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Molecular detection of minimal residual disease (MRD) has become established to assess
remission status and guide therapy in patients with ProMyelocytic Leukemia–RARA+ acute
promyelocytic leukemia (APL). However, there are few data on tracking disease response
in patients with rarer retinoid resistant subtypes of APL, characterized by PLZF–RARA
and STAT5b–RARA. Despite their rarity (<1% of APL) we identified 6 cases (PLZF–RARA,
n = 5; STAT5b–RARA, n = 1), established the respective breakpoint junction regions and
designed reverse transcription-quantitative real-time polymerase chain reaction (RT-qPCR)
assays to detect leukemic transcripts. The relative level of fusion gene expression in diag-
nostic samples was comparable to that observed in t(15;17) – associated APL, affording
assay sensitivities of ∼1 in 104−105. Serial samples were available from two PLZF–RARA
APL patients. One showed persistent polymerase chain reaction positivity, predicting
subsequent relapse, and remains in CR2, ∼11 years post-autograft.The other, achieved mol-
ecular remission (CRm) with combination chemotherapy, remaining in CR1 at 6 years. The
STAT5b–RARA patient failed to achieve CRm following frontline combination chemother-
apy and ultimately proceeded to allogeneic transplant on the basis of a steadily rising fusion
transcript level.These data highlight the potential of RT-qPCR detection of MRD to facilitate
development of more individualized approaches to the management of rarer molecularly
defined subsets of acute leukemia.
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INTRODUCTION
Acute promyelocytic leukemia (APL) is characterized by
rearrangements of the gene encoding retinoic acid receptor alpha
(RARα), which is most commonly fused to the ProMyelocytic
Leukemia (PML) gene consequent upon the t(15;17)(q22;21)
(reviewed Mistry et al., 2003). In approximately 10% of APL cases
the t(15;17) is not detected, due to cytogenetic failures, simple
variant translocations involving 15q22 or 17q21 and another part-
ner chromosome, or more complex rearrangements (Grimwade
et al., 2000). The majority of these cases lacking the classic t(15;17)
nevertheless still harbor an underlying PML–RARA fusion gene,
while in ∼1–2% of cases presenting with APL an alternative fusion
partner is involved (Grimwade et al., 2000). These include PLZF
(ZBTB16), NPM1, NuMA, FIP1L1, and BCOR, formed as a result
of the t(11;17)(q23;q21), t(5;17)(q35;q21), t(11;17)(q13;q21),
t(4;17)(q12;q21), and t(X;17)(p11;q21), respectively; while the
PRKAR1A, and STAT5b genes are fused to RARA following
rearrangements involving 17q (Chen et al., 1993; Redner et al.,
1996; Wells et al., 1997; Arnould et al., 1999; Catalano et al., 2007;

Kondo et al., 2008; Yamamoto et al., 2010). The nature of the
fusion partner has an important bearing on disease biology, par-
ticularly the likely response to molecularly targeted therapies in
the form of all-trans retinoic acid (ATRA) and arsenic trioxide
(ATO). ATRA sensitivity has been documented in APL subtypes
involving PML, NPM1, NuMA, and FIP1L1 (reviewed Grimwade
et al., 2010); whereas, PLZF–RARα and STAT5b–RARα have both
been associated with primary resistance to retinoids and a poorer
prognosis (Licht et al., 1995; Arnould et al., 1999; Dong and
Tweardy, 2002). In the case of PLZF–RARα associated APL with
the t(11;17)(q23;q21), the retinoid insensitivity is compounded
by expression of the reciprocal RARα–PLZF fusion product from
the derivative chromosome 17 [der(17)], which functions as a
transcriptional activator targeting PLZF-binding sites leading to
upregulation of cellular retinoic acid binding protein I (CRABP1),
which sequesters retinoic acid, limiting its access to the nucleus
(Guidez et al., 2007). To date, sensitivity to arsenic has only been
demonstrated in PML–RARα positive APL, reflecting the capac-
ity of ATO to bind directly to the PML moiety of the fusion
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protein inducing its degradation via the proteosome (Zhang et al.,
2010).

