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Abstract: The molecular mechanisms of telomerase reverse transcriptase (TERT) upregulation in
breast cancer (BC) are complex. We compared genetic variability within TERT and telomere length
with the clinical data of patients with BC. Additionally, we assessed the expression of the TERT, MYC,
TP53 and SP1 genes in BC patients and in BC organoids (3D cell cultures obtained from breast cancer
tissues). We observed the same correlation in the blood of BC patients and in BC organoids between
the expression of TERT and TP53. Only in BC patients was a correlation found between the expression
of the TERT and MYC genes and between TP53 and MYC. We found associations between TERT
genotypes (rs2735940 and rs10069690) and TP53 expression and telomere length. BC patients with
the TT genotype rs2735940 have a shorter telomere length, but patients with A allele rs10069690 have
a longer telomere length. BC patients with a short allele VNTR-MNS16A showed higher expression
of the SP1 and had a longer telomere. Our results bring new insight into the regulation of TERT,
MYC, TP53 and SP1 gene expression related to TERT genetic variability and telomere length. Our
study also showed for the first time a similar relationship in the expression of the above genes in BC
patients and in BC organoids. These findings suggest that TERT genetic variability, expression and
telomere length might be useful biomarkers for BC, but their prognostic value may vary depending
on the clinical parameters of BC patients and tumor aggressiveness.

Keywords: breast cancer telomerase reverse transcriptase (TERT); telomere length; expression of
transcription factors genes; single nucleotide polymorphism (SNP)

1. Introduction

Breast cancer (BC) is the most common malignant tumor neoplasm in women world-
wide [1]. About ten percent of BC cases are associated with a genetic predisposition or
family history, with variations by country and ethnicity [2]. BC is a heterogeneous and
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polygenic disease, and treatment strategies vary depending on the molecular subtype
as well as the most common differentially expressed genes that exist in different disease
subtypes [3].

The relationship between telomerase reverse transcriptase (TERT) and the risk of
BC has been investigated in several publications in the contexts of gene polymorphism,
telomere length and the mechanism of gene expression regulation [4]. Various mechanisms,
including genetic mutations and epigenetic changes, have been proposed to explain the
pleiotropic association of the 5p15.33 region in which the TERT gene resides with telomerase
activity and cancer predisposition [5,6].

The TERT gene encodes the catalytic subunit of telomerase, which is a key enzyme
for the maintenance of telomere length; therefore, genetic variations in this region likely
influence BC risk through multiple distinct biological pathways, with telomere length
being only one of the implied mechanisms [7,8]. The upregulation of the TERT gene in
BC leads to the activation of telomerase, which contributes to the growth advantage and
survival of tumor cells. The molecular mechanisms of TERT upregulation are complex,
tumor subtype specific and may be clinically relevant [9,10]. The transcriptional regulation
of the TERT gene is a complex process, and several mechanisms that may play a role have
been described, including mutations in the TERT promoter that can alter the binding sites
of transcription factors, e.g., MYC, SP1 and ETS family proteins [11,12].

In BC, mutation of the TERT promoter is rare; therefore, other genetic changes have
been described such as gene amplification and the presence of gene copy number gains or
single nucleotide polymorphisms (SNPs), which may play a regulatory function in TERT
expression and be associated with different telomere lengths [13–15].

The present study investigated the relationship between TERT gene polymorphisms,
both SNPs and a variable number of tandem repeats (VNTR), in the context of mRNA
TERT gene expression and telomere length and clinical parameters in female patients with
BC. Additionally, we assessed the expression of the TERT, MYC, TP53 and SP1 genes in
patients with BC and in BC organoids.

In our study, the same correlation was found between the relative expression of
TERT and TP53 in the whole blood of BC patients and in BC organoids. Moreover, we
observed that the two TERT polymorphisms (rs2735940 and rs10069690) correlated with
TP53 expression and telomere length. Additionally, BC patients with a short allele (S) within
VNTR-MNS16A showed higher expression of the SP1 and had longer telomeres. Our results
provide more information on the regulation of TERT in terms of mRNA expression as well
as the genetic variability of TERT and telomere length in patients with BC. We have also
shown that the TERT related genes MYC, TP53 and SP1 play an important role in BC
carcinogenesis.

2. Results
2.1. Disparities of Single Nucleotide and VNTR-MNS16A TERT Gene Polymorphisms in BC

BC patients and healthy individuals were genotyped for TERT single nucleotide
polymorphism (SNP; rs10069690, rs2735940, rs2736100 and rs2853669) and variable number
tandem repeats MNS16A (VNTR-MNS16A). Their location in the TERT gene is shown
in Figure 1. The genotype frequencies for all the SNPs were consistent with the Hardy–
Weinberg equilibrium in both study groups. Table 1 shows the distribution of the TERT
genotypes in our study group (BC women) and the control group (healthy women) and
the frequency of these polymorphisms in the European population (using data from the
Ensembl database, accessed on 2 February 2022). There was no difference in the distribution
of alleles and genotypes between BC patients and healthy controls in any of the SNPs tested.

