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Mathematical models have provided important insights into acute viral

dynamics within individual patients. In this paper, we study the simplest

target cell-limited models to investigate the within-host dynamics of influenza

A virus infection in humans. Despite the biological simplicity of the models,

we show how these can be used to understand the severity of the infection

and the key attributes of possible immunotherapy and antiviral drugs for

the treatment of infection at different times post infection. Through an analytic

approach, we derive and estimate simple summary biological quantities that

can provide novel insights into the infection dynamics and the definition of

clinical endpoints. We focus on nine quantities, including the area under the

viral load curve, peak viral load, the time to peak viral load and the level of

cell death due to infection. Using Markov chain Monte Carlo methods, we

fitted the models to data collected from 12 untreated volunteers who partici-

pated in two clinical studies that tested the antiviral drugs oseltamivir and

zanamivir. Based on the results, we also discuss various difficulties in deriving

precise estimates of the parameters, even in the very simple models con-

sidered, when experimental data are limited to viral load measures and/or

there is a limited number of viral load measurements post infection.
1. Introduction
Influenza continues to be a significant cause of morbidity and mortality world-

wide [1]. Seasonal epidemics of influenza cause more than 300 000 deaths

annually around the world. In the USA alone, a typical seasonal influenza A

epidemic results in over 200 000 hospitalizations [2] and 36 000 deaths [3].

Influenza is a short-lived infection with an incubation period of approxi-

mately 2 days [4]. The standard pattern of virus kinetics is characterized by

rapid exponential growth, with a peak in viral load occurring 1–3 days post infec-

tion, followed by a decline over the subsequent 3–5 days. In patients with

immunodeficiency, the duration of infection may be prolonged [5,6].

Experimental studies on the typical course of influenza A in a patient have

provided useful insights into the processes controlling viral dynamics, especially

the associated immune response. Mathematical models have been used to

improve understanding of the infection dynamics. Influenza A virus kinetics in

the human body has been examined in a number of previous studies [7–10]. Var-

ious models that describe the infection dynamics in animals (for example in mice

[10–12] and horses [13,14]) have also facilitated the investigation of the immuno-

logical mechanisms involved in controlling influenza A replication. Models have

been developed to incorporate the innate immune response, the adaptive

response or both types of responses against influenza A [7–9,11–18]. Mathemat-

ical modelling has also helped in assessing the efficacy of influenza antiviral

treatments [19–22] such as neuraminidase inhibitors (oseltamivir and zanamivir)
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Figure 1. A schematic diagram of the TIV model (2.1) – (2.4) of viral
dynamics. (Online version in colour.)
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[7,8,17,23,24] and adamantanes (amantadine and rimantadine)

[17,25]. The models developed typically consist of systems of

ordinary differential equations (ODEs), based on the classic

viral dynamic model describing uninfected and infected cells

and free virus in the host [7,26–31]. Stochastic effects become

important when the viral load is at low levels [8] (for reviews

of the mathematical model development, see [32–34]).

Despite the availability of a range of mathematical and

statistical tools, limitations in data availability and measure-

ment issues in clinical studies of infected patients hinder

the development of complex models that will accurately pre-

dict the infection dynamics and provide insight into the exact

mechanisms responsible for its control. In this paper, we con-

sider the simplest within-host models of viral dynamics.

We assess the validity of these models by fitting to data

collected from 12 untreated volunteers experimentally inocu-

lated with human influenza A, but left untreated by drugs

or immunotherapeutic agents. Despite the biological sim-

plicity of these models, they can facilitate the assessment

of infection-related morbidity and the efficacies of immuno-

therapies or antiviral treatments and help in the design of

control and prevention strategies. We derive and estimate

simple quantities that reflect the severity of the infection at

different times post acquisition and can be considered as

potential endpoints in clinical trials. Such quantities include

the area under the viral load curve, the peak viral load, the

time to peak viral load and the level of cell death due to infec-

tion. The analytical results derived shed light on important

parameters that influence patterns in within-patient viral kin-

etics. Based on the results, we also discuss problems arising

in predicting the viral dynamics and evaluating therapeutic

interventions when the quality of clinical data on viral load

is suboptimal. We provide guidance on what to measure,

and when and how frequently, in order to accurately describe

the infection dynamics and facilitate the accurate assessment

of therapies that restrict viral growth.
2. Material and methods
2.1. Simple mathematical models of viral dynamics
The main effects of the immune response on viral populations

