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Abstract: Current multimodal approaches for the prognostication of out-of-hospital cardiac arrest
(OHCA) are based mainly on the prediction of poor neurological outcomes; however, it is challenging
to identify patients expected to have a favorable outcome, especially before the return of spontaneous
circulation (ROSC). We developed and validated a machine learning-based system to predict good
outcome in OHCA patients before ROSC. This prospective, multicenter, registry-based study analyzed
non-traumatic OHCA data collected between October 2015 and June 2017. We used information
available before ROSC as predictor variables, and the primary outcome was neurologically intact
survival at discharge, defined as cerebral performance category 1 or 2. The developed models’
robustness were evaluated and compared with various score metrics to confirm their performance.
The model using a voting classifier had the best performance in predicting good neurological
outcome (area under the curve = 0.926). We confirmed that the six top-weighted variables predicting
neurological outcomes, such as several duration variables after the instant of OHCA and several
electrocardiogram variables in the voting classifier model, showed significant differences between
the two neurological outcome groups. These findings demonstrate the potential utility of a machine
learning model to predict good neurological outcome of OHCA patients before ROSC.

Keywords: emergency departments; machine learning; out-of-hospital cardiac arrest; outcomes;
resuscitation; targeted temperature management

1. Introduction

Despite advances in cardiac arrest resuscitation, the rate of survival to discharge
in patients with out-of-hospital cardiac arrest (OHCA) who receive cardiopulmonary
resuscitation (CPR) remains low, ranging from 6.7% to 10.8%, and only 5% of survivors
experience full neurological recovery [1–5].

Current guidelines recommend that neurological outcomes in patients with OHCA
should be predicted based on multimodal approaches to minimize the risk of falsely pre-
dicting poor outcomes, which may lead to the withdrawal of life-sustaining treatment [6].
Multimodal approaches include the use of clinical examination, serum biomarkers, elec-
trophysiological tests, and neuroimaging. However, one of the most pressing issues for
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relatives and healthcare workers is to rapidly obtain reliable information regarding the
probability of achieving favorable neurological outcomes [7]. Although numerous studies
have focused on developing prediction models for poor outcomes [8,9], it is also essential
to develop strategies for predicting favorable neurological outcomes to appropriately tailor
medical therapies for individual patients. Furthermore, extracorporeal membrane oxygena-
tion (ECMO)-CPR in the emergency departments (EDs) has been suggested as a potential
rescue therapy in patients with refractory OHCA and suspected cardiogenic etiology of
the arrest. Before the return of spontaneous circulation (ROSC), reliable information for
expected good neurological survival can impact the choices of appropriate care provided
by caregivers and the provision of advanced interventions by physicians. The OHCA
risk score using variables available at hospital admission showed an area under the curve
(AUC) of 0.88. However, this score was based on a small number of patients (n = 130)
who were relatively young compared to those in other studies [10]. The Cardiac Arrest
Hospital Prognosis (CAHP) score, which was developed using a large number of patients,
performs similarly (AUC 0.93) [11]. Unlike our study, OHCA and CAHP scores include a
patient population that has already achieved ROSC [1,11]. The recently published shock-
able rhythm-witness-age-pH (SWAP) score, based on a large cohort, also showed a similar
diagnostic capability (when SWAP score > 2, sensitivity = 75.0% and specificity = 89.5% for
poor neurological outcome) [1].

Newer computational methods, namely machine learning (ML), may allow more ac-
curate prediction than risk assessment tools developed using standard methods. Targeted
machine learning (ML) algorithms triggered by patient data have been increasingly devel-
oped as clinical decision support tools in various diseases including sepsis, gastrointestinal
bleeding, and acute kidney injury [12–19]. Although several ML models for predicting the
development of in-hospital cardiac arrest have been reported in the resuscitation field, there
remains a paucity of data regarding an ML system for the prediction of good outcomes in
patients with OHCA. Especially in cardiac arrest patients without pre-hospital ROSC, the
probability of achieving favorable neurological outcomes is an important issue. However,
the few recent studies of deep-learning-based prognostic systems did not exclude patients
with pre-hospital ROSC [20].

