This
plot confirms the stability of the protein because the predicted protein disorders are lower than the threshold of 0.5. (c) The IsUnstruct
results and the prediction of disordered residues based on the Ising model. (d) The FoldUnfold results according to amino acid
sequence. The FoldUnfold server examines the amino acid in the sequence and the folded and unfolded regions in the sequence
have shown in blue and red, respectively.
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Fig. 3. The Protparam results. Alanine and lysine are the most repeated amino acids in protein sequence and the estimated protein
half-life in mammalian cells in the in vitro conditions is about 30 h.
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energy (3Drefine score and RWplus), similarity score
(GDT-TS and GDT-HA), division score and physical
realism score, respectively. In the following, the
MOLECULAR BIOLOGY  Vol. 55  No. 6  2021

Table 4. The results of molecular docking study using the
ClusPro server for proposed vaccine sequence with MHC
class I

MHC I 
SELECTED 

MODEL
Representative Weighted score

0
Center –829.0

Lowest energy –829.0

1
Center –805.6

Lowest energy –805.6

2
Center –659.0

Lowest energy –745.5
refined model with proper features was selected for
further evaluations concerning the mentioned factors.
The results showed, refined model by server 3Drefine
has GDT-TS: 1.0000, GDT-HA: 0.9644, RMSD:
0.375, MolProbity: 3.395, 3Drefine score: 22028.8
and RWPlus: ‒63478.84. In the next step, the geomet-
ric quality of primary and refined models was analyzed
using the Ramachandran Plot (Fig. 5).

Molecular Docking Studies
The results of the molecular docking study con-

firmed the affinity of chimeric peptides to both MHC I
and MHC II classes. It was revealed that chimeric
peptide had more affinity to MHC II with an e-value
of ‒920.88 while it was determined ‒772.51 for MHC I.
In this section, albumin protein was used as a neutral
protein (Table 5). Also, the binding energy to MHC I
and MHC II classes for the recommended vaccine was
investigated using the online Cluspro server



956 JABARZADEH et al.

Fig. 4. Secondary structure of the protein. From a total of 344 amino acid residues, 110, 66, and 168 ones form α-helix, β-strand
and random coil, respectively (a). Predicted tertiary structure of the related protein using the I-TASSER server (b).
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Table 5. The results of molecular docking study using the
ClusPro server for proposed vaccine sequence with MHC
class II

MHC II selected 
model Representative Weighted score

0
Center –824.2

Lowest energy –824.2

1
Center –631.3

Lowest energy –708.2

2
Center –648.4

Lowest energy –737.4
(https://cluspro.bu.edu/login.php). The results are
shown in Tables 4 and 5.

Protein Reverses Translation and Constructs Design

To construct the expression cassette in a plasmid
vector for protein production, it is necessary to reverse
translate the amino acid sequence into nucleotide
sequence. For this, the final peptide sequence was
converted into a nucleotide sequence using the bioin-
formatics database. Also, the ORF of the sequence was
investigated on the ORFfinder database. Finally, the
nucleotide sequence was used to simulate the restric-
tion cloning into PET 21 vector using the SnapGene
offline software. The results of this section are shown
in Fig. 6.

DISCUSSION

Recently, several methods have been developed to
induce vaccine immunogenicity and reduce associ-
ated risks. A common zoonotic disease, Q fever, has
only one commercial vaccine available, and this vac-
cine is a formalin-inactivated form of the bacteria [8].
Here were described a peptide-based candidate vac-
cine against Q fever, which we have developed by pre-
dicting the functional and immunodominant epitopes
followed by evaluating vaccine efficiency in the lab.
Several databases were used for epitope prediction
[27–29]. In peptide vaccines, these epitopes may be
fused with a protein tags, for example, Arg-tag, calm-
odulin-binding peptide, cellulose-binding domain,
DsbA, c-myc-tag, glutathione S-transferase, FLAG-tag,
HAT-tag, His-tag, maltose-binding protein, NusA,
S-tag, etc. [30]. Further protein engineering may be
applied to solubilize the insoluble protein or to stabi-
lize unstable proteins [31]. After selection of the epi-
topes, the protein is reverse translated into the nucleic
acid sequence, and the resultant backbone then syn-
thesized and cloned into a suitable host for protein
expression [32].

Recently, many studies have been reported to
develop peptide-based vaccines against infectious dis-
eases. For example, Farhadi et al. [33] presented a
MOLECULAR BIOLOGY  Vol. 55  No. 6  2021
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Fig. 5. The Ramachandran plot analysis of the peptide sequence.
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peptide-based vaccine that consisted of B cell and lin-
ear CD4+ T cell epitopes selected from outer mem-
brane proteins (Omps) of Klebsiella pneumoniae. In
other study, Nosrati et al. [34] conducted a multi-epi-
tope recombinant vaccine against linear B cell and
T cell binding epitopes from Gc- and Gn-glycopro-
teins of the Crimean-Congo hemorrhagic fever virus.
Their final optimized peptide was of 382 amino acids,
organized in four domains including linear B cell epi-
topes, T cell epitopes, and adjuvants. In 2020, Aryan-
zad and co-workers [35] designed and manufactured
an immunogenic chimeric protein against IpaD and
IpaB antigen from Shigella dysenteriae. In 2021, Sohali
et al. [36] described in silico procedure for prediction
of the T cell epitope of SARS-CoV-2 [36]. In another
work, Jaydari et al. [37] reported B and T cell epitopes
against C. burnetii. In their study, various orders of
Com1 and OmpH epitopes were arranged in 3 groups
of T cell, B cell and common T and B cells, respec-
tively, and the data indicated that the scaffold made
from the B cell epitopes has the highest antigenicity in
both Com1 and OmpH antigens.

In present work, we studied all T cell epitopes from
seven antigen of C. burnetii including Com1 and
OmpH proteins (Table 1). In designing peptide vac-
cines, the determination of immunogenic B cell and
T cell epitopes is paramount. T cells play a significant
role in presenting antigens during intracellular infec-
tions in the immune system. As C. burnetii is an oblig-
atory intracellular pathogen, the immune responses to
C. burnetii are based on the T cell-mediated immunity
mostly [38]. Because of that, we have concentrated on
T cell epitopes, with a high level of antigenicity and
affinity to MHC class I and II. In present work, we
studied all T cell epitopes from seven antigen of C. bur-
netii including Com1 and OmpH proteins (Table 1).
After validation of the antigenicity, allergenicity, phys-
icochemical characteristics and immune interaction
between candidate vaccine and MHC molecules, the
suitability of candidate vaccine was confirmed.

CONCLUSION

The immunoinformatics approach is a cost-effec-
tive, protective, and fast method for the development
of vaccines. This work aimed at designing a multi-epi-
tope vaccine against the zoonotic C. burnetii bacterim
that causes Q fever. We have designed peptide vaccine
with high antigenicity and stability; this vaccine candi-
date is suitable for further development.
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