can be simply classified as one of the following: (i) decreasing

the infection of susceptible cells, (ii) reducing the production of

virus by infected cells, (iii) killing infected cells, and (iv) increas-

ing the clearance rate of free virus particles. The simplest model

of influenza A virus infection that incorporates implicitly or

explicitly these four mechanisms is the TIV model [7]. This

model assumes that susceptible cells (primarily epithelial cells),

T, become infected when in contact with free infectious virus par-

ticles, V, via a mass-action process with rate b. Virus is produced

in direct proportion to the number of (productively) infected

cells I at rate p per infected cell and is lost at rate c per virion due

to non-specific mechanisms that include immune response and

natural virus decomposition. An infected cell dies or is killed by

immune cells and other non-specific mechanisms with rate dI.

Hence, infected cells produce an average p/dI virions during

their lifetime. The ODEs that describe this dynamical system are

as follows:

dT
dt
¼ �bVT, ð2:1Þ

dI
dt
¼ bVT –dI I ð2:2Þ
and
dV
dt
¼ pI � cV, ð2:3Þ

with initial conditions

Tð0Þ ¼ T0, Ið0Þ ¼ I0, Vð0Þ ¼ V0: ð2:4Þ

The TIV model, (2.1)–(2.4), is shown schematically (figure 1).

Owing to the paucity of quantitative information on the

clearance rate of the virus and the death rate of infected cells,

we focus on a simpler version of the TIV model which assumes

that the viral dynamics is much faster than the infected cell

dynamics and that a quasi-stationary state at which V ¼ pI/c is

attained very quickly [35–37]. In this case, the TIV model is

reduced to the following pair of equations:

dT
dt
¼ �bVT ð2:5Þ

and

dV
dt
¼ rbVT � gV, ð2:6Þ

with initial conditions

Tð0Þ ¼ T0, Vð0Þ ¼ V0: ð2:7Þ

The parameter g is the death rate of infected cells dI in the TIV

model and r can be interpreted as p/c. However, as the par-

ameters p and c cannot be estimated independently, we will

consider r as a single parameter. Model (2.5)–(2.7) will be

referred to as the TV model. The TV model has the same struc-

ture as the susceptible–infectious–recovered (SIR) model in

infectious disease epidemiology of viral spread in a population

of hosts [38–40] and thus most of the results derived for the

SIR model in host populations can be applied in the context of

within-host viral dynamics.

The TV model can be extended to the so-called TVA model to

include a representation of the overall action strength of the

immune response against influenza A (see electronic supplementary

material, S1). All three models, TIV, TV and TVA, predict changes in

viral load over time post infection accurately. However, the TV and

TVA models are ‘better’ models; the fit of the TIV model to observed

viral load data is almost equivalent to that of the TV and TVA models

(data are not shown) and there are no data to support the estimation

of the extra parameters in the more complex model. As there is no

independent information about the dynamics of infected cells, the

quasi-stationary state assumption in the TV and TVA models is there-

fore reasonable. We focus on the TV model, but in the electronic

supplementary material, S3, we add to previous published analytical

results for the TIV model and in the electronic supplementary

material, S1, we discuss the TVA model in more detail.

Table 1 summarizes the variables and parameters of all the

models considered in this paper.

The above models encapsulate a number of biological assump-

tions. For example, the regeneration and natural death of target



Table 1. Notation of the models’ variables and parameters.

notation meaning units

model variables

T cells susceptible to infection cell

I infected cells cell

V viral load TCID50 ml21

A immune response

model parameters

b infection rate (TCID50/ml)21 � day21

p viral production rate

per infected cell

TCID50 ml21 � day21

c viral clearance rate day21

dI death rate of an

infected cell

day21

g viral decay rate day21

r rate at which target cells

that become infected

produce virus in the TV

and TVA models

TCID50 ml21

w clearance rate of virus by

immune response

day21
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cells have been neglected due to the long time scales of these pro-

cesses compared with the time scale of influenza infection [41,42].