Given the complexity and time dependency of OHCA patients receiving CPR, ML-
based methods are expected to provide a good foundation for developing tools for the
prediction of favorable outcomes. The objective of this study was to develop and validate
an ML-based prognostic model for good neurological outcome in patients with OHCA
before ROSC using a nationwide multicenter prospective observational registry.

2. Materials and Methods
2.1. Study Design and Population

This multicenter prospective observational study used data from the Korean Cardiac
Arrest Research Consortium (KoCARC) [21]. The institutional review board of each center
within the KoCARC approved the study protocol. Data were obtained from the KoCARC
registry database in Korea for cardiac arrest events that occurred between 1 October
2015 and 30 June 2018. We included patients with OHCA transported to the emergency
department (ED) by emergency medical service (EMS) with resuscitation [21]. We excluded
OHCA patients with pre-hospital ROSC, terminal illness documented by medical records,
patients under hospice care, pregnant patients, and patients with a previously documented
‘Do Not Resuscitate’ card [21]. We also excluded OHCA patients with specific nonmedical
etiology such as trauma, drowning, poisoning, burn, asphyxia, or hanging [21].

2.2. OHCA Registry and Definition

The KoCARC is a hospital-based collaborative research network aiming to enhance
the effectiveness and professionalism of research on the chain of survival. This registry
was organized in 2014 after recruiting hospitals willing to participate voluntarily in the
consortium [21]. Data were entered into a web-based electronic database registry using
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a standardized registry form [21]. Each participating hospital has a designated research
coordinator who is responsible for ensuring data accuracy [21]. To ensure patient privacy,
patient identifiers are anonymized [21]. This study used 21 independent and 1 dependent
variables described below from the KoCARC registry: demographics including sex and
age, CPR-related characteristics such as the presence of a witness or bystander CPR,
initial electrocardiography (ECG) rhythms obtained pre-hospital arrival or in the ED, and
provision of CPR by EMS or in the ED, CPR-related time variables such as basic life
support interval (time from collapse to the initiation of chest compression attempts at the
scene), defibrillation interval (time from collapse to the initiation of electrical shock), and
pre-hospital interval (time from collapse to ED arrival), and clinical outcomes, including
the presence of ROSC, ED outcomes (admitted, died, or transferred), hospital outcomes
(discharged alive, died, or transferred), and neurological outcomes at the time of discharge.
We did not use information such as laboratory test results or post-cardiac arrest treatment
that was not available at the time of initial resuscitation.

The onset of cardiac arrest for a witnessed arrest was defined as the first recognition
of unresponsiveness and apnea by anyone, including the first responder, lay-rescuer, or
EMS. For unwitnessed arrests, it was defined as the time of recognition by the EMS.
Sustained ROSC was defined as the restoration of a palpable pulse for at least 20 min.
We defined downtime as the time from the onset of cardiac arrest to sustained ROSC.
Survival to discharge was defined as discharge to home or transfer to another facility
after admission to the hospital. Neurological outcome was quantified based on cerebral
performance category (CPC) scores at the time of hospital discharge as follows: (1) no
significant impairment, (2) moderate impairment but can complete activities of daily living,
(3) severe impairment but conscious, (4) vegetative state or coma, and (5) death [22]. The
primary endpoint was a good neurological outcome, defined as CPC scores of 1 or 2, while
CPC scores of 3 to 5 were considered a poor outcome.

