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a b s t r a c t

Inhibitor studies with isolated mitochondria demonstrated that complex I (CI) and III (CIII) of the electron
transport chain (ETC) can act as relevant sources of mitochondrial reactive oxygen species (ROS). Here we
studied ROS generation and oxidative stress induction during chronic (24 h) inhibition of CI and CIII
using rotenone (ROT) and antimycin A (AA), respectively, in intact HEK293 cells. Both inhibitors stimu-
lated oxidation of the ROS sensor hydroethidine (HEt) and increased mitochondrial NAD(P)H levels
without major effects on cell viability. Integrated analysis of cells stably expressing cytosolic- or mi-
tochondria-targeted variants of the reporter molecules HyPer (H2O2-sensitive and pH-sensitive) and
SypHer (H2O2-insensitive and pH-sensitive), revealed that CI- and CIII inhibition increased cytosolic but
not mitochondrial H2O2 levels. Total and mitochondria-specific lipid peroxidation was not increased in
the inhibited cells as reported by the C11-BODIPY581/591 and MitoPerOx biosensors. Also expression of
the superoxide-detoxifying enzymes CuZnSOD (cytosolic) and MnSOD (mitochondrial) was not affected.
Oxyblot analysis revealed that protein carbonylation was not stimulated by CI and CIII inhibition. Our
findings suggest that chronic inhibition of CI and CIII: (i) increases the levels of HEt-oxidizing ROS and (ii)
specifically elevates cytosolic but not mitochondrial H2O2 levels, (iii) does not induce oxidative stress or
substantial cell death. We conclude that the increased ROS levels are below the stress-inducing level and
might play a role in redox signaling.
& 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Dysfunction of the mitochondrial electron transport chain
(ETC) due to mutations in OXPHOS subunits or induced by che-
mical inhibitors is generally associated with increased mitochon-
drial reactive oxygen species (ROS) production [2,18,27,31]. These
ROS include the superoxide anion ( O2

•−), hydrogen peroxide
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and distinct molecular targets [11,12]. When exceeding the capa-
city of the cell's antioxidant systems, increased ROS production
triggers oxidative stress and cell death. Mitochondria contain both
ETC-linked and non ETC-linked pathways for ROS production [46].
For example, isolated mitochondria can generate ROS via ETC
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complexes I, II and III (CI, CII, CIII), monoamino oxidase, α-ke-
toglutarate dehydrogenase, glycerophosphate dehydrogenase, di-
hydro-orotate dehydrogenase, electron transfer flavoprotein de-
hydrogenase, branched-chain 2-oxoacid dehydrogenase, pyruvate
dehydrogenase and p66shc/cytochrome c [7,49,56,58,66]. Im-
portantly, the relevance of each of these enzymes during increased
mitochondrial ROS production is tissue-specific and depends on
the metabolic and experimental condition [68].

In case of the ETC, CI and CIII are generally considered the most
important contributors to mitochondrial ROS production in intact
cells [7,49]. The chemical CI inhibitor rotenone (ROT) was de-
monstrated to stimulate O2

•− production at the NADH oxidizing
flavin group and/or at the CoQ-binding site [7]. However, when the
PMF (proton motive force) is sufficiently large, CI can also generate
large quantities of O2

•− via reverse electron transfer (RET) from CII
to CI that is inhibited by ROT [44,49]. Moreover, it appears that CI
can also directly catalyse H2O2 formation [29]. Evidence was pro-
vided that O2

•− produced by CI is specifically released towards the
mitochondrial matrix, whereas inhibition of the Qi site of CIII with
antimycin A (AA) in the presence of reduced coenzyme Q10 re-
leases large amounts of O2

•− from the Qo site into both the mi-
tochondrial matrix and the intermembrane space [7,70]. However,
CI appears to constitute the main source of mitochondrial O2

•−

under physiological conditions [28,49,57].
While ROS quantification in isolated mitochondria generally yields

consistent results, proper interpretation of live-cell ROS measure-
ments still remains challenging. This relates to the fact that mi-
tochondrial ROS can be produced using different mitochondrial sub-
strates, are removed by (local) antioxidant systems, and/or are diffi-
cult to specifically detect at the cellular level [23,32,78]. For instance,
primary neuronal cell lines and immortalized mouse embryonic fi-
broblasts from mice with isolated CI deficiency (NDUFS4-/- mice; [41])
do not display increased ROS levels [10,72], as reported by oxidation
of the ROS reporter molecule hydroethidine (HEt). In contrast, pri-
mary muscle or skin fibroblasts isolated from these mice exhibited
increased HEt oxidation [73]. Similarly, oxidation of HEt and 5-(and-
6)-chloromethyl-2’,7’-dichlorodihydro-fluorescein (CM-H2DCF) was
increased in primary skin fibroblasts of patients with inherited CI
deficiency [34,38,67,75]. Interestingly, increased HEt and CM-H2DCF
oxidation was not paralleled by alterations in thiol redox status and
cellular lipid peroxidation in these cells [45,76]. This suggests that the
ROS increase is still below the stress-inducing level and might play a
signaling role [15,16,20,39,50,66,71,74,79].