Molecular diagnostics to establish the nature of the fusion
partner are therefore important for appropriate management, but
in addition the application of sensitive minimal residual disease
(MRD) assays to track treatment response has been found to be
clinically useful in patients with PML–RARα+ disease, with pre-
vious studies showing that achievement of molecular remission
(CRm) as determined by qualitative or quantitative polymerase
chain reaction (PCR) assays (with a sensitivity of 10–4) is a pre-
requisite for long-term remission and disease cure (reviewed Sanz
et al., 2009; Grimwade and Tallman, 2011). These assays when
applied at the post-consolidation timepoint are not sufficiently
sensitive to identify all patients destined to relapse (Grimwade
et al., 1996; Burnett et al., 1999). However, sequential molecu-
lar monitoring studies have shown that in patients who achieve
CRm, recurrence of PCR positivity heralds disease relapse (Dive-
rio et al., 1998; Jurcic et al., 2001). Prediction is further refined
by the use of reverse transcription-quantitative real-time PCR
(RT-qPCR) which enables parallel quantification of endogenous
control genes (e.g., Abelson, ABL) and leukemic transcripts, such
that poor quality samples that could otherwise give rise to “false
negative” results can be more reliably identified (Grimwade et al.,
2009). Importantly, it also provides data on the kinetics of disease
relapse, informing development of optimized MRD monitoring
schedules (reviewed Freeman et al., 2008).

A significant complication of relapsed APL is death from hem-
orrhage due to the associated coagulopathy (Sanz et al., 2009).
Therefore, Italian GIMEMA and Spanish PETHEMA groups
explored the use of serial MRD monitoring as a tool to identify
patients with impending relapse of APL (based upon persistent
PCR positivity during therapy or recurrent PCR positivity in
patients showing an initial response) to guide pre-emptive ther-
apy to prevent disease progression (Lo Coco et al., 1999; Esteve
et al., 2007). These studies, which were conducted before the
availability of ATO for the treatment of relapse, suggested a sur-
vival benefit for early treatment intervention. More recently, we
have shown in the Medical Research Council (MRC) AML15 trial
that sequential monitoring using standardized RT-qPCR assays
[developed within the Europe Against Cancer (EAC) program;
Gabert et al., 2003)] provides the most powerful independent
prognostic factor in APL (Grimwade et al., 2009). In addition
we clearly demonstrated that these assays could be used to pin-
point particular patients destined to relapse, allowing successful
delivery of pre-emptive therapy (Grimwade et al., 2009). This
led to a significant reduction in the rate of frank relapse and
improved survival, which was most marked in patients with high
risk disease, i.e., with presenting white blood cell count above
10 × 109/l. Moreover, we have shown that use of MRD monitoring
to allow early deployment of ATO is associated with a signifi-
cant reduction in treatment-related complications – substantially
decreasing the risk of hyperleukocytosis and the associated life-
threatening differentiation syndrome (Grimwade et al., 2009).
Accordingly molecular monitoring of MRD has become widely
recognized as a standard component of care for patients with
PML–RARA+ APL, as reflected in recent disease guidelines (Sanz
et al., 2009).

While treatment is increasingly being tailored to the needs of
individual patients, there are virtually no data on molecular mon-
itoring in PLZF–RARα and STAT5b–RARα associated APL, which
have been associated with a poorer prognosis. We have devel-
oped sensitive RT-qPCR assays suitable for tracking treatment
response in these patients and which could be used to assess novel
therapeutic approaches in retinoid insensitive disease.

MATERIALS AND METHODS
PATIENTS
Our laboratory has served as the reference center for molecular
diagnosis of APL for successive MRC/National Cancer Research
Institute (NCRI) trials since 1994 and also receives samples for
diagnosis and MRD monitoring from non-trial patients from
across the UK (Burnett et al., 1999; Grimwade et al., 2009). To
date, we have identified six cases of morphologically suspected
APL presenting in the UK that lacked the t(15;17) and were sub-
sequently found to have an underlying PLZF–RARA (n = 5) or
STAT5b–RARA (n = 1) fusion (Table 1). These include a previ-
ously unreported case (UPN 5) with the t(11;17)(q23;q21) giving
rise to the PLZF–RARA fusion, treated within the UK MRC AML12
trial. Clinical details of the APL patient with the STAT5b–RARα

fusion, who presented with pancytopenia and intracardiac throm-
bus have recently been described (Cahill et al., 2011). Samples were
taken for molecular analysis following informed patient consent
in accordance with the Declaration of Helsinki and the study was
subject to Local Research Ethics Committee approval (St Thomas’
Hospital Research Ethics Committee ref 06/Q0702/140).