Four different VNTR-MNS16A alleles were detected in our BC patients and in the
healthy controls (VNTR-333, VNTR-302, VNTR-274 and VNTR-234; Table 2). Patients
with BC carried eight different genotypes (long (LL): 302/302, 302/333; short/long (SL):
243/302, 243/333, 274/302; short (SS): 243/243, 274/274, 243/274), but seven genotypes
were noted in the control group (no 274/274 genotype as compared to BC patients). The
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tandem repeats rates were consistent with the Hardy–Weinberg equilibrium in the patients
group, but an imbalance was observed in healthy subjects (Table 2). BC patients and healthy
individuals showed no significant differences in the VNTR-MNS16A genotypes and allele
frequencies.

Figure 1. Genomic structure of the human telomerase TERT gene and the location of the studied
SNPs and VNTR polymorphism. The exons are shown in grey, while the intronic regions are in white.

Table 1. Distribution of TERT genotypes in our group of patients with BC, the control group and the
European population.

TERT Genetic
Polymorphism Genotype BC Patients

Frequency
Control Group

Frequency
EUR Population

Frequency

rs10069690
(intron 4)

GG
AG
AA

59 (53.2%)
48 (43.2%)
4 (3.6%)

46 (48.4%)
42 (44.2%)
7 (7.4%)

265 (52.7%)
198 (39.4%)
40 (8.0%)

rs2735940
(promoter

region)

CC
TC
TT

35 (30.9%)
54 (47.8%)
24 (21.2%)

22 (23.2%)
54 (56.8%)
19 (20.0%)

127 (25.2%)
238 (47.3%)
138 (27.4%)

rs2736100
(intron 2)

GG
TG
TT

28 (23.7%)
52 (44.1%)
38 (32.2%)

24 (22.6%)
52 (49.1%)
30 (28,3%)

134 (26.6%)
234 (46.5%)
135 (26.8%)

rs2853669
(promoter

region)

CC
CT
TT

11 (9.8%)
40 (35.7%)
61 (54.5%)

8 (7.5%)
39 (36.8%)
59 (55.7%)

49 (9.7%)
192 (38.2%)
262 (52.1%)

Table 2. TERT VNTR-MNS16A genotype distribution and telomere length in BC patients and healthy
controls.

TERT
VNTR-MNS16A

Genotypes
BC Patients (n)

Telomere Length
(Mean ± Std.

Deviation) [kb]

Health
Controls

(n)

Telomere Length
(Mean ± Std.

Deviation) [kb]

Long VNTR-MNS16A (LL)

302/302 41
4.21 ± 2.85

36
3.79 ± 1.59

302/333 2 3

Short/Long VNTR-MNS16A (SL)

243/302 40

4.95 ± 3.05

46

4.66 ± 1.48243/333 1 2

274/302 5 6

Short VNTR-MNS16A (SS)

243/243 11

6.72 ± 5.48

6

7.80 ± 5.33274/274 3 not detected

243/274 2 1
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2.2. Relationships between the Expression of TERT, SP1, MYC and TP53 Genes in BC Patients and
BC Organoids

In this part of the study, we analyzed the relationships between TERT, SP1, MYC
and TP53 expression, TERT polymorphisms and telomere length in both patients with
BC (n = 50) and BC organoids (n = 9). We observed a correlation between the relative
expression of TERT and TP53 in BC organoids (r = 0.8404, p = 0.0046; Figure 2a) and a
trend towards this association in BC patients (r = 0.3097, p = 0.0646; Figure 2b). Moreover,
we found a relationship between the expression of the SP1 and MYC genes only in BC
organoids (r = 0.6214, p = 0.0116; Figure 2c) and not in BC patients (r =−0.2328, p = 0.1026;
Figure 2d).

Figure 2. Relationships between expression of TERT, TP53, SP1, MYC genes observed in BC organoids
(a,c) and BC patients (b,d). Statistical analysis was performed using the Pearson correlation (PC) test
(a,c) and the Spearman r correlation test (b,d).

A correlation between the expression of the TERT and MYC genes (r = 0.3097, p = 0.0296;
Figure 3a) and between the expression of the TP53 and MYC genes (r = 0.7892, p < 0.0001;
Figure 3c) was also found, but only in BC patients and not in BC organoids (TERT/MYC:
r = 0.0008, p = 0.9416; Figure 3b and TP53/MYC: r = 0.0469, p = 0.5759; Figure 3d).

Additionally, we only observed a trend toward associations between the relative
gene expression of TERT (p = 0.0817) and SP1 (p = 0.0774) in the context of BC subtypes
(Luminal with HER2 gene amplification, Luminal without HER2 gene amplification and
Triple Negative BC). We observed no such associations between MYC and TP53 expressions.
In addition, we observed a trend towards high estrogen receptor expression in patients
with increased TP53 expression (above average) (p = 0.0894). Moreover, BC patients with
low SP1 and MYC (below average) expression were characterized by high progesterone
receptor expression (p = 0.0504 and p = 0.0897, respectively).
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Figure 3. Relationships between the expression of TERT, MYC and TP53 genes observed in the blood
of BC patients (a,c) and BC organoids (b,d). Statistical analysis was performed using the Spearman r
correlation test (a,c) and the Pearson correlation (PC) test (b,d).