Therefore, even in cases of severe infection the virus will eventually

decline due to the depletion of susceptible target cells. Including

the regeneration of target cells does not improve the model fit in

most cases [7,10–14,25,43]. An additional assumption is that

there is no delay between cell infection and production of virus

(a latent phase). Moreover, it should be noted that if no death of

infected cells occurs during the latent phase, then the delay

simply postpones the infection dynamics (delays the onset of the

infection, reduces the peak of the viral load and increases the dur-

ation of the infection) without reducing the amount of viral

shedding significantly (if regrowth of susceptible cells is con-

sidered then increasing the delay of virus production will result

in a reduction in the amount of viral shedding). Finally, the loss

of virions through cell entry is also considered negligible and

absorbed into the loss term 2cV, given that any one cell has the

potential to produce between 103 and 104 virions [44], which is

much more than the number of virions needed to infect a cell

[45]. This loss might be important in in vitro models [25].

2.2. Parameter estimation
2.2.1. Datasets used
We use viral load data from two different datasets: the first consists

of six volunteers from the placebo group of the oseltamivir trial

conducted by Roche [46]. All the participants were healthy adults

and screened for haemagglutination inhibition titre. Intranasal inocu-

lation with 106 (50% tissue culture) of a safety-tested pool (TCID50) of

human A/Texas/36/91 H1N1 influenza virus was performed on

day 0. Nasal lavage fluids were collected for virus isolation and titra-

tion by standard methods on days 2–8. The second dataset also

consists of six volunteers who were part of the placebo group of

the zanamivir trial conducted by GlaxoSmithKline (GSK). The volun-

teers in this trial were also inoculated with human H1N1 influenza

virus (A/Texas/91 H1N1) following a similar procedure.
For the model fitting and the estimation of the parameters, when

two or more (sequential) viral load data points fall below the detec-

tion limit we exclude them all but the first one. In this case, the first

undetectable viral load data point is set to be equal to the value of the

detection limit. In the data analysed in this study, the value of

the detection limit was not known and it was set to be equal to 0.7

TCID50 ml21, which is 0.05 TCID50 ml21 below the smallest

measurement value in the two datasets considered.

2.2.2. Fitting procedure
In the TV model the parameters r, I0 and T0 cannot be estimated

independently. We fixed T0 at 4 � 108 cells [7] and I0 at 0. A struc-

tural identifiability analysis of the TV model [47] shows that the

estimation of the identifiable parameters (b, g, r or T0) requires at

least five measurements of viral load at distinct time points. How-

ever, examining the pairwise relationships between the parameters

(see §3.2), it is observed that all the parameters are correlated and it

is thus not possible to produce good estimates of each individually.

Owing to the correlation between b and r, we reparametrized the

model by replacing rb in equation (2.6) by l and we estimated l and

b (note: b and l are also correlated).

We fitted the TV model to data and estimated the parameters

for each patient independently using a random-walk Metropolis–

Hastings algorithm. Independent prior distributions were chosen

for each of the unknown parameters V0, b, l and g. An exponential

distribution with mean 100 was chosen for V0 and g. A uniform

distribution [0–0.003] (except for patients 3 and 4 in the Roche

-dataset, [0–0.01]) was chosen for b while a uniform distribution

[0–0.0000001] was chosen for l. It was assumed that the measured

viral loads were lognormally distributed around the true viral loads

[48] with standard deviation 0.3 log10 (this was based on data

provided in [49], but preliminary studies show that the assumed

standard deviation of the lognormal distribution does not signifi-

cantly affect the parameter estimates). For each individual

dataset, 8.1 � 105 sampling iterations were performed, of which

the first 104 iterations were discarded. To reduce autocorrelation,

every 500th sample was recorded [50]. Convergence was assessed

visually from the traces of each parameter.