We recently used HEK293 cells to analyze the bioenergetic
consequences of chronic (24 h) CI and CIII inhibition by ROT or AA,
respectively [24]. The latter study revealed that these treatments
inhibited mitochondrial oxygen (O2) consumption and induced a
glycolytic phenotype without off-target effects. Here this experi-
mental model was used to determine whether CI and CIII inhibi-
tion increased ROS levels and triggered oxidative stress. Our re-
sults demonstrate that CI and CIII inhibition is associated with
increased HEt-oxidation and elevated cytosolic but not mi-
tochondrial H2O2 levels. However, no experimental evidence of
oxidative stress, massive cell death or protein carbonylation was
found. This suggests that the magnitude of the inhibition-induced
increase in ROS level does not exceed the capacity of the cell's
antioxidant systems.
2. Materials and methods

2.1. Generation of inducible HEK293 cell lines stably expressing cy-
tosolic and mitochondria-targeted variants of HyPer and SypHer

Gateways Entry vectors were generated by recombining
Gateway-adapted PCR products containing the sequence encoding
cyto-HyPer and mito-HyPer from pHyPer-cyto and pHyPer-dMito
vectors (Evrogen, Moscow, Russia) with pDONR201 (Invitrogen,
Breda, The Netherlands). A Gateway-adapted tag-less pcDNA/FRT/
TO Destination vector was created by recombining the acGFP1-
Destination vector [17] with a BacMamVSV-Destination vector
[33]. Recombining the HyPer Entry vectors with this Destination
vector using the LR Clonase II Enzyme Mix (Invitrogen) yielded the
pcDNA5/FRT/TO/mito-HyPer and pcDNA5/FRT/TO/cyto-HyPer ex-
pression vectors. Targeting to the mitochondrial matrix was
achieved by the presence of two N-terminally fused cox8 mi-
tochondrial targeting sequences (2MTS). To create constructs en-
coding the pH sensor SypHer, the mito-HyPer and cyto-HyPer
Entry vectors were mutated at a critical cysteine residue by site-
directed mutagenesis as described previously [53]. These new
Entry vectors were also recombined with the Gateway-adapted
pcDNA/FRT/TO Destination vector to obtain mito-SypHer and cyto-
SypHer expression vectors. Flp-In T-REx293 cells (Invitrogen) were
stably transfected with the expression vectors described above
using the Superfect Transfection Reagent (Qiagen, Venlo, The
Netherlands) and cultured for selection in the presence of 200 mg/
ml hygromycin (Calbiochem, Brunschwig, Amsterdam, The Nether-
lands) and 50 mg/ml blasticidin (Invitrogen). To induce expression
of the biosensor, 1 mg/ml doxycyclin (Sigma-Aldrich, Zwijndrecht,
The Netherlands) was added to the culture medium, followed by
incubation for 24 h.

2.2. Cell culture and inhibitor treatment

Flp-In T-REx293 cells were cultured in DMEM containing
25 mM glucose, 2 mM L-glutamine, 10% (v/v) fetal calf serum and
1% penicillin/streptomycin in a humidified atmosphere containing
5% CO2 at 37°C. Prior to transfection, parental Flp-In T-REx293 cells
were cultured in the presence of 50 mg/ml blasticidin and 100 mg/
ml Zeocin (Invitrogen). For fluorescence microscopy, 100,000 cells
were seeded on 24-mm coverslips (Thermo Scientific, Etten-Leur,
The Netherlands) placed in 35-mm CellStar tissue culture dishes
(Sigma-Aldrich) two days prior to imaging to achieve a 70% con-
fluence at the day of imaging. For the determination of superoxide
dismutase protein levels, cells were grown to 80% confluence. One
day after seeding, cells were treated with ROT or AA for 24 h and
compared with vehicle (0.1% ethanol)-treated control (CT) cells.

2.3. Cell viability analysis

Cell viability was assessed using the crystal violet assay. Cells
were seeded in 48 well plates and stained with crystal violet so-
lution (0.5% crystal violet, 30% ethanol, 3% formaldehyde). Plates
were rinsed with water and crystal violet internalized by the cells
was re-solubilized in 1% SDS solution. Absorbance at 550 nm was
measured using a microplate spectrophotometer (Benchmark Plus,
Biorad, The Netherlands). Results were expressed as percentage of
cell viability relative to untreated controls.

2.4. Fluorescence imaging of hydroethidine oxidation

Flp-In. T-REx293 cells were incubated with 10 mM HEt (Invitro-
gen) in harvested culture medium for 10 min at 37°C and 5% CO2 in
the dark. The HEt oxidation reaction was terminated by thoroughly
washing the cells with PBS to remove excess HEt. Subsequently, the
cells were covered by a colorless HEPES–Tris (HT) buffer (containing
132 mM NaCl, 10 mM Hepes, 4.2 mM KCl, 1 mM MgCl2, 1 mM CaCl2
and 25 mM D-glucose, adjusted to pH 7.4 with Tris salt). To quantify
fluorescent HEt oxidation products, coverslips were mounted in an
incubation chamber that was placed on the temperature-controlled
(37°C) stage of an inverted microscope (Axiovert 200M, Carl Zeiss,
Jena, Germany) equipped with a Zeiss �40 1.3 NA Fluar objective.
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The cells were excited for 100 ms at 490 nm using a mono-
chromator (Polychrome IV, TILL Photonics, Gräfelfing, Germany).
Fluorescence light from the cells was directed onto a CoolSNAP HQ
monochrome CCD-camera (Roper Scientific, Vianen, The Netherlands)
using a 525DRLP dichroic mirror (Omega Optical Inc., Brattleboro, VT,
USA) and a 565ALP emission filter (Omega Optical Inc). The hard-
ware was controlled using Metafluor 6.0 software (Universal Ima-
ging Corporation, Downingtown, PA, USA). Ten random fields of
view were routinely analyzed per coverslip using MetaMorph
6.1 software (Universal Imaging Corporation). For time-lapse ex-
periments involving the mitochondrial uncoupler carbonyl cyanide-
p-trifluoromethoxyphenylhydrazone (FCCP), images were recorded
every 6 s.

