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Abstract

Inflammation is the body’s response to cell damage. Cancer is a general term that describes

all malignant tumours. There are no confirmed data on cancer-related inflammation, but

some research suggests that up to 50% of cancers may be linked to inflammation, which

has led to the concept of ‘cancer-associated inflammation’. Although some cancer patients

do not appear to have a chronic inflammatory background, there might be inflammatory cell

infiltration in their cancer tissues. The continuation of the inflammatory response plays

an important role in the initiation, promotion, malignant transformation, invasion and metas-

tasis of cancer. Anti-inflammatory therapy has been shown to have some effects on the

prevention and treatment of cancer, which supports a pathogenic relationship between

inflammation and cancer. This review describes the interaction between inflammation and

tumour development and the main mechanism of regulation of the inflammatory response

during tumour development.
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Introduction

Inflammation exists in the processes of
many diseases. In addition, inflammation
may play an important role in the occur-
rence and development of cancer.1 In fact,
many kinds of malignant tumours, such as
renal cancer, prostate cancer, gastric cancer
and skin cancer, appear to occur at the site
of inflammation or infection.2,3

Inflammation and tumour

development

Inflammation and tumour promotion

Many malignant tumours such as renal
cancer, lung cancer, prostate cancer and
sarcoma first occur at the site of inflamma-
tion or infection, which suggests that
persistent infection can lead to chronic
inflammation; and that the inflammatory
environment can increase the probability
of mutation and accelerate the mutation
of cells.4–7

The upregulation of peroxisome prolifer-
ator activated receptor d in gastric
progenitor cells may be one of the causes
of gastric cancer.8 Interleukin (IL)-6 trans-
signal transduction induces the occurrence
of epidermal growth factor receptor (EGF-
R)-related tumours such as lung cancer by
affecting the activity of EGF-R.9 In pros-
tate cancer, the occurrence of inflammation
is considered to be the significant factor for
malignant transformation.10 In the ‘injury
and regeneration’ model, prostate tissue is
infiltrated by inflammatory cells that release
active substances that have also been linked
to bacterial and viral infections, increased
uric acid and consumption of prostate car-
cinogens.11 In addition to these mecha-
nisms, the release of active substances can
also promote the growth of inflammatory
contraction.12 Shrivelled cells may exhibit
the characteristics of stem cells, genetic
free radical damage, increased risk of

mutations and chromosomal abnormalities
that eventually lead to tumour formation
and development.13 Over the past 10
years, the association between inflamma-
tion and cancer has been well studied and
confirmed at the epidemiological, clinical
and molecular levels.14

Activated inflammatory cells such as neu-
trophils and macrophages release oxides that
promote DNA damage in proliferating
cells, producing reactive oxygen species
(ROS) and reactive nitrogen species.13

Inflammation-induced mutations can lead
to inactivation and inhibition of the disloca-
tion repair gene, and ROS can also be inac-
tivated by direct oxidation of the dislocation
repair enzyme.15 Therefore, various muta-
tions in the cells accumulate in succession,
resulting in oncogene activation and inacti-
vation of tumour suppressor genes.16

Sustained stimulation of chronic inflamma-
tion can cause immune tolerance in the body
and mutant cells cannot be identified and
cleared in time.17 The combination of the
above factors ultimately leads to the inevita-
ble occurrence of tumours.1 For example,
sodium dextran sulphate (DSS) can cause
the development of chronic inflammation,
causing DNA damage, which in turn
causes colonic epithelial cell tumours.18

Inflammatory cells produce growth
factors and cytokines that activate down-
stream nuclear factor kappa-light-chain-
enhancer of activated B cells (NF-jB),
activator protein-1, signal transducer and
activator of transcription (STAT) and
mothers against decapentaplegic (SMAD)
transcription factors, and caspase proteins
to produce tumour-promoting factors that
induce cell proliferation and survival factor
production, which promotes the develop-
ment of tumours and the growth and
survival of tumour cells.19