2.3. Infection-related quantities
We derive either exact or approximate solutions of nine infection-

related quantities that can help us to interpret the viral load scores

in terms of infection severityat both the individual and the population

level. The quantities considered are the following: the basic reproduc-

tion ratio R0 and the viral growth rate r0, which indicate the speed at

which the virus disseminates within the human host at the early stage

of infection; the generation time Tg [51], which indicates the speed at

which the infection spreads in the population; the area under the viral

load curve AV [9,33], which indicates the infectiousness of the host; the

peak viral load PV [33], which is thought to be correlated with symp-

tom scores; the time to peak viral load tVpeak
[10,17], which can be used

for assessing infection progression; the viral decay rate rd, which is the

rate of viral clearance at the late stage of infection; the duration of infec-

tion td [33], which shows the time scale of the infection and can

indicate the time in which the patient is infectious; and the fraction

of dead cells at the end of the infection D [10,33], which indicates

the damage to the tissue caused by the infection, the occurrence of

some respiratory symptoms and the time to recovery. The quantities

are summarized in the schematic in figure 2. For more information

about these quantities and the importance of each of them, see

electronic supplementary material, S2.
3. Results
The TV model fits to the placebo data and the uncertainty

in the model solution is illustrated in figure 3. Despite the
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simplification of the complex biological process, the TV

model provides a good description of the data for most of

the subjects.

3.1. Infection-related quantities
In table 2, we summarize how the infection-related quantities

in the TV model are affected by the administration of treat-

ments that decrease the rate of infection (e.g. adamantane

antiviral drugs [17,25]) and the viral production rate

(e.g. neuraminidase inhibitors [7,8,17,23]) and hypothetical

treatments that increase the virus clearance rate (e.g. mono-

clonal antibodies [52]). We also present the influence of the

initial viral load. The results presented are for cases where

the basic reproduction ratio R0 is greater than 1. A general
conclusion is that the time of treatment during the infection

is very important and, based on the models considered, its

effect is highly dependent on the number of the remaining sus-

ceptible cells at this time. In table 3, we summarize the main

determinants of some of the infection-related quantities as

defined by the mathematical expressions derived. In table 4,

we show the estimates of the infection-related quantities in

the TV model based on the parameter estimates presented

in the electronic supplementary material, table S5. We present

both the numerical and analytical solution showing the good

accuracy of the analytical results based on novel approxi-

mations. Figures 4 and 5 illustrate, respectively, the

variability of the parameter estimates and the variability of

the infection-related quantities between patients.
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Table 3. Summary of the main parameters determining the infection-related quantities as derived from analytical results.

infection-related
quantities

area under the
viral load curve

fraction of
dead cells

time to peak
viral load peak viral load viral decay rate

mainly influenced

by

R0 R0 all parameters,

including V0

viral production

rate (TV model)

death rate of infected

cells, virus

clearance rate
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3.1.1. Basic reproduction ratio, R0
In the TV model, the basic reproduction ratio is given by

R0ðTVÞ ¼ rbT0=g. In our study, the within-host R0 has been esti-

mated to be approximately 3.5 (table 4). R0 is highly dependent

on the model choice and the assumptions about the immune

responses following infection. Moderate to high values of R0

are expected in influenza A as the virus disseminates very

rapidly within the host.

3.1.2. Viral growth rate, r0
Assuming that at the initial stage of the infection the number

of target cells remains constant, it can be shown that the

initial viral growth rate in the TV model can be described

very well by rbT0 2 g. The rate at which the virus population

grows in the patient over the initial period of infection is

essentially independent of V0. Typically, the viral growth

rate of influenza A is high, suggesting a high value of R0

[7]. In our study, the average r0 has been calculated to be

approximately equal to 7.8 day21 (table 4).

3.1.3. Generation time, Tg
An approximate solution for the average generation time (at the

population level) during the course of the infection for the TIV

and TV models is derived in the electronic supplementary

material, S3F. Increasing the infection rate, the viral production

rate, the initial number of target cells or the initial viral load

yields lower Tg values. When R0 is relatively large, the increase

in the viral clearance rate and the death rate of infected cells also

results in lower values for Tg. Moreover, as R0 decreases and the

number of cells that become infected decreases, the increase in

these two rates yields higher Tg values. The TV model predicts

an average generation time of influenza A infection at the popu-

lation level of around 2.6 days (table 4). This agrees with

previous estimations using different datasets [9,53].