2.5. Fluorescence imaging of HyPer and SypHer

For imaging the above described microscopy system was used.
Five to 10 min prior to imaging, cells were covered by HT buffer.
HyPer and SypHer were alternatingly excited at 420 nm and
470 nm for 200 ms using a 505DRLPXR and 505DRLPXR dichroic
mirror (Omega Optical Inc.). Emission signals were directed
through a 535AF45 (Omega Optical Inc.) emission filter onto the
CCD camera. 10–15 Random fields of view were routinely analyzed
per coverslip using MetaMorph 6.1 software (Universal Imaging
Corporation).

2.6. Fluorescence imaging of lipid peroxidation

For imaging the above described microscopy system was used.
Cellular and mitochondria-specific lipid peroxidation were as-
sessed using the C11-BODIPY581/591 (Invitrogen) and a mitochon-
dria-targeted variant of this molecule (MitoPerOx; [55]) biosensor,
respectively. Cells were washed with PBS, covered with HT buffer
(see above) and mounted onto an inverted microscope equipped
with a �40 1.3 NA Fluar oil-immersion objective.
C11-BODIPY581/591 and MitoPerOx display similar spectral prop-
erties and were excited at 488 nm for 200 ms using a 505DRLPXR
dichroic mirror (Omega Optical Inc.). Emission signals were de-
tected using 510BW40 (oxidized form) and 565ALP (non-oxidized
form) emission filters (Omega Optical Inc). 10–15 Random fields of
view were routinely analyzed per coverslip using MetaMorph
6.1 software (Universal Imaging Corporation).

2.7. Fluorescence imaging of NAD(P)H autofluorescence

Cellular NAD(P)H autofluorescence was excited for 1000 ms at
360 nm using a 430DCLP (Omega) dichroic mirror and 510BW40
(Omega) emission filter. A mitochondria-dense region of interest
was used to quantify NAD(P)H autofluorescence intensity as de-
scribed previously [76].

2.8. Superoxide dismutase protein levels

Cells (1–1.5�106) were harvested in ice-cold PBS. The cell
suspension was centrifuged for 5 min at 1500 g and snap-frozen in
liquid nitrogen. Cells were homogenized in three freeze-thaw cy-
cles at �20°C. Following a boiling step for 5 min at 95°C in sample
buffer, the samples were separated on a 10% SDS-PAGE gel. Next,
the proteins were electrophoretically transferred to a PVDF
membrane (Millipore, Amsterdam, The Netherlands). After blotting,
the membranes were blocked for 45 min with one part Odyssey
blocking buffer (Li-Cor, Lincoln, NE, USA) and one part 0.1% v/v
Tween-20 containing PBS (PBS-T). The blots were rinsed twice
with PBS-T and incubated with polyclonal anti-CuZnSOD (1:2000;
ITK Diagnostics bv), polyclonal anti-MnSOD (1:2500; ITK diag-
nostics bv), polyclonal anti-Porin (1:1000; Calbiochem) or
monoclonal anti-β-Actin (1:100,000; Sigma). For detection, IRDye
680-Conjugated Goat Anti-Mouse IgG, Highly Cross Adsorbed (Li-
Cor) and IRDye 800CW-Conjugated Goat Anti-Rabbit IgG (Li-Cor)
secondary antibodies were used. IRDye fluorescence was quanti-
fied using an Odyssey Imaging system (Li-Cor).

2.9. Protein carbonylation (Oxyblot)

At 40–60% confluence, cells were treated with 100 nM ROT or
100 nM AA. Cells were harvested after 24 h by centrifugation
(5 min, 1000 g) and the cell pellet was washed once with 1 ml PBS
containing 1 mM DTT and resuspended in 10 mM Tris–EDTA buffer
containing 10 mg/ml DNase. After three freeze/thaw cycles in liquid
nitrogen the suspension was stored at �20°C. Protein carbonyl
levels were determined by immunoblotting using the Oxyblot
assay kit (Merck Millipore, Temecula, CA, USA) with some slight
modifications. 10 ml samples (�50 mg protein) were denatured
with 10 ml 12% SDS and then derivatized with 20 ml 2,4-dini-
trophenylhydrazine (DNPH) to the corresponding 2,4-dini-
trophenylhydrazone (DNP). After 15 min at RT the reaction was
stopped with 15 ml Neutralization buffer and the samples were
diluted 2 times with 2� SDS-sample buffer, further neutralized
with TRIS, and 20–40 ml was run on a 10% SDS-PAGE gel. Next,
protein was transferred electrophoretically to a PVDF membrane
using the iBlot system (Life Technologies). After blotting mem-
branes were blocked with Odyssey Blocking Buffer (Li-Cor) mixed
1:1 with PBS-Tween20 (0.1%, w/v) for 1 h at room temperature.
Next, blots were incubated overnight at room temperature with
the polyclonal antibody directed against DNP (Millipore) and the
monoclonal antibody against β-actin (Sigma Aldrich) in the Odys-
sey-PBS-Tween buffer. Subsequently, blots were washed (3–5
times) with PBS-Tween and incubated with the secondary goat
antibodies against rabbit and mouse IRdye 680 and IRdye 800 (Li-
Cor) in the above mentioned buffer for 45 min at room tempera-
ture. After washing with PBS-Tween, PBS and water, the PVDF
membranes were air dried in the dark. Finally, fluorescence signals
were quantified using the Odyssey Imaging system (Li-Cor).