2.3. Methods (Machine Learning Algorithms)

This study developed models to predict outcomes using four supervised ML algo-
rithms (regularized logistic regression (RLR), random forest (RF), XGBoost (XGB), and the
voting classifier (VC) that was created with the three other models by a 1:1:1 ratio of votes).
Details of the four machine learning methods applied in this study are described in the
summary of used machine learning algorithm section of the Supplementary Material. In
our dataset, the incidence of good neurological outcomes was highly imbalanced (Table 1
and Table S1). We performed data resampling in the two outcome groups [23] and tried to
convert binary classification to multiclass classification by dividing the major or minority
groups into two or more subgroups. However, these steps did not improve the metrics
to be described. Stratified five-fold cross-validation was implemented to identify and
validate the best-performing of the four ML models under generalized circumstances. The
parameters were optimized by a grid-search algorithm for the highest Cohen’s kappa. The
four best-performing trained ML models were evaluated based on the ratio of predicted
good neurological outcome, area under the curve (AUC), log loss, and Brier score (BS) [24].
We also compared models using evaluation metrics such as sensitivity, specificity, positive
predictive value (PPV), negative predictive value (NPV), F1-score, Cohen’s kappa, and net
reclassification index (NRI). All scores of the four ML models and their 95% confidence
intervals (CIs) were computed using 50 different samples from combinations of 10 imputa-
tion datasets (explained in Section 2.4 below) and five-fold cross-validation. Finally, local
interpretable model-agnostic explanations of the VC model were performed. The open-
source language, Python 3.7.6 [25], and its extension packages, scipy 1.2.1 [26], scikit-learn
0.22.2 [27], numpy 1.17.2 [28], xgboost 1.1.0 [29], matplotlib 3.0.2 [30], lime 0.1.1.33 [31],
seaborn 0.10.0 [32], and venn 0.1.3 [33], were used in the ML.
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Table 1. Basic statistics of the variables of the study subjects categorized according to neurological outcome.

Predictor Variables Good Neurological
Outcomes (n = 105)

Poor Neurological
Outcomes (n = 5634) p-Value

Demographics

Age (median, (IQR)) 57 (47–66) 71 (58–80) <0.001
Male sex (n, %) 72 (68.6%) 3596 (63.8%) 0.367

Hypertension (n, %) 45 (43.0%) 2268 (40.3%) 0.743
Diabetes mellitus (n, %) 22 (21.0%) 1438 (25.5%) 0.099

Dyslipidemia (n, %) 5 (4.76%) 259 (4.60%) 0.971

Pre-hospital

Witnessed (n, %) 85 (81.0%) 3149 (55.9%) <0.001
Occurrence at house (n, %) 39 (37.1%) 3687 (65.4%) <0.001

Bystander CPR (n, %) 39 (37.1%) 2702 (48.0%) 0.051
Automated external defibrillation use (n, %) 3 (2.85%) 55 (0.976%) 0.152

First ECG rhythm (n, %)

<0.001
Ventricular fibrillation 47 (44.8%) 648 (11.5%)

Pulseless ventricular tachycardia 2 (1.90%) 26 (0.461%)
Pulseless electrical activity 31 (29.5%) 1150 (20.4%)

Asystole 12 (11.4%) 3451 (61.3%)
Airway (n, %) 72 (68.6%) 1083 (19.2%) <0.001

4483 (79.6%) 0.007

Hospital

Endotracheal intubation (n, %) 99 (94.3%) 5015 (89.0%) 0.347
First ECG rhythm (n, %)

<0.001
Ventricular fibrillation 37 (35.2%) 290 (5.14%)

Pulseless ventricular tachycardia 1 (0.952%) 13 (0.231%)
Pulseless electrical activity 38 (36.2%) 1078 (19.1%)

Asystole 24 (22.9%) 4114 (73.0%)
Use of mechanical compressor (n, %) 17 (16.2%) 925 (16.4%) 0.955

Total epinephrine (mg, median, (IQR)) 2 (1–4) 6 (3–9) <0.001
Defibrillation number (median, (IQR)) 0 (0–3) 0 (0–0) <0.001

Duration

Duration of resuscitation, (min, median,
(IQR))
Total 27 (15–43) 55 (42–71) <0.001

Pre-hospital 17 (7–26) 26 (19–36) <0.001
Hospital 6 (3–12) 20 (11–30) <0.001

No flow time, (min, median, (IQR)) 0 (0–5) 0 (0–8) 0.016

CPR: Cardiopulmonary resuscitation, IQR: Interquartile range, ECG: electrocardiography.

2.4. Statistical Analysis

Continuous variables were expressed as medians with interquartile range (IQR).
Categorical variables were reported as numbers and percentages. Mann–Whitney U tests
were used to compare the values of continuous variables. Chi-square or Fisher’s exact
tests were used for categorical variables. The variables in our data had missing values. By
considering the missing values to be missing at random (MAR), it is possible to use multiple
imputation by chained equations (MICE) to fill in the missing values [34–36]. All variables
with missing values were sequentially imputed by a regression model created from the
conditional marginal distributions of the other variables. This process was repeated until
the missing values were no longer updated. The process that previously filled missing
values of variables to estimate missing values of the other variables is called the chained
equation, which is easily applicable to realistic problems. Ten imputed datasets were
produced, taking into account the missing rate in variables and computing resources.
For all reports, a two-sided p < 0.05 was considered to indicate a statistically significant
difference. Statistical analyses were performed using R 3.6.1 (R Foundation for Statistical
Computing, Vienna, Austria) and the mice 3.11.0 package [35].