2.3. Genetic Variation in TERT, Telomere Length and Expression Level of TP53 and SP1 in
BC Patients

We found a link between the expression level of TP53 and SP1, the genetic variability
in TERT and telomere length. BC patients with the TERT (rs10069690) A allele (p = 0.0266;
Figure 4a) and patients with the TERT (rs2735940) TT genotype had the highest relative
expression of the TP53 gene (p = 0.0340; Figure 4b). Additionally, patients with the TERT
(rs10069690) A allele had the longest telomeres (p = 0.0056) as compared to patients with
the GG genotype (Figure 4c). However, patients with the TT genotype in TERT (rs2735940)
did not have the longest telomeres compared to the other rs2735940 genotypes (CC vs. CT,
p < 0.0001; CC vs. TT, p = 0.0562; CT vs. TT, p = 0.0074, Figure 4d). No significant
associations were observed between either TERT rs2736100 (GG vs. TG, p = 0.5334; GG
vs. TT, p = 0.3780; TG vs. TT, p = 0.7571) or TERT rs2853669 (CC vs. CT, p = 0.6034; CC vs.
TT, p = 0.9039; CT vs. TT, p = 0.4233) and the relative expression levels of TP53. However,
we observed that BC patients with the GG genotype rs2736100 had longer telomeres than
women with the TG and TT genotypes (GG vs. TG, p < 0.0001; GG vs. TT, p = 0.0360; TG vs.
TT, p = 0.0125).

We noticed a trend for a relationship between SP1 gene expression and the TERT
VNTR-MNS16A gene polymorphism in BC patients. BC patients with SL (243/302, 243/333,
274/302) and SS (243/243, 274/274, 243/274) VNTR-MNS16A genotypes had a higher
relative expression of SP1 (p = 0.0670, Figure 5a) and the longest telomeres compared to the
patients with LL genotypes (302/302, 302/333; p = 0.0551; Figure 5b).
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Figure 4. Associations between the TERT gene polymorphisms (10069690 and rs2735940), relative
expression of the TP53 gene (a,b), and telomere length (c,d) in patients with BC. The Mann–Whitney
U test was employed to assess the significance of differences in the expression levels of TP53 and
rs10069690 (a) and in telomere length (c). The Kruskal–Wallis test with the Original FDR method of
Benjamini and Hochberg was used to assess the significance of the relative expression of TP53 and
the genotypes in rs2735940 (b), as well as differences in telomere length (d).

Figure 5. Relationship between the TERT VNTR-MNS16A polymorphism, relative SP1 expression
and telomere length. High relative expression of the SP1 gene is associated with short allele (S) TERT
VNTR-MNS16A (a), which was associated with long telomeres (b). The Mann-Whitney U test was
employed to assess the significance of differences in the expression level of SP1 (a) and the differences
of telomere length (b).
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2.4. Relationship between Gene Expression, TERT Genetic Variability, Telomere Length and
Clinicopathological Hallmarks of Breast Cancer

In the present study, telomere length was measured in three independent groups:
BC patients (n = 108), BC organoids (n = 9) and a group of healthy women (n = 100). We
did not observe any significant differences between the telomere length in BC patients
(4.95 ± 3.61 kb), healthy females (4.43± 2.26 kb) (Table 3) and BC organoids (3.75 ± 1.42 kb).
We also did not notice any significant differences between the TERT genotypes (rs10069690,
rs2735940, rs2736100, rs2853669, VNTR-MNS16A) and telomere length; the details are
presented in Table S1 in the Supplementary Materials. In addition, no relationship was
observed between telomere length and main clinical features (shown in Table 3).

Table 3. Relationships between telomere length and various clinical parameters in patients with BC.

BC Patients n Telomere Length
Median (IQR) [kb] p-Value

Age (range) 18–59 years 108 5.53 (2.68–5.94) 0.4903

Estrogen
receptor

Positive
Negative

93
7

3.44 (2.64–5.76)
5.02 (3.15–5.87) 0.2502

HER2
amplification

Positive
Negative

15
83

4.24 (2.78–6.99)
3.36 (2.64–5.57) 0.3299

Progesterone
receptor

Positive
Negative

88
14

3.53 (2.65–5.92)
5.08 (2.93–6.46) 0.3261

Molecular
subtypes

Luminal with HER2
gene amplification 15 4.70 (2.75–7.09)

0.4797Luminal without
HER2 gene

amplification
76 3.37 (2.62–5.86)

Triple Negative BC 7 5.02 (2.93–5.86)

UICC TNM
stage

I
II
III

48
40
5

3.83 (2.41–5.67)
3.27 (2.69–6.28)
3.26 (3.13–4.08)

0.9433

Pathologic
lymph nodes

status

pN0
pN+

77
24

3.39 (2.64–5.15)
4.12 (2.71–5.94) 0.4666

Germline
mutation

(BRCA1, BRCA2,
CHEK2, PALB2)

Positive
Negative

8
74

6.66 (2.74–6.05)
4.02 (2.66–6.28) 0.6727

It was observed that BC patients with an intermediate Ki67 proliferation index
(25–50%) had the lowest relative expression of TP53—lower than patients with low (2–20%)
and high (60–85%; p = 0.0221) levels of Ki67. Similarly, intermediate levels of Ki67 were
characterized by the lowest expression of TERT, although this was not statistically signif-
icant. In addition, BC patients lacking the expression of the estrogen receptor tended to
have lower relative TP53 expression (p = 0.0894).