CHARACTERIZATION OF APL FUSION PARTNER
Total RNA was extracted using the TRIzol reagent (Invitrogen
Ltd., UK) according to the manufacturer’s instructions, and 2 μg
were used for cDNA synthesis with random hexamers (Invitrogen
Ltd., UK) and either M-MLV or SuperScript II reverse transcrip-
tases (both Invitrogen Ltd., UK). In four cases with documented
t(11;17)(q23;q21) on diagnostic cytogenetic assessment, diagnos-
tic samples were screened for expression of PLZF–RARA and reci-
procal RARA–PLZF fusion transcripts by nested RT-PCR, as previ-
ously described (Grimwade et al., 1997). In 2 patients with simple
variant translocations, i.e., t(7;17)(q36;q21) and t(3;17)(q26;q21)
in UPN4 and UPN6, respectively, 5′ rapid amplification of cDNA
ends (RACE) PCR was performed to identify the RARA fusion
partner, using 2 μg of total RNA and the 5′/3′ RACE Kit, second
generation (Roche Diagnostics Ltd., UK) according to the man-
ufacturer’s instructions. First-strand cDNA was synthesized from
2 μg of total RNA using an antisense gene-specific primer located
in RARA exon 4 (SP1, 5′-CGGTGACACGTGTACACCATGTTC-
3′) and the homopolymeric A-tail was added to its 3′ end
as per manufacturer’s instructions. Tailed cDNA was then
amplified by PCR using a second gene-specific primer located
in RARA exon 4 upstream of the SP1 primer (SP2, 5′-
TGGATGCTGCGGCGGAAGAAGC-3′), and the supplied Oligo
dT-anchor primer (5′-GACCACGCGTATCGATGTCGAC(T)16V-
3′, where V = A, C or G) which binds to the 5′ end of
the poly(A)-tail. First round PCR product was then used
as a template in a second PCR reaction with a nested
PCR primer (SP3, 5′-CCATAGTGGTAGCCTGAGGACTTG-3′)

Frontiers in Oncology | Hematology Oncology October 2011 | Volume 1 | Article 35 | 2

http://www.frontiersin.org/Oncology
http://www.frontiersin.org/Hematology_Oncology
http://www.frontiersin.org/Hematology_Oncology/archive


Jovanovic et al. MRD detection in PLZF–RARA and STAT5b–RARA APL

Table 1 | Clinical details and disease characteristics of patients with PLZF–RARA or STAT5b–RARA associated APL.

Patient Age at

diagnosis

(years)

Presenting

WBC (109/l)

Cytogenetics Fusion

genes

expressed

Treatment Outcome RQ-PCR assay

sensitivity

UPN1 53 4.5 46,XY,t(11;17)

(q23;q21)

PLZF–RARA (2ZF)

RARA–PLZF

ADE/G-CSF/ATRA, 3

consolidation courses

MRC AML12*

Relapse at 45mo,

FLAGx2 +ATRA, Cy TBI

autograft. Alive in second CR

at 177mo from diagnosis

1 in 105.1 (PLZF–

RARA), 1 in 104.3

(RARA–PLZF )

UPN2 50 6.8 46,XY,t(11;17)

(q23;q21)/45,

X–Y,t(11;17)

(q23;q21)

PLZF–RARA (2ZF) ADE/ATRA, ADE

MACE, MiDAC

1st CR 73mo from diagnosis 1 in 104.3

UPN3 75 2.0 46,XY,t(11;17)

(q23;q21)/

46,idem,

del(12)(p1?)/

46,idem,−6,+r

PLZF–RARA (3ZF)

RARA–PLZF

DAT2 + 7/ATRA,

DAT2 + 7, MACE

Relapse at 55mo,

Dauno +Ara-C. Died in

second CR 88mo from

diagnosis

1 in 104.3 (PLZF–

RARA), 1 in 104.3

(RARA–PLZF )

UPN4 58 7.4 46,XY,t(7;17)

(q36;q21)