J. Clin. Med. 2021, 10, 1089 5 of 13

3. Results
3.1. Baseline Statistics

We included a total of 5739 OHCA patients from the KoCARC registry database
who met the selection criteria. After excluding 513 patients with pre-hospital ROSC,
105 patients (1.83%) had good neurological outcomes. In Table 1, the baseline characteristics
are presented by classifying patients according to good or poor neurological outcomes.
The large difference in the numbers of samples between the two groups indicated that
our dataset was imbalanced. All variables except sex, hypertension, dyslipidemia, CPR
and AED by a bystander, CPR by a machine, and endotracheal tube intubation differed
between the two groups. Values were missing for 14 of the 21 variables (Figure S1). A total
of 2149 patients had more than one missing value for the 21 predictors. The imputation
results can be checked by comparing the observed and imputed data on the density plots
shown in Figure S2.

3.2. Model Performances and Validation

The AUC (95% CI) of the RLR, LF, XGB, and VC models for predicting neurological
outcomes among patients admitted to the ED for OHCA were 0.907 (0.900–0.913), 0.888
(0.876–0.901), 0.918 (0.911–0.925), and 0.926 (0.921–0.932), respectively. The receiver operat-
ing characteristics (ROC) curves and AUCs in Figure 1 are derived from the ML models by
maximizing the Cohen’s kappa metric suitable for an imbalanced dataset. The performance
of the VC model was better than those of the RLR, RF, and XGB models in terms of AUC. In
our analysis, the thresholds of the RLR, RF, XGB, and VC models determined by Youden’s
Index were 0.566, 0.0438, 0.0860, and 0.242, respectively. The sensitivity, specificity, PPV,
and NPV of the four models according to the thresholds are presented in Figure S3.

The probabilities that the RLR, RF, XGB, and VC models predicted good neurological
outcomes were 13.5%, 11.4%, 21.3%, and 6.61%, respectively; however, only 1.83% of pa-
tients showed good neurological outcomes in the test set. The log loss of random classifiers
depending on the prevalence of classes in this case was about 0.1. The performance of
all models but the RLR model was superior to that of random classifiers based on the
value of 0.1. The Brier skill score (BSS) with Brier score of reference (BSR) was applied to
understand more clearly the performance of the models [24]:

BSS = 1 − BS
BSR

(1)

where BS indicates the Brier score. If Brier skill score is zero, the trained model is a no-skill
model like a random classifier, but if it is close to 1, it is an excellent performance model,
while the range of Brier skill score is from −∞ to 1. We set the BSR to 0.333, which is the
mean BS when random classifiers predicted neurological outcomes of 5709 patients for
100 iterations. All models but the RLR model performed better than random classifiers
because their BSSs were larger than 0.

The sensitivity, specificity, PPV, NPV, F1-score, Cohen’s kappa, and NRI were cal-
culated using the thresholds in Table 2. F1-score, the harmonic mean of the PPV and
sensitivity, is an indicator of the clinical usefulness of a model. Cohen’s kappa can assess
observation and prediction reliability for binary classification. The confusion matrix shown
in Table S2 indicated why Cohen’s kappa was used as an optimizing metric. The NRI adds
the accuracy of the classification of two models for each positive and negative case. The
95% CIs of the NRI in Table 2 show that no model outperformed the RLR model.
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Figure 1. Receiver Operating Characteristic (ROC) and area under the curves (AUC) of regularized logistic regression (RLR),
random forest (RF), extreme gradient boosting (XGB), and voting classifier (VC) for binary neurological outcome at hospital
discharge. The colors of the curves and shaded regions represent the mean ROC and standard deviation of each model,
respectively. The AUCs of the models and their 95% confidence intervals (CIs) are shown in the legend. The p-values for the
hypothesis tests of the differences between the VC and the other models are also indicated in the legend.