Analysis of the TERT polymorphisms showed that BC patients with T allele rs2736100
and C rs2735940 had more invasive tumors (assessed according to histologic grade (G),
describing the aggressiveness and dynamics of tumor development) than patients with the
GG genotype (rs2736100, p = 0.0008) and TT genotype (rs2735940, p = 0.0055). Moreover,
TERT rs10069690 polymorphism showed that patients with the A allele had HER2 gene
amplification less frequently (p = 0.0268).

Additionally, BC patients with the GG genotype (rs2736100) had higher parathyroid
hormone (PTH) levels (40.64 ± 16.78 pg/mL) than heterozygotes (28.11 ± 10.67 pg/mL;
p = 0.0400) and TT homozygotes (35.36 ± 10.82 pg/mL; p = 0.0469). However, in the case
of rs2735940 TERT polymorphism, it was observed that the heterozygous group of patients
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(28.73 ± 10.52 pg/mL) had the lowest concentration of PTH in the blood (p = 0.0408).
For the TERT rs2853669 polymorphism, we only observed that BC patients with the TT
genotype had higher blood estradiol levels (62.41 ± 61.90 pg/mL) compared to patients
with C allele (25.80 ± 53.43 pg/mL; p = 0.0051).

The VNTR-MNS16A analysis showed that women with SS genotypes showed fewer in-
vasive tumors classified by G feature than women with the LL or SL genotypes (p = 0.0181).
Moreover, BC patients with heterozygous genotypes (SL) had less HER2 amplification/over-
expression than patients with homozygous genotypes (SS + LL) (p = 0.0097).

Additionally, we performed a linkage disequilibrium (LD) analysis and found that the
two TERT SNPs (rs2736100 and rs2735940) were in a medium LD (r2 = 0.54 in BC patients;
Figure 6). Moreover, three TERT SNPs (rs2736100, rs2853669 and rs2735940) were in a low
LD (r2 = 0.10 in BC patients; Figure 6).

Figure 6. Analysis of linkage disequilibrium in patients with BC. Darker color shows higher r2 values,
while the value shown in the squares is r2 × 102. LD was considered to be medium for r2 > 20 and
strong for r2 > 80. The chart was created using the Haploview 4.2 software.

We observed an association between the two SNPs rs2853669 (allele C) and rs2735940
(genotype TT) by which BC patients with this combination of C allele and TT genotype
presented higher levels of estradiol (54.58 ± 63.87 vs. 11.33 ± 11.04 pg/mL; p = 0.0484).

Additionally, further analysis showed that patients with the TCC (rs2736100, rs2853669
and rs2735940, respectively) were characterized by G feature (p = 0.0317). In addition, we
observed a relationship between the combination of VNTR-MNS16A (L alleles) and TCC
(rs2736100, rs2853669, rs2735940), showing that the BC patients with LTCC had more
invasive tumors classified by G feature (p = 0.0029). Another combination showed that
BC patients with the alleles T (rs2736100) and A (rs10069690) and with the SL genotype
VNTR-MNS16A had a lower frequency of HER2 amplification/overexpression (p = 0.0008).

3. Discussion

Breast cancer (BC) is characterized by a high level of gene heterogeneity. The determi-
nation of the molecular/biologic subtypes of BC is an important issue for the classification
of this disease according to the status of hormone receptors (estrogen and progesterone),
the human epidermal growth factor receptor 2 (HER2) and the Ki67 proliferation index.
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All these variables, together with the presence of somatic and/or germline mutations, are
important for the prognosis and individual treatment of BC patients.

TERT appears to play a significant role in the description of BC [16,17]. Therefore, our
research covered TERT gene expression and telomere length, as well as the expression of
the transcription factors MYC, SP1 and TP53 detected at the mRNA level. Moreover, the
genetic variability of the TERT gene was detected at the level of SNPs and VNTR in the
context of telomere length and the clinical parameters of patients with BC.

The TERT gene is a major functional subunit of telomerase, and telomere length is
critical to genome stability. Although the molecular mechanisms of TERT regulation have
been described in detail in many cancers, it is not well understood in BC. It is known
that many cellular processes are related to the presence of telomerase and are associated
with apoptosis, uncontrolled cell division, the breakdown of the division cycle and the
repair of damaged DNA. In this context, the choice to examine TERT and TP53 gene
expression seems justified. Molecular disruptions, e.g., mutation in both TERT and TP53
genes, can alter expression and often lead to aberrant telomerase activation that can induce
uncontrolled cell proliferation and oncogenesis in BC.