PLZF–RARA (3ZF) DAT3 + 10/ATRA,

DAT3 + 8/ATRA,

MACE

Died in relapse 3.5mo from

diagnosis

1 in 104.6

UPN5 62 1.2 47,XY,+8[3]/

47,XY,+
8,t(11;17)

(q23;q21)[23]

PLZF–RARA (3ZF)

RARA–PLZF

MRC AML12 Relapsed at 7mo. Died in

relapse at 15mo

1 in 104.6 (PLZF–

RARA), 1 in 104.6

(RARA–PLZF )

UPN6 29 5.6 46,XX,t(3;17)

(q26;q21)

STAT5b–RARA AIDA #1, DA 3 + 8,

Ara-C 1.5g/m2 × 2

Persistent PCR

positivity → FLA, BuCy sibling

allograft. Died 15mo from

diagnosis – respiratory failure

1 in 105.4

UPN5 is a previously unreported case. Clinical details and information regarding further molecular characterization of UPNs1–4 has been reported elsewhere (Culligan

et al., 1998; Grimwade et al., 1997; Grimwade et al., 2000; Guidez et al., 2007). Details of the clinical presentation of the STAT5b–RARA case (UPN6) have been

described previously (Cahill et al., 2011). *Details of the MRC AML12 protocol have been published previously (Burnett et al., 1999). Dauno, daunorubicin; Ara-C,

cytosine arabinoside.

located in RARA exon 3 and the PCR anchor primer (5′-
GACCACGCGTATCGATGTCGAC-3′) from the kit which anneals
to the sequence introduced by the non-T portion of the Oligo
d(T)-anchor primer in the previous PCR round. Upon visual-
ization in 1% agarose gels, purified 5′ RACE PCR products were
cloned using the pGEM-T Easy Vector System (Promega, UK) and
identified by sequence analysis (Figure 1). Breakpoint location was
further verified by sequencing of nested RT-PCR products which
were obtained from independent RNA aliquots.

DEVELOPMENT OF RT-qPCR ASSAYS FOR APL FUSION TRANSCRIPTS
The assay designs to amplify PLZF–RARA and STAT5b–RARA
fusion transcripts were adapted from the standardized PML–
RARA assay developed in the EAC program (Gabert et al., 2003),
using the EAC probe and reverse primer located in RARA exon 3 in
conjunction with newly designed forward primers located within
PLZF (exon 3 or 4, depending upon the breakpoint) and STAT5b
(exon 15), respectively (Figure 2; Table 2). In addition, recip-
rocal RARA–PLZF transcripts expressed from the der(17) were
detected using a common forward primer and probe located in
RARA exon 2,which were previously described for amplification of
reciprocal RARA–PML transcripts in APL with the classic t(15;17)

(Grimwade et al., 2009), used in conjunction with newly designed
reverse primers located in PLZF exons 4 and 5, according to
patient breakpoint (Figure 2; Table 2). Assays were designed using
Primer Express software (Applied Biosystems, Warrington, UK).
RT-qPCR reactions were run on the ABI7900 platform under the
standard EAC conditions (Gabert et al., 2003), with expression
of leukemic fusion transcripts normalized to the ABL control
gene using the ΔCt method, as described previously (Flora and
Grimwade, 2004; Grimwade et al., 2009). All assays were confirmed
to be fusion transcript specific based on lack of detectable amplifi-
cation in normal control (n = 5) or diagnostic PML–RARA+ APL
(n = 5) blood and bone marrow (BM) samples. RT-qPCR assay
sensitivity was calculated, based upon the level of expression of
leukemic transcripts in the diagnostic sample in relation to the
ABL control gene, as described (Freeman et al., 2008; Grimwade
et al., 2009). Assays were run in triplicate; amplification in at
least two of three replicates with Cycle Threshold (Ct) values ≤40
(threshold 0.05) was required to define a result as PCR positive
for the fusion transcript in question, according to EAC crite-
ria (Gabert et al., 2003). No-template controls (NTCs) for each
assay were run in duplicate to exclude possible contamination,
while patients’ diagnostic samples served as positive controls.
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FIGURE 1 | Identification of STAT5b–RARA fusion underlying APL in

UPN6 with t(3;17)(q26;q21) variant translocation. (A) 5′ RACE was
undertaken, which showed a weak band on second round PCR; the
amplification product was cloned, sequenced and found to be a fusion
between STAT5b exon 15 and RARA exon 3 (B), in accordance with the

breakpoints identified in 4 previously reported cases with this
rearrangement (Arnould et al., 1999; Kusakabe et al., 2008; Iwanaga
et al., 2009; Qiao et al., 2011). Detection of STAT5b–RARA fusion
transcripts was confirmed by nested RT-PCR using a fresh aliquot of
RNA (C).