2.10. Data analysis

Fluorescence signals of HEt, HyPer, SypHer, MitoPerOx and
C11-BODIPY581/591 were quantified by defining a region of interest
(ROI) in the appropriate part of the cell (e.g. mitochondria, nucleus,
cytosol) as described previously [24,36,55]. Cellular signals were
background-corrected using an extracellular ROI close to the cell-
of-interest. Curve fitting was performed using Origin Pro 6.1
(OriginLab Corp., Northampton, MA, USA). Unless stated otherwise,
data is presented as mean7SE (standard error) and statistical
significance (*Po0.05, **Po0.01 and ***Po0.001) was assessed
using a Kruskal–Wallis 2-way ANOVA following Dunn's multiple
comparison test or a Mann–Whitney t-test using Graphpad Prism
5 software (GraphPad Software Inc., La Jolla, CA, USA).
3. Results

3.1. Inhibition of CI or CIII stimulates the rate of hydroethidine
oxidation

Hydroethidine (HEt) is a cell permeable non-fluorescent reporter
molecule that, upon oxidation, is converted into cationic fluorescent
products [84]. Due to their positive charge, HEt oxidation products
become cell impermeable and primarily accumulate in the mi-
tochondrial matrix (“Mit” due to its negative membrane potential;
Δψ) and the nucleus (“Nuc” by binding to negatively-charged nu-
cleoli). HEK293 cells were incubated with 100 nM ROT or AA for



Fig. 1. Hydroethidine oxidation, cell viability and mitochondrial NAD(P)H levels in CI- and CIII-inhibited HEK293 cells. (A) Increase in fluorescence signal of HEt oxidation
products in a mitochondrial (Mit) and nuclear (Nuc) region of interest (inset: n,m) in the presence of 10 mM HEt (arrow). Cells were pre-treated (24 h) with vehicle (CT), the
CI-inhibitor ROT (100 nM) or the CIII-inhibitor AA (100 nM). Each trace reflects the average signal of 6–14 individual cells and the straight lines represents a linear fit to the
data (R40.99, po0.0001). (B) Change in fluorescence signal of mitochondrial and nuclear HEt oxidation products induced by acute application of the protonophore FCCP
(average of 6 cells pre-stained with HEt and in the absence of extracellular HEt). An exponential fit (R40.99) was used to determine the time constant of the fluorescence
change (τ). (C) Fluorescence signal of HEt oxidation products in mitochondrial (Mit) and nuclear (Nuc) regions of interest in cells pre-incubated with HEt. Each bar represents
the average of 440 cells (from at least 2 independent experiments) treated with vehicle (CT), ROT or AA for 24 h at 100 nM. (D) Effect of ROT and AA (100 nM, 24 h) on cell
density. (E) Effect of ROT and AA (100 nM, 24 h) on cell viability. (F) Effect of ROT- and AA-treatment (100 nM, 24 h) on mitochondrial NAD(P)H autofluorescence. Statistics:
the data in panel C, E and F was expressed as percentage of the average value of the CT condition measured on the same day. Numerals represent the number of individual
wells (panel E) or cells (panel F) analyzed in at least 3 independent experiments. Statistically significant differences with the indicated columns (a,b,c,d) were assessed using
a 2-way ANOVA test.
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24 h [24] and, subsequently, the rate of HEt oxidationwas measured
[25]. To this end (Fig. 1A; inset), a mitochondria-dense region (“m”)
of interest (ROI) in the cytosol and a nuclear (“n”) ROI was defined
for each cell as described previously [75]. In the presence of ex-
tracellular HEt (10 mM), the fluorescence of the HEt oxidation pro-
ducts linearly increased over time in vehicle- (CT), ROT- and AA-
treated cells during at least 10 min (Fig. 1A). This linearity demon-
strates that HEt oxidation occurs via a 0th-order reaction mechan-
ism [37] meaning that the rate of fluorescence increase is a measure
of the level of HEt-oxidizing ROS. The latter allows assessment of
the HEt oxidation rate by an end-point measurement (i.e. by in-
cubating the cells for 10 min with HEt, followed by washing away
the extracellular HEt and subsequent measurement of fluorescent
HEt oxidation products).