3.1.4. Area under the viral load curve, AV
In the electronic supplementary material, S3A, a formula for

the area under the viral load curve, AV, in the target cell-lim-

ited models TIV and TV is derived. From the approximation

derived, it is clear that the basic reproduction ratio is the main

determinant of the value of AV. In the TV model, as b

increases AV increases exponentially and converges to (V0 þ
rT0)/g, which corresponds to the maximum AV (further

increase is not possible due to the depletion of susceptible

cells). AV increases almost linearly with the viral production

rate (especially when the parameter values are such that all

susceptible cells eventually get infected) and T0, and it has

an inverse relationship with the viral clearance rate and the

death rate of infected cells. AV is not affected much by vary-

ing V0 as long as V0 remains low (as will normally be the case

in practice).
3.1.5. Peak viral load, PV
An exact formula of the peak viral load in the TV model,

PV(TV), is derived in the electronic supplementary material,

S3C (an approximation of PV(TIV) is also derived in the elec-

tronic supplementary material, S3C). From the solution of

PV(TV), it can be observed that, although the peak viral load

is affected by all model parameters, its value is mainly

influenced by the viral production rate r.

As the infection rate b increases, PV increases and con-

verges to a constant, which corresponds to the maximum

viral load when all the cells are already infected before the

start of the decay phase. If PV reaches this value, then any

antiviral treatment for the protection of susceptible cells

that is administered after the time of the peak will have

very little or no effect during the viral decay period. By con-

trast, PV increases linearly with the viral production rate

and T0. Hence, an infection by a viral strain with a high

replication rate might be more severe than an infection

with a higher cell infection rate (see also [12]). Therefore,

depending on the other parameter values, therapeutic

interventions to reduce viral replication will be more effec-

tive than those that reduce viral cell infectivity. Similarly,

therapeutic, or prophylactic, interventions that aim at the

limitation of target cells, e.g. by inducing resistance to

virus, may be more effective. PV has an inverse relationship

with the viral clearance rate (and the death rate of infected

cells in the TIV model, with the increase of the first being

slightly more important than that of the second). There is

almost no variation of PV with V0.
3.1.6. Time to peak viral load, tVpeak

An approximation of the time to the peak of viral load for the

TIV and TV models is given in the electronic supplementary

material, S3D. tVpeak
decreases as the infection rate, the viral

production rate and the initial number of susceptible cells

increase. In cases where the virus disseminates quickly and

infects the majority of susceptible cells, a decrease of tVpeak
is

also observed with increasing viral clearance and infected

cell death rates. Otherwise, after a certain value, an increase

in these rates delays the onset of the infection and therefore

the time to peak. The decrease of V0 also yields higher

tVpeak
. An infection where the peak viral load occurs either

much earlier or later is not necessarily a more severe infection

and needs to be considered with other measures of infection

severity such as the peak viral load and the area under the

viral load curve. For example, in table 2 it can be observed

that the late occurrence of the peak viral load does not

imply a severe infection with respect to the value of the

peak. In the standard influenza A virus kinetic pattern,

viral load reaches its maximum level approximately 2 days

after the initiation of the infection [53], which is in good

agreement with our model prediction (table 4).
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3.1.7. Viral decay rate, rd
A derivation of an approximate solution of the viral load

during the decay phase for the TIV model is shown in [14]

(see also [54]). In the TV model, after the infection of all

target cells, the viral load decreases exponentially at rate g (in

the late decay phase the main or the only process that takes

place is the clearance of the virus). This clearance rate is a com-

posite of the natural death rates of infected cells and free virus

and the action of the immune system in enhancing the clear-

ance of both. Although all model parameters can affect the

early phase of virus growth, the decay of the virus at

the later stage of the infection depends almost exclusively

on the death rate of infected cells and the virus clearance rate

(in the TIV model, the parameter that has the lower value

dominates towards the end of the infection [14,54]). This

dependence suggests that a treatment acting on the infection

rate and/or the viral production rate will only be effective if

it is administered at the early stage of the infection. A treatment

administered after the peak viral load will be most effective if it
acts on the death rate of infected cells and/or the viral clearance

rate. The average viral decay rate in this study was calculated to

be approximately 4.4 day21 (table 4).
3.1.8. Duration of infection, td
An approximate solution of the duration of infection in the TV

model is derived in the electronic supplementary material, S3E.