MRD level in follow-up samples was calculated using the ΔΔCt
method as described by Beillard et al. (2003). Briefly, the dif-
ference in expression between the fusion transcript (FT) and
ABL in a follow-up (FUP) sample (ΔCtFUP = CtFT−CtABL) was
normalized to the difference between their expression at diag-
nosis (Dx) (ΔCtDx = CtFT−CtABL) using the following formula:
10[(ΔCtFUP−ΔCtDx)/−3.5], where −3.5 represents the mean slope
observed in the EAC program for plasmid standard curves (Beil-
lard et al., 2003). Persistent PCR positivity was defined by the
presence of leukemic transcripts throughout frontline therapy
including the post-consolidation timepoint. CRm was defined as
lack of detection of leukemic fusion transcripts in a BM sample
affording a sensitivity of at least 1 in 104.

RESULTS
MOLECULAR CHARACTERIZATION OF APL CASES WITH ALTERNATIVE
FUSION PARTNERS
Molecular analysis was undertaken in six cases of PML–RARA neg-
ative APL. In four cases (UPN1-3, UPN5), cytogenetics showed the
t(11;17)(q23;q21), and presence of a PLZF/RARA rearrangement
was confirmed by conventional nested RT-PCR (Table 1). In two
cases (UPN4, UPN6) with t(7;17)(q36;q21) and t(3;17)(q26;q21)
we postulated occurrence of a novel APL fusion; however, in both
cases 5′ RACE revealed involvement of a known fusion part-
ner, i.e., PLZF and STAT5b, respectively (Table 1; Figures 1 and

2), which was confirmed by nested RT-PCR performed on fresh
aliquots of RNA from the diagnostic samples. In two cases with
PLZF/RARA rearrangements, the chromosome 11 breakpoint fell
within PLZF intron 3, leading to retention of 2 zinc fingers (2ZF) in
the PLZF moiety of the PLZF–RARα fusion protein. In the other
three patients, the PLZF breakpoint fell within intron 4, lead-
ing to inclusion of 3 zinc fingers (3ZF) in the PLZF component
of PLZF–RARα (Table 1). Reciprocal RARA–PLZF fusion tran-
scripts were co-expressed in three of five cases (Table 1). In UPN6
with the STAT5b–RARA fusion, the breakpoint location within
the STAT5b locus was found to be identical to that reported pre-
viously (Arnould et al., 1999; Kusakabe et al., 2008; Iwanaga et al.,
2009; Qiao et al., 2011; Figure 1). In accordance with the find-
ings reported in the index case (Arnould et al., 1999), reciprocal
RARA–STAT5b transcripts were not detected in UPN6.

DEVELOPMENT OF RT-qPCR ASSAYS TO TRACK TREATMENT RESPONSE
IN PATIENTS WITH PLZF–RARA AND STAT5B–RARA ASSOCIATED APL
In order to detect PLZF–RARA and STAT5b–RARA transcripts
by RT-qPCR, forward primers were designed to be used in con-
junction with the common probe and reverse primer developed
within the EAC program to amplify PML–RARA fusion transcripts
(Figure 2; Gabert et al., 2003). To amplify reciprocal RARA–PLZF
transcripts by RT-qPCR, reverse primers were designed within
PLZF exon 4 or 5 (according to patient breakpoint location), used
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FIGURE 2 | Design of RT-qPCR assays to detect PLZF–RARA,