In the continuous presence of extracellular HEt (Fig. 1A) the
rate of fluorescence increase (in gray value/min) equalled:
2.6370.06 (CT, Mit), 1.5870.04 (CT, Nuc), 4.0570.03 (ROT, Mit),
2.3970.03 (ROT, Nuc), 4.5270.04 (AA, Mit) and 3.0970.17 (AA,
Nuc). This demonstrates that fluorescence signals increased more
rapidly in the mitochondrial than in the nuclear compartment for
CT and inhibitor-treated cells. ROT treatment stimulated the rate of
HEt oxidation signal increase to a similar extent for the
mitochondrial (1.54-fold) and nuclear compartment (1.51-fold). In
contrast, AA treatment induced a faster increase in the nuclear
(1.96-fold) than mitochondrial signal (1.71-fold). Since HEt oxida-
tion products are positively charged, ROT- or AA-induced changes
in Δψ could potentially affect the mitochondrial and thereby the
nuclear fluorescence intensity. Using the protonophore carbonyl
cyanide-p-trifluoromethoxyphenylhydrazone (FCCP) we demon-
strated previously in primary human skin fibroblasts that Δψ
depolarization induces translocation of HEt oxidation products
from the mitochondrial to the nuclear compartment [36]. The
same phenomenon was observed in HEK293 cells (following pre-
staining and in the absence of extracellular HEt), as reflected by
the FCCP-induced loss of fluorescence from the mitochondrial
compartment and parallel fluorescence increase in the nuclear
compartment with similar kinetics (Fig. 1B). We previously de-
monstrated that ROT- and AA-treatment (100 nM, 24 h) induced a
mild Δψ hyperpolarization and pronounced Δψ depolarization,
respectively, in HEK293 cells [24]. However, in ROT-treated cells
the rate of fluorescence increase was similarly increased for the
mitochondrial and nuclear compartment (1.54- vs. 1.51-fold). This
suggests that the ROT-induced Δψ hyperpolarization does not
enhance the accumulation of HEt oxidation products in these
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compartments. In contrast, AA-induced Δψ depolarization was
associated with a slower increase in the mitochondrial than in the
nuclear compartment (1.71- vs. 1.96-fold). This asymmetric in-
crease is compatible with Δψ depolarization stimulating translo-
cation of HEt-oxidation products from the mitochondrial to nu-
clear compartment. Irrespective of the effect of Δψ
Fig. 2. Properties of targeted HyPer and SypHer variants in HEK 293 cells (A) Typical mic
and mitochondrial matrix (mito-HyPer). (B) Effect of various extracellular H2O2 concent
maximal ratio value (Rmax) by the pre-H2O2 ratio (R0) for multiple cells (n¼5) measured i
(Logistic) fitting equation. (C) Effect of extracellular H2O2 application on the ratio signal
420 nm and 480 nm signals (lower panel). (D) Same as panel B but now for the effect of
of cyto-HyPer (left part) and cyto-SypHer (right part).
hyperpolarization (ROT) and depolarization (AA), the larger in-
crease in HEt-oxidation in AA-treated relative to ROT-treated cells
strongly suggests that the level of HEt-oxidizing ROS is higher in
the former cells. When cells were pre-incubated with HEt (10 mM,
10 min), washed and subsequently imaged (end-point measure-
ment), ROT- and AA-treatment both increased the mitochondrial
roscopy images of HEK293 cells stably expressing HyPer in the cytosol (cyto-HyPer)
rations on the maximal cyto-HyPer ratio. The latter was calculated by dividing the
n two independent experiments. The experimental data was fitted using a sigmoidal
(480 nm/420 nm) of cyto-HyPer and mito-HyPer (upper panel) and their individual
extracellular H2O2, the reducing agent dithiothreitol (DTT) and NH4Cl on the signals



Fig. 3. Hydrogen peroxide levels, pH, and lipid peroxidation in CI- and CIII-inhibited HEK293 cells. (A) Cytosolic and mitochondrial ratio signals for HyPer and SypHer in
vehicle-treated (CT) cells. (B) Cyto-HyPer and mito-HyPer ratio signals in cells treated with vehicle (CT), 100 nM ROT or 100 nM AA for 24 h. (C) Same as panel B, but now for
SypHer. (D) Cyto-HyPer and mito-HyPer ratio signals corrected for the effects on pH reported by SypHer (see Results for details). (E) Typical fluorescence microscopy images
of living cells stained with C11- BODIPY581/591 (total cellular lipid peroxidation) or MitoPerOx (mitochondria-specific lipid peroxidation). (F) Effect of H2O2 (50 min) and the
MIM-targeted antioxidant MitoQ (24 h) on the MitoPerOx fluorescence ratio. (G) C11- BODIPY581/591and MitoPerOx ratio signals in cells treated with vehicle, ROT or AA.
Statistics: Data was expressed as percentage of the average value of the CT condition measured on the same day. Numerals represent the number of analyzed cells from at
least 3 independent experiments. Statistically significant differences with the indicated columns (a,b) was assessed using a 2-way ANOVA test.
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and nuclear fluorescence intensity (Fig. 1C). In summary, these
results demonstrate that ROT- and AA-treatment increase the le-
vels of HEt-oxidizing ROS and that this increase is larger for AA
than for ROT.

3.2. Inhibition of CI or CIII does not induce substantial cell death and
increases mitochondrial NAD(P)H level

We previously demonstrated that 24 h treatment with 100 nM
ROT or AA greatly reduced mitochondrial O2 consumption in
HEK293 cells [24]. Visual inspection suggested that cell density was
unaffected at 100 nM inhibitor concentration (Fig. 1D). Analysis of
cell viability confirmed that ROT treatment did not affect this
parameter, whereas AA induced a minor reduction (Fig. 1E). Under
these conditions, ROT- and AA- treatment increased mitochondrial
NAD(P)H autofluorescence (Fig. 1F), compatible with previous re-
sults obtained in cells with genetic and inhibitor-induced CI defi-
ciency (e.g. [39,72,75]). Taken together, our results suggest that the
increased levels of HEt-oxidizing ROS in ROT- or AA-treated HEK293
cells do not induce massive lethal oxidative stress, and are asso-
ciated with increased mitochondrial NADH levels. Next we studied
whether CI and CIII inhibition affected the levels of hydrogen per-
oxide (H2O2), lipid peroxidation and superoxide dismutases (SODs)
in the mitochondrial and cytosolic compartment.