Increasing the infection rate and the number of target cells

results in the increase of the basic reproduction ratio and the

rapid dissemination of the virus. The rapid infection of the

target cells results in the fast convergence to the infection-free

steady state where viral load falls to zero. When the infection

rate gets too large, a further increase has no significant effect

on the infection duration, which then corresponds to the mini-

mum time needed for the infection of all susceptible cells, their

death and the clearance of the virus. A similar situation is

observed when the initial number of target cells gets very

large. An increase in the viral production rate also decreases
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the infection duration. However, when the rate of virus pro-

duction is very large, further increase yields higher durations

of infection, as then all (or almost all) cells get infected quickly.

In this case, the increase in the rate at which free virus is pro-

duced by each infected cell results in increased time needed

for virus clearance. For relatively large values of R0, the infec-

tion duration also decreases as the viral clearance rate and

the death rate of infected cells increase. After a certain value

and as R0 decreases, the virus disseminates at lower rates

and, although a significant decrease in peak viral load and

the number of dead cells is observed, the time needed for the

virus to be cleared increases due to the high availability of

susceptible cells. Therefore, based on the simple models con-

sidered, a long infection is not necessarily a severe infection.

The observed increase in the infection duration with the

decrease of the basic reproduction ratio is counter-intuitive,

as an infection with low rates of transmissibility between

cells should last for less time. This might be considered a limit-

ation of models without an explicit description of immune

responses. The TV model predicts that the infection duration

is about 5.8 days (table 4), which is approximately the infec-

tious period of a typical influenza A infection recorded in

clinical studies where the date of infection is known (household

transmission studies [55]).

3.1.9. Fraction of dead cells at the end of the infection, D
In the electronic supplementary material, S3B, we derive an

approximate solution of D for both the TIV and TV models.

The solutions of D also show that R0 is the main determinant

of the fraction of dead cells at the end of the infection. In par-

ticular, decreasing the infection rate, the viral production

rate, the initial number of target cells or the initial viral load

decreases the total level of cell death due to infection.

A decrease in the number of dead cells can also be achieved

by increasing the viral clearance rate and the death rate of

infected cells. It can be concluded that, although infections

with lower infection and virus production rate can be less

severe with respect to the peak viral load and the damage

they cause to the tissue, they can last longer. The models con-

sidered in this paper predict that the majority of epithelial

cells will die due to infection (table 4).

3.2. Problems in the parameter estimation due to
limitations in data availability

Clinical data availability limits the development and validation

of more complex models of acute viral infections that can

describe the immunological mechanisms and cellular dynamics

in more detail. The question therefore arises of whether the

quality and quantity of available viral load data are sufficient

to support even the simplest models developed to predict

viral dynamics and the impact of therapeutic interventions.

3.2.1. Quantity of viral load measurements
For the simplest within-host viral dynamics mathematical

model (2.5)–(2.7), at least five viral load measurements at dis-

tinct time points (ideally at least one in each day) are required

to estimate the unknown model parameters [47]. In this

study, 174 out of 191 individual patients were excluded

from the analysis because of either the limited number of

viral load measurements made in the clinical observation

periods post infection or the large number of missing data
points (for example, the data points during the initial phase

of the infection). The maximum number of viral load

measurements in one patient was eight in 7 days of infection,

which is sufficient for making predictions but not entirely

adequate for deriving precise parameter estimates and esti-

mates of the infection-related quantities. As illustrated in

figure 3, more measurements should be taken during the

nonlinear phase, around the peak viral load, where in most

cases high uncertainty occurs. Two (precise) viral load

measurements at distinct time points in each of the initial

viral growth and late viral decay phases might be enough

to accurately approximate the rates of increase and decrease

of the viral load curve. However, although the durations of

these phases have been estimated [54], these vary between

patients, even within the fairly homogeneous sample of

patients with respect to age used in parameter estimation

(table 4 and figure 5).