Tumour induction is the process by which
a single tumour cell grows into a fully devel-
oped primary tumour. The growth of the
initial cells depends on both the promotion
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of cell proliferation and the reduction of cell
death, both of which can be stimulated by
inflammation.20 Inflammatory reactions can
produce some targeted chemical factors and
cytokines that promote tumour develop-
ment, which can play a role in paracrine
and autocrine ways to ensure that inflamma-
tory cells are actively recruited in the tumour
microenvironment.20

The growth of tumours requires an ever-
increasing supply of blood vessels in the
tumour.21 Vascular inflammation promotes
tumour progression.21 In addition, tumour-
associated macrophages can also promote
tumour angiogenesis, induce hypoxia sig-
nals and produce chemical factors and
proangiogenic factors.22

Most tumour-promoting transcription
factors work through multiple effectors and
are regulated by multiple transcription fac-
tors, which have different levels of impor-
tance in different cell types. For example,
NF-jB and STAT3 can activate several
inflammatory target genes (such as COX2,
iNOS and TNFA), promote the expression
of antiapoptotic proteins (such as B-cell
lymphoma-2 [Bcl-2] and B-cell lymphoma-
extra large [Bcl-XL]) and cyclins (including
cyclin D1, D2 and B).23–25 In addition, over-
expression of cyclooxygenase-2 (COX-2) can
oxidize and damage DNA, and increase car-
cinogenic products.26 Moreover, overexpres-
sion of COX-2 can also reduce the
antiproliferation and apoptosis of tumours,
as well as the antiangiogenesis and immune
surveillance activity of endothelial cells and
myeloid cells, thus promoting tumour
growth and creating favourable conditions
for the development of distant metasta-
ses.26–28 Nicotinamide adenine dinucleotide
phosphate oxidase, a product of oxidative
stress, can aggravate genomic instability and
increase the risk of carcinogenesis.29–31 These
inflammatory target genes can also promote
cell-to-cell contact and increase cytotoxicity
and death through bystander effects.32

They can also exhibit another potential

tumour-inducing mechanism that interferes
with p53 synthesis and reduces p53-
mediated gene surveillance.32 Using the clas-
sical model of mouse colitis-associated cancer
DSS/azoxymethane, research has demon-
strated that tumour-promoting cytokines
are mainly derived from inflammatory cells,
and that NF-jB inactivation in myeloid cells
can inhibit tumour growth.33 Inhibition of
inflammation may reduce the risk of colon
cancer.33 IL-23 is also a tumour-promoting
factor that is expressed in most tumour-
associated macrophages in a manner that
relies primarily on STAT3 and NF-jB.34

Inflammation and tumour metastasis

Tumour metastasis mainly refers to tumour
cells that invade the lymphatic vessels,
blood vessels or other passages from the
primary site and are transported to other
tissues where they continue to grow, form-
ing the same type of tumour as that at the
primary site. Recent research has clearly
shown that tumour metastasis is achieved
by the interaction of tumour cells, immune
cells, inflammatory cells and interstitial
components.35 It is a complex and ongoing
process. First, the tumour cells invade the
epithelium. Inflammation participates in
the process of tumour metastasis through
the blood by affecting the function of vas-
cular basal cells.35

Tumour metastasis is associated with a
variety of inflammation-related proteins
(such as proteolytic enzymes);36 and inflam-
matory cells can also produce transcription
factors (such as NF-jB and STAT3)
and corresponding gene products (such
as IL-6, IL-1, cell adhesion molecules,
COX-2).37 For example, inflammatory fac-
tors such as IL-1 and IL-6 can promote the
expression of matrix metalloproteinases
through NF-jB and STAT3, thereby induc-
ing invasion and metastasis of tumour cells,
and providing an explanation for the role
of inflammation in cancer.38 The transfer of
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cancer cells requires many proteins that con-
trol the expression of epithelial–mesenchy-
mal transition regulators.39 Inflammatory
cells are an important source of proteases
that hydrolyse components of the extracellu-
lar matrix.39 Transforming growth factor-b
(TGF-b) is an anti-inflammatory cytokine
induced by tumour cells, myeloid cells and
T-lymphocytes, which activates the SMAD
transcription factor and mitogen-activated
protein kinase pathway protein.39