In the present study, we showed that BC patients with a high Ki67 proliferation index
(60–80%) had an increased relative expression of the TP53 gene compared to patients with
a low Ki67 index (25–50%), who had a lower TP53 expression. Similar data, although not
statistically significant, were observed in the expression of the TERT gene, where high
levels of Ki67 were characterized by high TERT expression (see the Results section).

The TP53 gene is a well-known tumor suppressor gene—also known as the “guardian
of the genome”—and its mutations may be considered a major biomarker of cancer. Its role
has been associated with the regulation of apoptosis, cell cycle control and DNA damage
repair processes [18].

We used cells from two sources, the blood of BC patients and BC organoids, to compare
the expression of the TERT, TP53, MYC and SP1 genes. We found correlations within the
genes TERT and TP53 in both of these two independent cell models.

It is important to know that under physiological conditions, the exposure of cells
to various stress signals activates the p53 signaling pathway, allowing cells to activate
several transcriptional programs, including cell cycle arrest, DNA repair, senescence and
apoptosis, leading to the suppression of tumor growth [19,20]. It should be noted that all
these processes are related to telomerase activity and the expression of TERT. Inactivation of
the TP53 gene caused by mutation drives cell invasion, proliferation and survival, thereby
facilitating cancer progression and metastasis [21]. Marei et al. highlights recent advances
in the understanding of the regulatory network by which mutant p53 proteins can modulate
the molecular signaling pathways involved in cancer progression and/or protection [22].
A mutation in the TP53 gene is detectable in approximately 50% of human breast, colon,
lung, liver, prostate, bladder and skin cancers [23]. Many of these mutant p53 proteins are
oncogenic and therefore modulate the ability of cancer cells to proliferate, escape apoptosis,
invade and metastasize [24]. TP53 has also been documented to be involved in the cellular
responses to dysfunctional telomeres. Guièze et al. showed that patients with chronic
lymphocytic leukemia (CLL) with impaired TP53 have severe telomere dysfunction and
high genomic instability. This group found that each type of TP53 alteration was associated
with very short telomeres and high TERT expression. Additionally, the disruption of
TP53 was characterized by the downregulation of the shelterin complex genes within the
telomerase complex [25].

In our study, we observed a dual role of telomere length in the context of TP53
expression and TERT variability. BC patients with the TT genotype in the TERT promoter
(rs2735940) have a shorter telomere length and higher TP53 expression. The opposite
effect was observed in BC patients with A allele in intron 4 (rs10069690), who had a longer
telomere length and higher TP53 gene expression (see Figure 4).

The relationship between telomere length and BC risk is contradictory. First, no
significant association was found between telomere length and the risk of BC [26–28].
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Secondly, some recent reports have suggested that longer telomere lengths have been
associated with an increased risk of BC [29,30]. Pellat et al.’s study strongly suggests that
both telomere length and telomere related genes influence BC risk and that the tumor
estrogen and progesterone receptors appear to be important modifiers of the associations
with telomere related genes and BC risk [8]. However, other studies found that a shorter
telomere length was associated with an increased risk of BC [31]. Shen et al. observed that,
overall, telomere length was not significantly associated with the risk of BC. However, they
noted that a shorter telomere length may be associated with an increased risk of BC in
premenopausal women [31]. Additionally, Pooley et al. found a strong association between
a shorter telomere length and BC risk [32]. One study found that both shorter and longer
telomeres were associated with an increased risk of BC [33]. Oztas et al. reported that
the rs2736100 TERT C allele is not associated with BC risk, but Aydin et al. observed the
opposite [34,35]. De Souza Rodrigues et al. showed that the TERT variants rs2736098,
rs10069690 and rs2853676 were associated with an increased risk of BC [17]. Additionally,
it was observed that the VNTR-MNS16A influences the risk of BC in the Iranian population
but not in the Greeks and Americans [36]. A meta-analysis by Aziz et al. did not show any
significant associations of rs2853669 (located in the promoter region of TERT) genotypes
in Caucasian BC patients [37]. Moreover, Varadi et al. found no clear association between
a reduction in hereditary or occasional BC risk with rs2853669 in a cohort of Swedish
patients [38].

In our study, we did not observe any significant differences in telomere length in
BC patients with the TERT rs2736100 and rs2853669 alleles and genotypes. However, we
noticed that patients with TERT VNTR-MNS16A with a short (S) allele had longer telomeres
and higher expression of SP1 mRNA (see Figure 5).

In an earlier study, Hofer et al. discussed the role of the VNTR-MNS16A polymorphism
in the context of transcription factors and showed that transcription activity depends on
various VNTR-MNS16A length variants presenting a different number of transcription
factor binding sites for the GATA binding protein 1 [39].

In our study, we noticed a trend towards association between the expression of the
SP1 gene and the TERT VNTR-MNS16A gene polymorphism. Our BC patients with the S
allele had a higher relative expression of SP1 and longer telomeres than the patients with
LL genotypes (see Figure 5a,b).