3.2.2. Precision of viral load measurements
In no dataset was there information about the error in the

sampling and measurement methods. Consequently, this

introduces a degree of uncertainty regardless of the model

accuracy to describe given data (and, thus, more frequent

measurements alone will not necessarily reduce the uncer-

tainty in the model predictions, figure 3). Ideally, replicating

both the viral load assays and sampling at one time point

from the same patient would enable us to estimate the error

in the measurement of viral load and improve the model pre-

dictions. Hence, given that we take the minimum number of

measurements required to estimate the parameters (five in

the TV model), it might be better to acquire replicate measure-

ments and get more precise values of the viral load instead of

taking samples more frequently at different time points. Ide-

ally, both should be done in clinical epidemiological studies

of acute infections. However, we acknowledge that, apart

from the practical issues in taking multiple samples from the

patients in time points close to each other, other sources of

variance might affect the accuracy of the measured viral load.

For example, the virus shed by patients may differ at different

times of the day.

Note that, in the absence of independent information

about parameter values, more precise viral load measure-

ments alone will not necessarily reduce the uncertainty of

parameter estimates due to the correlations between them

(see §3.2.3).

3.2.3. Availability of data other than viral load
Although the model describes the viral load data well, the

absence of information about the values of key biological par-

ameters and the dynamics of uninfected and infected cells

makes parameter estimation difficult. The high correlation

between the model parameters results in equivalent predictions

of the model for a wide parameter space. The individual pos-

terior medians and the corresponding 95% credible intervals

for the four unknown parameters of the TV model are summar-

ized in the electronic supplementary material, table S5. In the

electronic supplementary material, figure S4.2, we provide

plots of the posterior distributions of each of these parameters.

The correlations between the parameters for each patient

are illustrated by pairwise scatter plots of the parameters (elec-

tronic supplementary material, figures S4.3–S4.8). There is

correlation between almost all parameters. In particular, in
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most of the cases the virus clearance rate g is inversely corre-

lated with parameter b and changes linearly with parameter

l, while l is inversely proportional to b. Although the relation-

ships of b, g and l with the initial viral load V0 are not clear,

it seems that V0 is inversely proportional to b and l and not par-

ticularly related to g. Moreover, variation in V0 does not

influence the model fit much, unless V0 varies from very

small to very large values. The correlations between the

model parameters are not surprising as virus infects cells and

in turn infected cells produce more virus. Therefore, the virus

dynamics can be controlled by just protecting the cells not yet

infected, which can be achieved either by decreasing the infec-

tion rate or the rate at which virus is produced by each infected

cell or by increasing either the killing rate of infected cells or the

clearance rate of the virus. Independent measurements of some

unknown model parameters would therefore help to produce

more precise estimates of the remaining parameters.

Despite the high uncertainty in the estimates of the values

of single parameters, their product may be estimated more pre-

cisely, resulting in the derivation of more accurate estimates of

some of the infection-related quantities. For example, figure

S4.1 in the electronic supplementary material S4 illustrates

that the basic reproduction ratio R0 can be estimated precisely

irrespective of the high uncertainty in individual parameter

estimates (R0 ¼ lT0/g is eventually equal to the slope of

the line showing the linear relationship between l and g, illus-

trated in the electronic supplementary material, figure S4.7,

multiplied by the initial number of target cells T0).

3.2.4. Unknown lower limit of quantification
The different viral load assays differ in the reported lower

limits of quantitation (LLOQ) and detection. In our analysis,

we had no information on the LLOQ and set it to 0.7

TCID50 ml21. However, the choice of this value might signifi-

cantly influence both the model fit and the uncertainty in the

parameter estimates.