Table 2. The ratio of predicted good neurological outcome, AUC, log loss, Brier score, and evaluation metrics for the models
and their 95% CIs.

Model Actual Survival RLR RF XGB VC

Predicted survival 0.019 0.226 (0.218–0.234) 0.156 (0.149–0.163) 0.155 (0.153–0.158) 0.0819
(0.0747–0.089)

AUC n.a. 0.893 (0.883–0.903) 0.881 (0.869–0.892) 0.925 (0.919–0.931) 0.925 (0.917–0.933)
Brier score n.a. 0.389 (0.381–0.397) 0.138 (0.124–0.151) 0.107 (0.102–0.113) 0.146 (0.143–0.149)

Log loss n.a. 0.119 (0.116–0.121) 0.0153
(0.0149–0.0160)

0.0302
(0.0283–0.0320)

0.0318
(0.0308–0.0330)

Sensitivity n.a. 0.857 (0.842–0.872) 0.827 (0.804–0.850) 0.836 (0.804–0.868) 0.857 (0.843–0.871)
Specificity n.a. 0.786 (0.778–0.793) 0.857 (0.85–0.863) 0.851 (0.836–0.866) 0.865 (0.858–0.873)

PPV n.a. 0.0702
(0.0679–0.072)

0.0983
(0.095–0.102)

0.104
(0.0954–0.113) 0.109 (0.104–0.114)

NPV n.a. 0.997 (0.996–0.997) 0.996 (0.996–0.997) 0.997 (0.996–0.997) 0.997(0.997–0.997)
F1-score n.a. 0.819 (0.811–0.826) 0.839 (0.828–0.849) 0.836 (0.823–0.848) 0.86 (0.854–0.866)

Kappa n.a. 0.0991
(0.095–0.103) 0.147 (0.142–0.153) 0.155 (0.142–0.167) 0.165 (0.158–0.173)

NRI n.a. n.a. 0.0404
(0.0132–0.0680)

0.0448
(0.0215–0.0680)

0.0796
(0.0638–0.0960)

PPV: positive predictive value, NPV: negative predictive value, F1-score: harmonic mean of PPV and sensitivity, Kappa: Cohen’s kappa,
agreement of two raters, NRI: net reclassification improvement, the quantification of the improvement in the reclassification performance
of the new model, n.a.: not applicable.
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The predictions of good and poor neurological outcomes for patients in a test set by
the four models are shown in Figure 2. For good neurological outcomes, there was only
one false-negative in which no model predicted good neurological outcomes. The XGB
model predicted the most true-positives (20) and the least false-negatives (1). In contrast,
the RLR model predicted the least true-positives (17) and the most false-negatives (4).
Regarding poor neurological outcomes, no model predicted poor neurological outcomes
for 68 patients in the test set. Both the RLR and RF models showed the best performance
in that the number of unpredictable patients (129) was the smallest among the four ML
models. Note that the results depended on the threshold for each model to predict the
neurological outcomes.
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The predicted probability density curves for the four models can be seen in Figure 3.
On the x-axis, being closer to 1 indicates a good neurological outcome, while being closer
to 0 indicates the opposite. The value of the y-axis is the density of samples in the test
set with the same predicted probability, and the farther the distance between the two
peaks, the better the model classifies the samples in the test set. Both the RF and XGB
models’ thresholds are very sensitive, so classes can easily change with a small shift in them.
However, the other two model classifications are robust to slight changes in thresholds. In
particular, an overlapping range of two classes for the VC model is the narrowest.