3.3. Characterization of the HyPer and SypHer biosensors in HEK293
cells

SODs convert superoxide (O2
•−) into H2O2, which can passively

diffuse across membranes and thereby act as a cytosolic and
extracellular signaling molecule [6,39,48,74]. To quantify H2O2 le-
vels ([H2O2]) in the cytosol and mitochondrial matrix we used the
protein-based reporter molecule “HyPer” [4]. HyPer consists of a
circularly permuted (cpYFP) inserted into the H2O2-sensitive reg-
ulatory domain of the E. coli transcription regulator OxyR. This
construct is also pH-sensitive and therefore we mutated a critical
HyPer cysteine residue (C199S) to obtain the biosensor “SypHer”.
The latter is H2O2-insensitive and can be used as a HyPer-control
and pH sensor [24,53]. To allow subcellular analysis of H2O2 levels,
we created four HEK293 cell lines that stably expressed HyPer
(Fig. 2A) or SypHer (not shown) in the cytosol or mitochondrial
matrix. Intracellular changes in [H2O2] are expected to occur
within the nM to low mM range [9] and the minimal [H2O2]ext
required to evoke a detectable change in the HyPer ratio signal
was previously estimated to be �5 mM [4]. In HEK293 cells the
cytosolic HyPer ratio signal half-maximally increased at a con-
centration of 9.1273.68 mM of [H2O2]ext (Fig. 2B). Acute applica-
tion of 200 mM extracellular H2O2 ([H2O2]ext) induced a 2-fold in-
crease in cyto-HyPer and mito-HyPer ratio signal (Fig. 2C), de-
monstrating that exogenous H2O2 rapidly crosses cellular and
mitochondrial membranes. Application of the reducing agent di-
thiothreitol (DTT, 10 mM) returned the cyto-HyPer signal to levels
slightly below basal in the presence of 50 mM [H2O2]ext (Fig. 2D;
left panel). This demonstrates that DTT also crosses cellular
membranes and lowers the levels of HyPer-oxidizing ROS. The
SypHer ratio signal did not respond to a challenge with 50 mM
[H2O2]ext but subsequently increased (at higher pH) and decreased
(at lower pH) induced by transient extracellular NH4Cl application
(Fig. 2D; right panel). Importantly, HyPer and SypHer ratio changes
were caused by changes in the emission from 420 and 470 nm



Fig. 4. CI- and CIII-inhibition do not induce superoxide dismutase protein levels and protein carbonylation in HEK293 cells. (A) Western blot analysis of MnSOD and
CuZnSOD protein levels. For each data point the CuZnSOD level (filled symbols) was normalized to β-Actin protein levels. MnSOD levels (open symbols) were normalized to
mitochondrial Porin. The mean7SEM in ROT- and AA-treated cells reflects several independent experiments (i.e. individual symbols) and is marked by horizontal lines. (B)
Oxyblot signal (DNP-protein) in cells treated with vehicle (CT), 100 nM ROT or AA for 24 h. Actin was used as a loading control. Statistics: Data was expressed as percentage of
the average value of the CT condition measured on the same day in at least 3 independent experiments (panel A). Panel B reflects a typical example of 2 independent
experiments.
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excitation in opposite directions, indicative of a cpYFP conforma-
tional change (Fig. 2C and D; lower panels). These results de-
monstrate that HyPer is both H2O2 and pH-sensitive whereas Sy-
pHer is H2O2-insensitive and pH-sensitive. In the next set of ex-
periments we applied this information to specifically determine
H2O2 levels and relative pH in the cytosol and mitochondrial
matrix of inhibitor-treated cells.

3.4. Inhibition of CI or CIII increases cytosolic but not mitochondrial
hydrogen peroxide levels

In CT cells, HyPer and SypHer ratios in the cytosol were lower than
in the mitochondrial matrix (Fig. 3A; open bars; SypHer data taken
from [24]). This is compatible with the mitochondrial matrix being
more alkaline than the cytosol [47]. Given this pH-difference and the
pH-sensitivity of HyPer the increased mitochondrial HyPer signal
(Fig. 3A; filled bars) cannot be taken as direct evidence of a higher
[H2O2] in the mitochondrial matrix ([H2O2]m). When correcting the
HyPer signal for pH-induced changes (i.e. by dividing the mean HyPer
ratio by the mean SypHer ratio) values of 0.69 (cyto-Hyper) and 0.82
were obtained (mito-Hyper). This suggests that the steady-state
[H2O2]m is (slightly) higher than the steady state [H2O2] in the cytosol
([H2O2]c). ROT treatment did not affect the cyto-HyPer signal whereas
AA slightly increased this parameter (Fig. 3B; left panel). Both in-
hibitors reduced the mito-HyPer signal (Fig. 3B; right panel). ROT and
AA treatment reduced the cyto-SypHer signal, whereas the mito-Sy-
pHer signal was only lowered in AA-treated cells (Fig. 3C; data taken
from [24]). Correcting the HyPer signals for pH effects by dividing
them by the corresponding SypHer signals revealed that ROT and AA
significantly increased the cyto-HyPer signal (Fig. 3D; left panel). In
agreement with the HEt results, this increase was larger in AA-treated
than in ROT-treated cells. In contrast, no increase in mitochondrial
HyPer signal was observed (Fig. 3D; right panel). These results suggest
that ROT and AA inhibition do not elevate [H2O2]m but significantly
increase [H2O2]c albeit to a variable extent.