3.2.5. Unknown sampling time
During our study, the exact sampling time during a day in the

data we used was unknown. Given the available information,

we assumed that in the Roche dataset samples were taken

every 0.5 days between days 1 and 3 and every 1 day after-

wards. In the GSK dataset, we assumed that samples were

taken exactly every 24 h. However, the precise sampling times

can significantly affect the model predictions and therefore

they should be recorded. Recording whether the sample was

taken in the morning or afternoon is not enough, as variations

in the sampling time by some hours might be influential.
4. Discussion
In the past few decades, mathematical model development

and its use in the study of infectious diseases in general,

and influenza A in particular, has largely focused on disease

spread and control within populations of hosts [56]. Models

of viral dynamics within an individual person serve many

purposes, including creating a better understanding of what

determines the temporal trajectory of viral load over time,

identifying what needs to be measured experimentally and

facilitating the choice of endpoints in clinical trials of possible

therapies. Precise mathematical description of viral dynamics

also facilitates understanding of the immune response and
the assessment of the efficacy of antiviral treatments. It also

plays an indirect role in understanding virus transmission

between hosts, due to the relationship between viral load

and infectiousness, and it can help in the evaluation of thera-

peutic treatments as part of the development of effective

strategies for the mitigation and control of epidemics.

Mathematical models with varying complexity have

been developed and analysed by analytical and numeri-

cal approaches to provide a description of the growth and

decay of the influenza A virus within the patient. However,

gaps in knowledge, especially concerning the role of different

immune system components and the lack of detailed biologi-

cal data on, for example, the life expectancies of cells and free

virus at different stages of infection, limit model validation.

In this paper, we revisited and extended simple classic

models of viral kinetics to study the influenza A infection

within the human body. Despite their simplicity, models that

exclude the explicit representation of the immune responses

can adequately explain observed patterns of viral growth and

decay in patients and facilitate an understanding of the pro-

cesses that have the greatest impact on the course of

infection. One of the advantages of using simple models to

describe the infection dynamics is that a number of quantities

that reflect the severity of the infection, and some of them

can be considered as clinical endpoints used in the assessment

of treatments, can be derived analytically. Owing to the varia-

bility of the measurements of viral load, and clinical outcome,

as well as the limited number of measurements, the derivation

of reliable estimates of such quantities directly from the raw

data would be difficult. We derived approximate expressions

and estimations of a series of morbidity and viral growth and

decay related measures, such as the area under the viral load

curve, the duration of infection, time to peak viral load and

the slope of the viral decay curve, and focused on identifying

their key determinants. New results are presented on some of

these measures. This focus is a first step in developing tools

to aid in the design of clinical trials of candidate therapies to

treat infected patients or susceptible individuals to lessen the

impact of infection. Despite the limited information that each

of these quantities can provide independently, and difficulties

in measuring them, the assessment of all quantities together

provides insights into how different interventions will act on

the observed course of infection when applied at different

times post infection and post the initiation of treatment. Most

importantly, they also help define what to measure in clinical

trials of therapies.

Although we focused on influenza A virus infection, the

models and results are applicable to other acute viral infections

where measurable viral load persists for a few days to a few

weeks in the patient. The fast dynamics of such infections

and the short duration of viral replication create problems in

the design and conducting of quantitative clinical studies of

possible therapies involving sampling from infected patients.

However, problems in the estimation of the model parameters

and the accurate prediction of the viral load dynamics can be

resolved by improving data quality. Based on our analysis,

we suggest that frequent sampling at defined time points is

essential to creating a deeper understanding of viral kinetics

and between-patient variation. More frequent viral load

measurements will be more useful if they are accompanied by

measurement error data. Reduction of the measurement error

of viral load could be achieved by running replicate measure-

ments and replicating sampling of the same patient at one
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time point. This reduction in the measurement error will also be

very important in using these models to guide the design of

clinical trials of therapeutic interventions. Determining the

importance of variance in viral load between patients and

during therapy requires understanding the variation inherent

in the sampling and measurements methods. Describing

these two sources of variation (between patients and within

the sampling and measurement method) is essential in the

determination of the efficacy of a therapeutic intervention.

Improving the precision of viral load measurements alone

will not necessarily result in more accurate parameter estimates.

A major need in future clinical, animal model and in vitro studies

is the determination of basic population dynamic parameters,

such as cell life expectancies with and without infection and

the virus clearance rate. At present their accurate estimation

from the time course of infection in the patient is fraught with dif-

ficulty, due to the correlations between them, and independent

measurements of at least some of them is required.
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