RARA–PLZF, and STAT5b–RARA fusion transcripts. PLZF–RARA and
STAT5b–RARA transcripts were detected with the common Europe
Against Cancer probe (ENP942) and reverse primer (ENR962) located in
RARA exon 3, used in conjunction with fusion-specific forward primers
(seeTable 2). For PLZF–RARA cases in which the chromosome 11
breakpoint fell within intron 3 of PLZF [retaining 2 zinc fingers (ZF) in the
PLZF moiety of the resultant PLZF–RARα fusion protein] the forward
primer was located in PLZF exon 3 (upper panel). Whereas for cases in

which the breakpoint fell within intron 4 (retaining 3 ZF in the PLZF moiety
of PLZF–RARα), the forward primer was located within exon 4 (upper
panel). For amplification of STAT5b–RARA, the forward primer was placed
in STAT5b exon 15 (middle panel). In UPN1, UPN3, and UPN5, reciprocal
RARA–PLZF transcripts were co-expressed; RT-qPCR assays were
designed for this target using a previously published common forward
primer and probe located in RARA exon 2 (Grimwade et al., 2009), used in
conjunction with a reverse primer located in PLZF exon 4 or 5, according
to chromosome 11 breakpoint location (bottom panel).

Table 2 | Primers and probes used to detect APL fusion transcripts.

Primer/probe Sequence (5′–3′)

PLZF–RARA AND STAT5B–RARA

PLZFex3F TGGATAGTTTGCGGCTGAGA

PLZFex4F GAGACACACAGGCAGACCCATA

STAT5Bex15F GCATCACCATTGCTTGGAAG

ENR962* GCTTGTAGATGCGGGGTAGAG

ENP942* FAM–AGTGCCCAGCCCTCCCTCGC–TAMRA

RARA–PLZF

RARAex2F
‡

CCCCTATGCTGGGTGGACT

PLZFex4R CACCGCACTGATCACAGACAA

PLZFex5R AGACAGAAGACGGCCATGTCA

RARAex2Pr
‡

FAM–CCGCCAGGCGCTCTGACCAC–TAMRA

Sequences of the primers and probes used to detect PLZF–RARA, RARA–PLZF,

and STAT5b–RARA fusion transcripts.

*Europe Against Cancer common reverse primer and probe (Gabert et al., 2003).
‡ Published common forward primer and probe, used previously to amplify

RARA–PML (Grimwade et al., 2009).

in conjunction with the common forward primer and probe both
located within RARA exon 2 (Figure 2), which we have recently
validated for amplification of reciprocal RARA–PML transcripts
in patients with t(15;17) APL within the UK MRC AML15 trial
(Grimwade et al., 2009). The relative expression of PLZF–RARA at
diagnosis was comparable to that observed for PML–RARA tran-
scripts in t(15;17) associated APL (Grimwade et al., 2009). The
ΔCtDx ranged from −2 to +1, corresponding to assay sensitivities

for detection of PLZF–RARA transcripts of between 1 in 104.3 and
1 in 105.1 (Table 1). In the three patients who were informative for
the reciprocal RARA–PLZF assay, this was not found to improve
the sensitivity to detect MRD as compared to detection of PLZF–
RARA alone (Table 1). In UPN6, STAT5b–RARA transcripts were
found to be very highly expressed at diagnosis (ΔCtDx = −3),
affording an assay sensitivity of 1 in 105.4.

In two PLZF–RARA patients (UPN1, UPN2), follow-up sam-
ples were available for analysis. Samples from UPN1 had originally
been tested by conventional nested RT-PCR, with BMs taken at 5
and 10 months from diagnosis found to test PCR negative. How-
ever, in accordance with our experience with PML–RARA+ APL,
the RT-qPCR assay afforded greater sensitivity, with PLZF–RARA
transcripts detected at both timepoints (Figure 3A). Reciprocal
RARA–PLZF transcripts were not detectable in these follow-up
samples in accordance with the poorer sensitivity afforded by this
assay (Figure 3A; Table 1). Failure to achieve CRm following front-
line therapy predicted subsequent disease relapse, which occurred
at 45 months from original diagnosis (Figure 3A). In UPN2, MRD
monitoring was undertaken by RT-qPCR in real time; in this
case, CRm was achieved with combination chemotherapy, PLZF–
RARA transcripts remained undetected in subsequent surveillance
MRD samples and this patient is in ongoing remission of APL at
73 months (Figure 3A). UPN6 with STAT5b–RARA was also mon-
itored by RT-qPCR in real time (Figure 3B); this patient exhibited
a 2-log reduction in fusion transcripts (i.e., 10−2 MRD level) fol-
lowing AIDA induction (ATRA + idarubicin). However, treatment
response was much poorer than typically seen in PML–RARA+
APL (Grimwade et al., 2009), with no significant further decline in
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FIGURE 3 | Detection of minimal residual disease (MRD) by RT-qPCR