In the development of early metastatic
lesions in polyomavirus middle T-antigen-
induced breast cancer, macrophages appear
in areas where the basement membrane
is destroyed and systemic consumption
of macrophages leads to a reduction in
lung metastasis.40 Tumour-associated macro-
phages (TAMs) produce a variety of growth
factors and cytokines, which in turn stimulate
tumour cell growth, exercise and invasion.41

This effect is mainly mediated by tumour
necrosis factor-a (TNF-a) secreted by macro-
phages, because the neutralization of TNF-a
by anti-TNF-a antibodies significantly
inhibits macrophage-mediated tumour cell
invasion.42

Fibroblasts are one of the main compo-
nents of the tumour stroma.43 These cancer-
associated fibroblasts (CAFs) have much in
common with activated fibroblasts and can
accelerate tumour progression.43 Research
has shown that CAFs play a main role in
the invasion and migration of tumour cells.43

CAFs increase the levels of IL-6 and
enhance tumour cell invasion.43 A study
that used myofibroblasts isolated from sur-
gically resected colon cancer specimens
found that myofibroblasts stimulated the
invasive growth of breast and colon cancer
cells.44 In addition, CAFs can cause destruc-
tion of vascular structures in pancreatic
ductal adenocarcinoma, which will create
obstacles to drug administration.45

Myeloid-derived suppressor cells
(MDSCs) are present in many cancer
patients.46,47 MDSCs can be activated by

a variety of factors such as vascular endo-
thelial growth factor (VEGF) and IL-6,
most of which are related to inflamma-
tion.48 In turn, the activated MDSCs can
further produce pro-inflammatory factors,
leading to an amplification of the pro-
inflammatory response.49 By regulating
the production of cytokines, MDSCs not
only inhibit the acquisition of immune
responses, but also regulate the natural
immune response,50 thus directly promoting
metastasis.51 Research has shown that the
levels of MDSCs is closely related to meta-
static tumour burden and response to
chemotherapy.49,51,52 MDSCs in breast
cancer can accelerate tumour metastasis
and invasion.53

Cancer-related inflammation and
tumour microenvironment

Tumour microenvironment

The tumour microenvironment (TME) is
the internal environment in which tumour
cells proliferative and live; and it includes
the tumour cells and various fibroblasts and
neighbouring cells.54 Microvessels, intercel-
lular substances and biomolecules infiltrate
into the area.55 Tumours attenuate antitu-
mour immune responses via the TME,
maintain proliferation, escape apoptosis,
maintain an inflammatory environment
and promote angiogenesis.56 Shifting
immune surveillance from tumour removal
to tumour induction is a complex process
involving multiple signalling pathways
that involve tumour cells and other non-
tumour cells such as CAFs.43 The tumour-
promoting immunosuppressive process of
cancer immune surveillance relies on the
recruitment of CAFs, TAMs, tumour-
associated neutrophils and bone marrow-
derived inhibition.57 Regulatory T (Treg)
cells and other cells change the balance of
immune cells in the TME.57 The end result
is increased inflammation and angiogenesis,
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as well as the conversion of the neutrophil
phenotype from N1 to N2, the conversion
of macrophages from M1 to M2, and the
conversion of T-lymphocytes from Th1 to
Th2, as well as cytotoxic lymphocytes and
antigen-presenting cells.57 The dramatic
reduction in the number of mature dendritic
cells allows more monocyte precursors to be
used to support the growing population of
TAM2 and MDSCs.58 Subsequently, the
network of cytokines established between
these immune cells enhances each other
and helps maintain the number of immune
cells in the tumour-promoting TME.58 In
addition, it seems that TGF-b, VEGF,
hypoxia-inducible factor-1a, chemokines
and inflammatory cytokines (especially
Th2) are induced.59 Cytokines are associat-
ed with tumour-induced angiogenesis,
inflammation and immunosuppression.59