When we compared the genetic variability of TERT with the clinical data of the BC
patients, we showed that BC patients with more invasive tumors were characterized by
VNTR-MNS16A L allele and TCC (rs2736100, rs2853669 and rs2735940, respectively). Addi-
tionally, BC patients with the T allele (rs2736100), A allele (rs10069690) and SL genotype
VNTR-MNS16A had a lower frequency of HER2 amplification/overexpression. Moreover,
patients with the TT genotype (rs2735940) and with the C allele (rs2853669) were character-
ized by lower levels of estradiol and higher levels of progesterone. Regarding the analysis
of clinical data, Bojesen et al. showed that TERT rs10069690 is associated with a risk of
estrogen receptor negative BC and BC in BRCA1 mutation carriers, which is consistent with
another observation that showed that most incidents of BC arising from BRCA1 mutation
carriers are estrogen receptor negative [40]. In our present study, we did not observe
any significant association of genotype and risk of BC or TERT SNP with estrogen and
progesterone receptor status and BRCA1 mutation.

Interesting results documented by Gay-Bellile et al. presented the role of the TERT
T349C (rs2853669) promoter polymorphism, which was not correlated with TERT expres-
sion, but carriers of the TC and CC genotypes had a significantly shorter disease-free
survival [14]. Our present results confirm their observation of TERT expression in both BC
patients and BC organoids, as TERT rs2853669 was not associated with TERT expression.
Additionally, Gay-Bellile et al. showed that TERT gains found in 15–25% of cases were
strongly correlated with increased TERT mRNA expression and worse patient prognosis in
terms of disease-free and overall survival [14].
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Our study provides definitive evidence of the genetic control of telomere length by
some of the genetic variants in the TERT locus (e.g., VNTR-MNS16A, rs2735940, rs10069690).
Additionally, we showed that TERT genetic variants could be potential prognostic biomark-
ers of BC associated with tumor invasiveness. Given the limitations of this study, future
studies with a larger sample size to validate the current findings are needed, as well as
functional studies to reveal the role of the TERT gene polymorphism and mRNA expression
in BC carcinogenesis.

4. Materials and Methods
4.1. Patients and Controls

The study included 108 Polish women (age range at diagnosis: 32–86 years, median
61 years) treated for invasive breast cancer at the Lower Silesian Oncology, Pulmonology
and Hematology Center (Wroclaw, Poland). The blood samples were collected at diagnosis
after obtaining informed consent from the patients. All methods were according to the
Declaration of Helsinki. The approval of the Bioethical Committee of Wroclaw Medical
University was obtained for the study (No. KB—808/2019). Additionally, 100 healthy
blood donors (age range: 18–59, median 21 years) served as a control group for the study of
TERT polymorphisms and telomere length. Relationships between telomere length and the
various clinical parameters of the studied group are presented in Table 3. Our study group
included 8 women with different variants of germline mutations in the BRCA1 (c.181T > G
(p.Cys61Gly); c.5266dupC)), BRCA2 (c.9227G > A; c.10202C > T (p.Thr3401Met)), CHEK2
(c.444 + 1G > A (IVS3 + 1G > A)) and PALB2 (c.172_175del) genes, 74 BC patients without
these germline mutations and 26 BC patients who were not tested for germline mutations.
All BC patients and control subjects were Polish Caucasians recruited from the population
of Lower Silesia (south-western province of Poland, ≈ 2.9 M population in 2019).

4.2. Breast Cancer Organoids

The sample was the tissue from eight BC patients (age range at diagnosis: 37–76
years old, median 47 years) with infiltrating duct carcinoma [(NOS) 8500/3] G1, 2, 3
before radiotherapy, chemotherapy and other treatment. The tissues were delivered as
a postoperational material from the Gdynia Oncology Center of the Polish Red Cross
Maritime Hospital. The human material was sampled according to the local bioethical
commission guidelines (but no particular permission was required since the material was
obtained within regular surgery operations removing carcinoma). However, according to
the bioethical commission guidelines, the informed consent of the patient was necessary
and was obtained each time. The tissues were then washed using phosphate buffer saline
(PBS 1 ×, Gibco, Waltham, MA, USA) and preserved in the transfer medium consisting
of DMEM/F12, +10% Fetal Bovine Serum (FBS, Sigma-Aldrich, Saint Louis, MO, USA)
+ 100 µg/mL Penicillin/Streptomycin + 5 µg/mL Piramycin + 50 U/mL Polymyxin B
before being isolated. After that, the tissues were washed with 1 × PBS in a Petri dish and
then cut into small pieces using a surgical scalpel. The sample fragments were washed
again with 1 × PBS, inserted into a 15 mL falcon tube (Sigma-Aldrich, Saint Louis, MO,
USA) containing the mixed enzyme solution and then incubated for 16 h, 300 rpm, 37 ◦C.
After incubation, the samples were filtered using 100 µm and 40 µm cell strainer (Corning,
New York, NY, USA) and then centrifuged at 600× g for 5 min. The supernatant was
discarded, and the pellet containing tissue fragments was washed with 1 × PBS and
centrifuged at 600× g for 5 min. One part of the material was frozen using RNA later
(Thermo Fisher Scientific, Waltham, MA, USA) or 50% DMEM/F12 + 44% FBS + 6%
Dimethyl sulfoxide (DMSO, Sigma-Aldrich, Saint Louis, MO, USA) and Nunc type freezing
ampoules (Thermo Fisher Scientific, Waltham, MA, USA). The remnant pellet was then
resuspended with the culture initiation media and cultured in a 6-well plate (37 ◦C, 5%
CO2) for 48 h. Afterwards, the media mix was removed and the stimulation medium
was added, which was replaced every 3 days. Next, the cells were transferred into T75
flasks and cultured in the stimulation medium until reaching a confluence of 80%. The
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cultured cells were then detached using trypsin (Sigma-Aldrich, Saint Louis, MO, USA)
and incubated for 1–3 min at 37 ◦C, and medium containing FBS was added to neutralize
trypsin. The detached cells were centrifuged at 600× g for 5 min at room temperature. The
cells were counted using a Z series Coulter Counter by Beckman Coulter, Indianapolis, IN,
USA. Eventually, the cells were frozen using RNA later or 75% stimulation medium + 15%
FBS + 10% DMSO and Nunc type freezing ampoules. The ampoules were stored at −80 ◦C
until further analysis.