3.5. Inhibition of CI or CIII does not induce cellular or mitochondrial
lipid peroxidation

Increased ROS levels are associated with peroxidation of cel-
lular and mitochondrial lipids during oxidative stress induction
[3]. Given the ROS increase detected by the HEt and HyPer sensors
we next determined whether total and mitochondria-specific lipid
peroxidation was affected by ROT- or AA-treatment in living
HEK293 cells. To this end we applied the classical fluorescent lipid
peroxidation probe C11-BODIPY581/591 [19]. Moreover, we used a
novel C11-BODIPY581/591 (MitoPerOx; Fig. 3E) targeted to the mi-
tochondrial inner membrane (MIM; [55]). Using primary human
skin fibroblasts, we previously demonstrated the responsiveness
of the C11-BODIPY581/591 sensor towards exogenous H2O2 appli-
cation (20 mM, 2 min) [23]. In HEK293 cells, treatment with H2O2

(50 mM, 50 min) slightly increased the MitoPerOx fluorescence
ratio (Fig. 3F). Conversely, this ratio was slightly decreased upon
treatment with the MIM-targeted antioxidant MitoQ10 (10 nM,
24 h; Fig. 3F). ROT and AA treatment did not increase the
C11-BODIPY581/591 signal (Fig. 3G; left panel). The MitoPerOx ratio
was slightly but significantly increased in AA but not in ROT-
treated cells (Fig. 3G; right panel). These results suggest that
peroxidation of cellular and MIM lipids is not greatly increased by
inhibitor treatment, arguing against induction of oxidative stress.

3.6. Inhibition of CI or CIII does not increase superoxide dismutase
protein levels

Under conditions of oxidative stress, high superoxide (O2
•−) levels

are linked to increased expression of SODs [21,22,51,52]. These
enzymes convert O2

•− to hydrogen peroxide (H2O2) at very high
rates [69]. The SOD family includes copper–zinc–SOD (CuZnSOD or
SOD1) in the cytosol and mitochondrial intermembrane space
(IMS), and manganese-SOD (MnSOD or SOD2) in the mitochondrial
matrix. Western blot analysis revealed that neither ROT nor AA
treatment induced a consistent and significant increase in CuZnSOD
and MnSOD protein levels (Fig. 4A). These results suggest that ROT
and AA treatment do not increase ROS to a level that is sufficiently
high for induction of SOD expression, supporting our above con-
clusion that oxidative stress is virtually absent.

3.7. Inhibition of CI or CIII does not induce protein carbonylation

Both ROS and lipid peroxidation products can induce oxidation
of specific amino acids, resulting in formation of stable carbonyl (–
CO) groups (aldehydes and ketones) on protein side chains
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[5,13,65]. Protein carbonyls are generated by oxidative modification
via direct reaction with ROS (Glu, Thr, Asp, Lys, Arg Pro; [42,43]),
due to reaction (of Cys and Lys) with lipid peroxidation products
like 4-hydroxynonenal (4-HNE) and malondialdehyde (MDA; [82]),
or by reaction with reducing sugars [83]. Upon carbonylation, pro-
tein function can be lost and/or proteins undergo proteasome-de-
pendent degradation [82]. A frequently used method to detect
protein carbonylation is the “Oxyblot” strategy [83], in which pro-
tein carbonyl groups are allowed to react with 2,4-dini-
trophenylhydrazine (DNPH) yielding 2,4-dinitrophenylhydrazone
(DNP). The latter are subsequently detected using SDS-PAGE fol-
lowed by Western blot analysis with a DNP-specific antibody [81].
Neither ROT- nor AA-treatment detectably altered the Oxyblot sig-
nal (Fig. 4B), suggesting that ROT- and AA-treatment do not induce
protein carbonylation in HEK293 cells.
4. Discussion

Mitochondrial dysfunction has been associated with increased
ROS levels, either in the presence or absence of oxidative stress
[21,23,40,49,51,52]. Here we demonstrate that chronic CI and CIII
inhibition differentially stimulate HEt-oxidation and cytosolic
H2O2 levels in HEK293 cells and that this ROS increase is not as-
sociated with oxidative stress induction.

4.1. CI and CIII inhibition differentially stimulate HEt oxidation

HEt specifically reacts with O2
•− to form 2-hydroxyethidium

(2-OH–Etþ) or can act as a hydride acceptor to yield ethidium
(Etþ). Both 2-OH–Etþ and Etþ display similar spectral properties
([35,60,61]). Therefore it is challenging to independently measure
their fluorescence signal in single living cells. In this study we
measured the combined fluorescence signal of 2-OH–Etþ and Etþ

(“HEt-oxidation products”). In the continuous presence of extra-
cellular HEt, its oxidation products progressively accumulated in
the mitochondrial and nuclear compartment. In vehicle- and in-
hibitor-treated cells mitochondrial fluorescence signals increased
faster than nuclear signals (Fig. 1A). As a consequence, mi-
tochondrial signals were higher than nuclear signals suggesting
that the HEt-oxidation products residing in the nucleus are of
mitochondrial origin [36]. In contrast to primary human skin fi-
broblasts [36], HEK293 cells displayed higher mitochondrial than
nuclear signals, compatible with a mechanism in which HEt is
oxidized faster in HEK293 mitochondria or that these cells more
effectively retain HEt oxidation products in the mitochondrial
matrix. The latter might suggest that HEK293 cells possess a more
negative Δψ than human skin fibroblasts. The level of HEt-oxi-
dizing ROS were higher in AA- than in ROT-treated cells. This is
compatible with previous results in isolated nerve terminals de-
monstrating that, when fully inhibited, the magnitude of CI-de-
rived ROS is less than that observed for CIII-derived ROS [64]. AA-
treatment fully blocked O2 consumption in HEK293 cells, whereas
ROT-treatment was associated with a low (o10%) residual (CII-
mediated) O2 consumption [24]. In this sense, the higher NAD(P)H
level in AA-treated relative to ROT-treated cells might reflect the
more complete block of the ETC by AA, associated with enhanced
stimulation of glycolysis and ensuing NADH production.