With true-negative, true-positive, false-negative, and false-positive cases, the reason
the VC model, with the best AUC, predicted the neurological outcomes is explained in
Figure 4. In true-negative cases, first pre-hospital ECG rhythm (PRE_ECG), first hospital
ECG rhythm (HOSP_ECG), age (AGE), total duration of resuscitation (TOTAL_DUR), and
pre-hospital bystander CPR (BYCPR) supported the poor neurological outcome (see Table
S3 for an explanation of the variable names). Despite features like AGE, factors includ-
ing TOTAL_DUR, HOSP_DUR, PRE_ECG, HOSP_ECG, and WITNESS contributed to
good neurological outcomes in true-positive cases. In false-negative cases, PRE_ECG,
HOSP_ECG, and BYCPR explained the poor neurological outcome; however, owing
to TOTAL_DUR, duration of hospital resuscitation (HOSP_DUR), and total amount of
epinephrine (EPINE_TOT), patients recovered without serious neurological damage. Lastly,
the model predicted good neurological outcomes because of PRE_ECG, AGE, and WIT-
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NESS, while HOSP_ECG, BYCPR, and PRE_HOSP_ECG indicated poor neurological
outcomes. Since the last two cases were near the boundary between the two classes, the
top six variables supported the different results.
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Figure 3. Probability histogram and kernel density estimation of neurological outcomes for four ML models. The title of the
panels is the ML model name and the average number of samples per class of test sets. The probability histograms and
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probability distributions of the test sets by RLR, RF, XGB, and VC models, respectively.
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Figure 4. Why the model predicts the neurological outcomes of individual patients. Explainability of predicting neurological
outcomes of (a) true-negative, (b) true-positive, (c) false-negative, and (d) false-positive cases. The x-axis is the probability
of predicting prognosis for an individual patient. While other variables are fixed, a value of the x-axis for a feature speaks to
how much to increase or decrease the predicted probability of the VC model. This VC model was trained using all variables
in Table 1. The official names of the abbreviated variable names in this figure can be found in Appendix A, Table A1.

4. Discussion

In this study, we demonstrated the potential utility for ML models to predict good
neurological outcomes of OHCA patients before ROSC. The VC model’s overall perfor-
mance was better than those of the RLR, RF, and XGB models. Although current guidelines
recommend that neurological outcomes in patients with OHCA be predicted based on
multimodal approaches, in OHCA patients before ROSC who are just arriving at the ED,
information to determine prognosis is insufficient [6]. It is challenging to quickly obtain
the necessary information to determine the probability of achieving favorable neurological
outcomes [7]. However, it is essential to develop strategies for predicting good neurological
outcomes to tailor medical therapies for individual patients, including ECMO-CPR. While
several studies have described predictive scores [8,9], to the best of our knowledge, this
study is the first to apply ML methods in patients who have not achieved ROSC.

Initial ECG rhythm, witnessed cardiac arrest, and age, which have good predictive
power in other scores, are also seen as important indicators in our study [1,10,11]. Unlike
other studies, our study used only information available from pre-hospital care at the time
of arrival at the hospital. Nevertheless, our results showed a similar or better performance
to other scores. Other studies have often included blood tests that can only be obtained at
the hospital stage [1,10,37].
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Johnsson et al. used a fully-connected one hidden layer structure to predict the prog-
nosis of OHCA patients in the intensive care unit [37]. Owing to their balanced data, they
applied an artificial neural network algorithm; however, the algorithm selected one hidden
layer as an optimized structure because of a sample number below 1000. They did not
apply RF and gradient boosting algorithms, which perform well on tabular-type datasets.
The authors explicitly showed the procedure for global feature importance analysis but did
not perform feature importance at the level of individual patients. Al-Dury et al. mainly
focused on identifying the key predictors associated with 30-day survival using an RF
algorithm [38]. An elaborate permutation that can handle the scale of the variables and
the correlation between predictors measured the feature importance of the RF model. To
clarify the association between 30-day survival and key features such as age, time to CPR,
and time to EMS arrival, the authors used partial dependence plots by marginalizing over
the other features. While they described in detail the global correlations between response
and predictors, the feature importance at the individual patient level for false-positive or
false-negative cases was not shown. Kwon et al. developed high-performance ML models
based on several algorithms [20]. The accuracy of the prediction of each model and the
stability of the predictions between models were sufficiently analyzed using various scores.
Although global feature importance was performed, they did not assess the explainability
for predicting a patient’s prognosis. Seki et al. also showed excellent performance using
a ML-based model to predict 1-year survival of OHCA with presumed cardiac etiology.
While their goal differed slightly from that in our study, they also demonstrated the po-
tential of ML-based approaches. Our study has the following strengths. The KoCARC
is a well-defined hospital-based collaborative research network [21]. There were strict
predefined protocol-based criteria for inclusion and treatment and rules for neurological
prognostication. Also, since our study only targeted patients who had not achieved ROSC
at ED arrival, it has practical and clinical value. Finally, we assessed the importance of
the variables used in this study in various ways to provide explanatory power in future
research. It will help avoid inappropriate withdrawal of life-sustaining treatment in pa-
tients who may otherwise achieve meaningful neurological recovery. Further prospective
validation study will be needed to confirm our result.