4.3. DNA Extraction

Genomic DNA was isolated from 200 µL of peripheral blood taken on EDTA using
the NucleoSpin Blood kit (MACHEREY-NAGEL GmbH & Co. KG, Dueren, Germany)
according to the manufacturer’s instructions. Genomic DNA from the BC organoids
was isolated using NucleoSpin Tissue XS kits (MACHEREY-NAGEL GmbH & Co. KG,
Dueren, Germany). DNA concentration and purity were quantified on a DeNovix DS-11
spectrophotometer (DeNovix Inc., Wilmington, DE, USA). The isolated DNA was then
stored at −20 ◦C until TERT genotyping and evaluation of the telomere length in patients
with BC and BC organoids.

4.4. Genotyping of TERT Gene Polymorphisms

The selection of the studied single nucleotide polymorphisms (SNPs) within the TERT
gene was based on results of the SNP Function Prediction tool available on the website
of the National Institute of Environmental Health Sciences (NCBI Database), as well as
other auxiliary databases (https://snpinfo.niehs.nih.gov/snpinfo/snpfunc.html (accessed
on 2 February 2022); https://www.ncbi.nlm.nih.gov/snp/ (accessed on 2 February 2022);
https://www.ensembl.org/index.html (accessed on 2 February 2022). The following crite-
ria were used: minor allele frequency in Caucasians above 10%, change in RNA and/or
amino acid chain, potential splicing site and/or miRNA binding site.

Based on the above criteria, four TERT SNPs were selected for the study: rs10069690
(G > A) located in intron 4; rs2736100 (G > T) located in intron 2; rs2853669 (T > C) and
rs2735940 (T > C), both located in the promoter region at −245 bp (Ets2 binding site)
and 1327 bp upstream of the transcription start site, respectively. The TERT polymor-
phisms were determined by LightSNiP typing assays (TIB MOLBIOL, Berlin, Germany)
using quantitative polymerase chain reaction (qPCR). Amplifications were performed on a
LightCycler480 II Real-Time PCR system (Roche Diagnostics International AG, Rotkreuz,
Switzerland) according to the recommendations of the manufacturer. The PCR conditions
were as follows: 95 ◦C for 10 min followed by 45 cycles of 95 ◦C for 10 s, 60 ◦C for 10 s and
72 ◦C for 15 s. PCR was followed by one cycle of 95 ◦C for 30 s, 40 ◦C for 2 min and gradual
melting from 75 ◦C to 40 ◦C.

4.5. VNTR-MNS16A Genotyping of the TERT Gene

The presence of the VNTR-MNS16A TERT gene polymorphism was assessed in BC
patients and in healthy women by PCR amplification followed by electrophoresis in se-
quencing gel, as described by Wysoczanska et al. [41]. PCR was performed in a 2720
Thermal Cycler instrument (Applied Biosystems, Foster City, CA, USA) using the forward
and reverse primer sequences (5′-AGGATTCTGATCTCTGAAGGGTG-3′ and 5′-TAMRA-
TCTGCCTGAGGAAGGACGTATG-3′) prepared by Genomed (Warsaw, Poland). The
amplification procedure included an initial denaturation step for 5 min at 95 ◦C, followed
by 35 cycles: 30 s at 95 ◦C, 30 s at 65 ◦C, 30 s at 72 ◦C and a final extension step for 10 min at
72 ◦C. The PCR products were diluted with formamide and a GeneScan™500 ROX™ dye
Size Standard (Applied Biosystems, Foster City, CA, USA). The samples were denatured at
95 ◦C for 5 min and analyzed on the 3500 Genetic Analyzer (Applied Biosystems, Foster
City, CA, USA) with an eight-capillary system filled with POP7 polymer (Applied Biosys-
tems, Foster City, CA, USA). The alleles were identified using the GeneMapper software
version 4.2 (Applied Biosystems, Foster City, CA, USA).