In CAFs, this relationship seems to be sup-
ported by regulatory B cells, IL-4, IL-6, IL-
10 and TGF-b, which are maintained by the
mutual enhancement of Th2, TAM2,
TAN2, Treg cells and MDSCs.59

The role of proinflammatory cytokines in
the tumour microenvironment

Immune cells, cancer cells and stromal cells
form a complex regulatory network in
the TME.60 They interact with each other
by inducing each other, regulating receptors
and exerting biological functions.60

Immunostimulation and immunosuppres-
sion often occur in cancer and various
cytokines such as macrophage migration
inhibitory factor, TNF-a, IL-6, IL-10,
IL-18 and TGF-b upregulate inflammation
into cancer.60 In particular, some cytokines
activate the NF-jB and STAT family of
transcription factors, which in turn link
the inflammatory environment, tumours
and immune cells with other components
of the tumour ‘secreting proteome’ and
directly control TME by regulating survival
factors.61 Taking IL-6 as an example, its

effect is similar to that of a growth factor

and it has a direct effect on the TME.62

Currently known IL-6 dependent tumours

include breast cancer and lung cancer.62

IL-6 upregulates the expression of VEGF

and promotes angiogenesis.63 VEGF regu-

lates the balance between Treg and Th17

cells by promoting the induction and sur-

vival of Th17 cells.63

The effects of proinflammatory and pro-

neoplastic cytokine secretions exceed those

of immunoregulatory cytokines such as

TGF-b and IL-10.64 IL-6 also activates

bone marrow cells, including macrophages

and neutrophils, to stimulate their pheno-

typic differentiation.64 In addition, expres-

sion of IL-6-dependent chemokine (CC

motif) ligand 20 on cervical fibroblasts pro-

motes the proliferation of Th17 to maintain

long-term tumorigenicity.64 The expression

of STAT3 acts downstream of all cytokines

in the IL-6 family and is extensively

involved in tumorigenesis.65 The IL-6/

STAT3 pathway activates gene expression

of antiapoptotic proteins and proliferating

proteins, such as Bcl-2, Bcl-XL and mye-

loid cell leukemia-1 in epithelial cells and

cancer cells, which enhances the antiapop-

totic ability of tumours.66 Clinically, IL-6

expression levels are closely related to

tumour stage, metastasis and prognosis.66

Patients with high levels of plasma IL-6

often have late-stage tumours with

distant metastases,64 and their prognosis

is worse than for patients with lower

levels.66 Thus, pro-inflammatory cytokines

are key regulators of the TME, control-

ling tumour cell proliferation, promoting

inflammation and tumour metastasis.65

Furthermore, research has shown that

networks of proinflammatory cytokines

IL-1b, IL-11, IL-18, IL-17 and TNF-a
are key regulators of the TME, which

can control tumour cell proliferation and

promote inflammation, angiogenesis and

tumour metastasis.67
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Relationship between NF-jB and

inflammation-related cancer

NF-jB promotes cancer

NF-jB plays an important role in the devel-
opment of cancer. For example, abnormal
activation of NF-jB can be detected in dif-
ferent types of cancer cells, which is associ-
ated with tumour recurrence and poor
prognosis.68