Our study has several limitations. Although the dataset was a nationwide multicenter
registry, there may be selection bias. Also, since the data are of Asian patients, further
research is needed to generalize to other races. According to the recent systematic review
literature, the survival discharge rate is around 8.8% [39]. In our study, the rate of survival
to hospital discharge was lower than that result (5.1% vs. 8.8%). Also, the proportion of
OHCA patients without prehospital ROSC is higher than that of other studies. Both aspects
may bias the results of this study, so care should be taken when interpreting them. Values
were missing for 14 of the 21 variables (Figure S1). To minimize the effect of these missing
data, we used MICE to fill in the missing values [34–36]. All variables with missing values
were sequentially imputed by a regression model created from the conditional marginal
distributions of the other variables. Missing values are known to significantly impact the
prognostic models in medical fields [33] and applying the MICE to impute missing values
might be burdensome in the real clinical practice. Therefore, we trained the models in
three other convenient ways: median imputation, no imputation, and the complete dataset
dropped the variables with missing values. Interestingly, there was little performance
degradation of the models in our study by the first two methods (Figures S4–S6). Lastly,
the low PPV and Cohen’s kappa of our models would be that the ratio of cases for the
good neurological outcome in our dataset was very low, and 4 models could be trained to
produce many false-positive cases.

5. Conclusions

We demonstrated the potential utility of a ML model to predict good neurological
outcomes of OHCA patients before ROSC. The VC model’s overall performance was better
than those of the RLR, RF, and XGB models. Our study used data from a well-defined
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multicenter registry for neurological prognostication. Since our study only targeted patients
without ROSC at ED arrival, it has more practical and clinical value.
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383/10/5/1089/s1, Summary of used machine learning algorithms; Table S1: Baseline statistics,
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positive predictive value, and negative predictive value as a function of the threshold for the four
ML models. Figure S4: The AUROC of 4 ML models trained with dataset imputed by the median of
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Appendix A

Table A1. Convenient variable names corresponding to the official variable names.

Official Variable Names Convenient Variable Names

Demographics, Age AGE
Demographics, Male sex SEX

Demographics, Hypertension HTN
Demographics, Diabetes mellitus DM

Demographics, Dyslipidemia DYSLIPID

Pre-hospital, Witnessed WITNESS
Pre-hospital, Occurrence at house OCC_HOUSE

Pre-hospital, Bystander CPR BYCPR
Pre-hospital, Automated external defibrillation

use BYAED

Pre-hospital, First ECG rhythm, ventricular
fibrillation PRE_ECG: 0

Pre-hospital, First ECG rhythm, pulseless
ventricular tachycardia PRE_ECG: 1

Pre-hospital, First ECG rhythm, pulseless
electrical activity PRE_ECG: 2

Pre-hospital, First ECG rhythm, asystole PRE_ECG: 3
Pre-hospital, Defibrillation PRE_DEFIB

Pre-hospital, Airway PRE_AIRWAY

https://www.mdpi.com/2077-0383/10/5/1089/s1
https://www.mdpi.com/2077-0383/10/5/1089/s1


J. Clin. Med. 2021, 10, 1089 12 of 13

Table A1. Cont.

Official Variable Names Convenient Variable Names

Hospital, Endotracheal intubation ENDO_INTU
Hospital First ECG rhythm, Ventricular

fibrillation HOSP_ECG: 0

Hospital First ECG rhythm, Pulseless
Ventricular Tachycardia HOSP_ECG: 1

Hospital First ECG rhythm, Pulseless Electrical
Activity HOSP_ECG: 2

Hospital First ECG rhythm, Asystole HOSP_ECG: 3
Hospital, Use of mechanical compressor MECH_CPR

Hospital, Total epinephrine EPINE_TOT
Hospital, Defibrillation number DEFIB_N

Duration of resuscitation, Total TOTAL_DUR
Duration of resuscitation, Pre-hospital PRE_HOSP_DUR

Duration of resuscitation, Hospital HOSP_DUR
Duration, No flow time NO_FLOW_TIME
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