https://snpinfo.niehs.nih.gov/snpinfo/snpfunc.html
https://www.ncbi.nlm.nih.gov/snp/
https://www.ensembl.org/index.html
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4.6. Quantification of Telomere Length

Mean telomere length was measured in the genomic DNA samples of 108 BC patients,
100 controls and 9 BC organoids. The DNA samples were diluted with nuclease-free wa-
ter to a concentration of 5 ng/mL. Telomere length measurements were performed on
a LightCycler480 II Real-Time PCR system (Roche Diagnostics International, Rotkreuz,
Switzerland) using qPCR test kits (ScienCell’s Absolute Human Telomere Length Quantifi-
cation qPCR Assay Kit [AHTLQ], Carlsbad, CA, USA), as previously described by Dratwa
et al. [42]. The PCR conditions were as follows: 95 ◦C for 10 min followed by 32 cycles of
95 ◦C for 20 s, 52 ◦C for 20 s and 72 ◦C for 45 s. Data analysis was conducted according to
the manufacturer’s instructions. All reactions were run in three replicates.

4.7. Extraction of RNA, Reverse Transcription and TERT, SP1, MYC and TP53 Genes
Expression Study

The RNA of 50 patients with BC and 9 BC organoids was extracted from 106 cells
suspended in RNA Extracol (EURx, Gdansk, Poland) or RNA later (Thermo Fisher Scientific,
Waltham, MA, USA) according to the manufacturer’s instructions. RNA purity and integrity
were verified on a DeNovix DS-11 spectrophotometer (DeNovix Inc., Wilmington, DE, USA)
and gel electrophoresis. A total of 1 µg/µL of the isolated RNA was used for the reverse
transcription reaction. cDNA was synthesized using the High Capacity cDNA Reverse
Transcriptase kit (Applied Biosystems™, Foster City, CA, USA), and 0.5 µL of RNase
Inhibitor (Applied Biosystems™, Foster City, CA, USA) was added per sample to convert
the extracted and purified RNA into cDNA. The conversion step was performed on a
SimpliAmp™ Thermal Cycler (Applied Biosystems®, Foster City, CA, USA). After this step,
the samples were stored in a freezer at −20 ◦C until further use.

Four genes were included in the expression experiments: TERT (Hs_00972,650_m1),
SP1 (Hs_00916521_m1), MYC (Hs_00153408_m1) and TP53 (Hs_01034249_m1). GAPDH
(Hs02786624_g1) and ACTB (Hs_01060665_g1) were used as housekeeping genes to nor-
malize RNA expression data. TaqMan® Gene expression assays were used for detection
(Applied Biosystems Foster City, CA, USA), and qPCR was performed using the LightCy-
cler 480 II Real-Time PCR system (Roche Diagnostics International, Rotkreuz, Switzerland).
The following protocol was used for each PCR sample: 5 µL of cDNA, 1 µL (20×) each
primer/probe, 10 µL (2×) of TaqMan® Gene Expression Master Mix (Applied Biosystems™,
Foster City, CA, USA), 4 µL of ultra-pure water. Amplification was performed under the
following conditions: initial denaturation for 10 min at 95 ◦C was followed by 40 cycles of
denaturation for 15 s at 95 ◦C and annealing for 1 min at 60 ◦C. Relative genes’ expression
levels were calculated by the 2−∆CT method. Each sample was analyzed in triplicate to
validate the technique and CT values, according to the international standards for the
evaluation of gene expression by real-time PCR.

4.8. Statistical Analysis

The null hypothesis that there is no difference between the frequency of alleles and
genotypes between patients and controls was verified with the Fisher’s exact test, calculated
using the online tool http://vassarstats.net/tab2x2.htm (version as of 2 February 2022).
In each experiment, the normality of the data was verified with the Shapiro-Wilk test.
The remaining statistical analyses of the differences between the groups were performed
using one-way analysis of variance (ANOVA) to determine the significance of intergroup
differences, and the obtained p-values were corrected by the Benjamini and Hochberg
method. Taking into account that the distribution of some data deviates from the normal
distribution, the non-parametric U Mann–Whitney test was performed for the comparison
of telomere lengths and gene expression. The correlations were statistically evaluated
using the Pearson correlation (PC) test or the Spearman r test. The statistical calculations
were performed by the GraphPad Prism software (GraphPad Software, La Jolla, CA, USA,
version 8.0.1) and the Real Statistics Resource Pack for Microsoft Excel 2019 (version
16.0.10369.20032, Microsoft Corporation, Redmont, Washington, DC, USA). The probability

http://vassarstats.net/tab2x2.htm
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(p) values < 0.05 were considered statistically significant, while the trend index was between
0.05 and 0.10.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ijms23095164/s1.
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