The programmed cell death of defective
cells involves the process of apoptosis,
which promotes the development of cancer
and the tolerance of cancer cells to radia-
tion and chemotherapy.69 Selective deletion
of the IKKb gene in intestinal cells can
reduce the incidence of colon cancer by
80% without affecting the size of the
tumour formation, suggesting that the
signal from NF-jB that is dependent on
IKKb in intestinal cells mainly affects the
tumour initiation stage, but has no effect
on tumour progression.69 Deletion of the
anti-apoptotic gene Bcl-XL might have an
effect on the apoptosis of intestinal cells.
However, when the deletion of IKKb
occurred in intestinal cells, the incidence
of colon cancer was reduced.69 These results
indicate that the NF-jB-mediated pathway
can promote the development of two differ-
ent cell-specific behaviours: NF-jB pro-
motes the expression of anti-apoptotic
proteins in intestinal cells to inhibit the pro-
grammed death of precancerous cells, while
NF-jB in bone marrow cells promotes
the production of cytokines to promote
the growth of precancerous cells.70,71

Antagonism by the IL-6 receptor can inhib-
it IL-6-induced signalling, thereby inhibit-
ing tumour growth.70 NF-jB promotes
the development of liver cancer mainly by
inhibiting precancerous lesions.72 Peripheral
endothelial cells and inflammatory cells par-
ticipate in the activation of NF-jB.72 NF-jB
may regulate the release of a variety of
cytokines and affect reduction/oxidation

reactions, thus it appears to participate in
tumour inflammation and affect the progno-
sis of tumour patients.72 There is also evi-
dence that cytokines such as TGF-b, IL4
and IL-13 can affect the TME, regulate
apoptosis and affect angiogenesis.73–75 In
addition, these inflammatory factors may
regulate the NF-jB pathway and the activity
of immune cells, which may affect the prog-
nosis of the tumour.76,77

The anticancer effect of NF-jB

Recent studies have found that NF-jB also
has an inhibitory effect on tumour develop-
ment. For example, blocking NF-jB entry
into the nucleus by overexpression of IjBa
promotes the invasive growth of epithelial
cells induced by oncogene Ras, similar to
squamous cell carcinoma.78 The mechanism
responsible for this phenomenon remains
unclear. It is thought that it might be
due to the regulation of NF-jB by the
oncogene-induced cell aging process and
the inactivation of NF-jB leads to the
malignant transformation of these cells.79

In a mouse model of liver cancer induced
by the carcinogen diethylnitrosamine
(DEN), DEN induced hepatocyte death
and initiated a compensatory proliferation
process, which caused liver fibrosis that
eventually develops into liver cancer.80 It
has been found that the expression of
IKKb and p38a in hepatocytes can inhibit
this effect of DEN, prevent liver fibrosis
and liver cancer, and its specific loss will
increase the carcinogenic rate of DEN.80

Similarly, the specific loss of IKKc or
IKK-activated kinase TAK1 in hepatocytes
can also cause spontaneous liver injury,
ROS accumulation, hepatocyte death, liver
fibrosis and liver cancer.80 Reduced expres-
sion of IKKa or gene mutations cause a
decrease in the histological differentiation
of squamous cell carcinoma and a poor
prognosis.80 In a study of the carcinogenic
effects of chemicals in mice, it was found
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that the decrease in the expression of IKKa
leads to an increase in the number of Ras-
induced skin tumours, a larger volume and
a promotion of skin cancer development.81

According to the above results, IKKa
appears to be a tumour suppressor gene,
but its specific mechanism remains unclear.
It is speculated that this may be independent
of the kinase activity of IKKa. It can itself
act as a transcription factor into the nucleus,
regulating and inhibiting growth, differenti-
ation and migration.81 In the nucleosome,
IKKa interacts with histone H3 to competi-
tively inhibit the binding of histone methyl-
transferase SUV39h1 to H3.81

Conclusion

Inflammation can affect all aspects of
tumorigenesis and progression as well as
various stages of cancer treatment. The
interaction between different cytokines indu-
ces functional changes in immune cells and
tumour cells, forming a dynamic and com-
plex tumour immune microenvironment.
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