4.2. CI and CIII inhibition differentially increase cytosolic H2O2 levels

To quantify [H2O2] in the cytosol and mitochondrial matrix we
used targeted variants of the cpYFP-based sensor HyPer. The pH-
corrected HyPer ratio in the mitochondrial matrix was similar in
vehicle- and inhibitor-treated cells, demonstrating that H2O2 le-
vels in this compartment are not detectably increased by ROT- or
AA-treatment. This result suggests that very little H2O2 is formed
or that it is effectively removed from or within this compartment.
The latter is in line with the idea that mitochondria can act as
cellular sinks of H2O2 [8,66]. In contrast, CI and CIII inhibition
significantly increased cytosolic H2O2 levels. This might be ex-
plained by results obtained with isolated mitochondria, which
demonstrate that CI releases O2

•− into the IMS, whereas CIII re-
leases this ROS both into the matrix and mitochondrial inter-
membrane space at equal rates (see [7] and the references there-
in). Since O2

•− cannot freely cross the MIM it will form H2O2 in the
compartment in which it has been generated, after which it freely
permeates through biological membranes [39]. Compatible with
the HEt measurements, cytosolic H2O2 levels increased to a greater
extent in CIII- than in CI-inhibited cells. In case of CI, the (minimal)
cytosolic H2O2 increase might originate from CI-derived O2

•− that is
formed in the matrix and converted into H2O2 reaching the cyto-
sol. In case of CIII, the cytosolic H2O2 likely derives from O2

•− that is
released by CIII into the IMS and converted in H2O2. Under certain
conditions RET from CII to CI can lead to CI-mediated ROS pro-
duction. However, this RET and ensuing H2O2 production is in-
hibited by the CI inhibitor ROT [56,63]. Since we here observed
that ROT- and AA-treatment increased HEt-oxidation and cytosolic
H2O2 levels it is unlikely that RET mediates the ROS increases.

4.3. ROS generation and the role of Δψ in CI- and CIII-inhibited cells

Using conditions identical to this study, we previously demon-
strated that ROT- and AA-treatment induce a mild Δψ hyperpo-
larization and a relatively large Δψ depolarization, respectively
[24]. Experimental evidence suggests that CI-mediated ROS pro-
duction during ROT inhibition is independent of the mitochondrial
proton motive force (PMF) and stimulated by an increase in
NADH/NADþ ratio [49,63,77]. This is compatible with the observed
Δψ hyperpolarization, increased NAD(P)H autofluorescence and
elevated HEt-oxidation in ROT-treated HEK293 cells. Furthermore,
this suggests that CI-mediated ROS production might contribute to
the increased HEt-oxidation in AA-treated cells. ROS production by
CIII increases exponentially with Δψ in the absence of AA [62]. In
contrast, CIII-mediated ROS production is virtually Δψ-in-
dependent in the presence of AA [30]. Combined experimental and
in silico analysis suggested a bell-shaped dependency of the rate of
CIII-mediated O2

•− generation on the fraction of reduced quinone,
with maximum O2

•− generation reached at a fraction of �0.6 [30].
Taken together, this explains why Δψ hyperpolarization (ROT) and
depolarization (AA) are both associated with increased ROS levels in
HEK293 cells.

4.4. CI and CIII inhibition does not stimulate SOD expression, lipid
peroxidation and protein carbonylation

ROT- and AA-treated cells did not display increased levels of
CuZnSOD and MnSOD, cellular/mitochondrial lipid peroxidation or
protein carbonylation. Compatible with these results, cellular lipid
peroxidation was not increased in fibroblasts of patients with
isolated CI deficiency that displayed increased ROS levels [76].
However, as illustrated by our results with exogenous H2O2 and
MitoQ, live-cell analysis of C11-BODIPY581/591 and MitoPerOx
might be not be sensitive enough to detect small increases in lipid
peroxidation [23,55].

Both ROS and lipid peroxidation products are capable to induce
carbonylation of protein side chains [5,14,65]. In this sense, protein
carbonylation was increased in cybrid cells bearing mtDNA muta-
tions [54] and neuronal cells from NDUFS4-/- mice with isolated CI
deficiency (NesKO mice; [59]). Here we observed that ROT- and AA-
treatment did not stimulate protein carbonylation. Similarly, short
(10 min) AA treatment failed to stimulate protein carbonylation in
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143B osteosarcoma-derived cells [26]. Interestingly, high CuZnSOD
levels are required to limit O2

•− levels and cellular protein carbo-
nylation is increased upon CuZnSOD knockdown [1]. The same
study revealed that ROT treatment (500 nM, 24 h) induced death in
CuZnSOD knockdown cells. Liver mitochondria from heterozygous
MnSOD�/þ mice displayed a reduction in MnSOD activity of 50%
[80]. This reduction was paralleled by increased carbonylation of
mitochondrial but not cytosolic proteins. In this study, inhibitor
treatment did not stimulate CuZnSOD/MnSOD protein levels, did
not markedly reduce cell attachment/viability, and did not increase
lipid peroxidation or protein carbonylation. This suggests that
CuZnSOD and MnSOD activities in HEK293 cells are high enough to
prevent ROS-induced oxidative stress, and that the additional ROS
generated in ROT- and AA-treated cells act not as stressors but
might play a signaling role.
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