assay in PLZF–RARA and STAT5b–RARA associated APL. (A) Serial
samples were available from two patients (UPN1, UPN2) with
t(11;17)(q23;q21)-associated APL. In UPN1, PLZF–RARA transcripts were still
detectable at the post-treatment timepoint, predicting subsequent disease
relapse. Reciprocal RARA–PLZF were not detectable in early follow-up
samples, consistent with the poorer sensitivity of this assay in this patient
(seeTable 1). UPN2, who was not informative for RARA–PLZF, achieved

molecular remission following frontline therapy and remains in ongoing
remission of their leukemia. (B) Serial monitoring of STAT5b–RARA
transcripts normalized to the ABL control gene in UPN6. The patient failed to
achieve molecular remission following frontline therapy and showed a rapidly
rising fusion transcript level indicative of impending full blown relapse (labeled
“molecular relapse”). The patient received two courses of Fludarabine and
cytosine arabinoside (FLA) as pre-emptive therapy and then proceeded to a
sibling myeloablative allogeneic stem cell transplant (SCT).

fusion transcript level following two further courses of chemother-
apy (DA3 + 8; cytarabine 1.5g/m2). A 2-log decline in fusion tran-
scripts was documented following the fourth course of chemother-
apy (cytarabine 1.5g/m2); however STAT5b–RARA transcripts
remained detectable at the post-treatment timepoint and exhibited
a steady rise of ∼2-logs over the following 2 months. The patient
was deemed to be in molecular relapse and received further therapy
(Fludarabine, cytarabine) which led to a further decline in fusion
transcripts. However, the patient never achieved a CRm and there-
fore proceeded to a myeloablative sibling donor allogeneic trans-
plant with busulphan and cyclophosphamide conditioning, which
was unfortunately complicated by respiratory failure, leading to
the patient’s demise while still in clinical remission.

DISCUSSION
Application of molecular monitoring by RT-qPCR to establish
remission status and identify patients needing additional therapy
to achieve disease cure is now firmly established as a key com-
ponent of the management of patients with PML–RARA+ APL
(Sanz et al., 2009). However, there remains considerable uncer-
tainty regarding the clinical utility of MRD monitoring in other
forms of acute myeloid leukemia (AML). While there is evidence
that RT-qPCR can be used to predict disease relapse in patients
with nucleophosmin (NPM1) mutant AML (Schnittger et al.,
2009; Krönke et al., 2011) and core binding factor (CBF) leukemia
(Corbacioglu et al., 2010; Ommen et al., 2010), there are very

limited data in patients with other molecularly defined subsets of
disease.

To date,over 100 balanced chromosomal rearrangements which
are considered to be primary events in leukemogenesis have been
cloned (Mitelman et al., 2011). The characterization of the result-
ing chimeric fusion genes is not only important to achieve a greater
understanding of disease biology, but has concomitantly yielded
an extensive array of leukemia-specific targets that can effectively
be used to track MRD by RT-qPCR. A number of genes (e.g., MLL,
RUNX1, RARA, NUP98) are recurrently involved, fused to a range
of potential partner genes. Depending upon breakpoint location,
this allows common primers and probes located in the exon imme-
diately adjacent to the breakpoint to be used in conjunction with an
appropriate partner-gene specific primer to amplify the leukemic
fusion transcript. In APL, translocation breakpoints consistently
involve RARA intron 2, meaning that for cases with alternative
fusion partners (e.g., PLZF, STAT5b, as described here), it is possi-
ble to use partner-specific forward primers in conjunction with an
extensively validated probe and reverse primer located in RARA
exon 3, that were designed in the EAC program (Gabert et al.,
2003). Based on the expression of the fusion gene transcripts
relative to the validated endogenous control gene ABL in diag-
nostic samples, it was established that the sensitivity of the assays
was comparable to those used in PML–RARA+ APL, capable of
detecting MRD at a sensitivity of at least 1 in 104. Due to the rarity
of PLZF–RARA-associated APL, experience of MRD detection in
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patients with this subset of leukemia is extremely limited (Cassi-
nat et al., 2006); nevertheless, the significance of the MRD results
seems to parallel those observed in patients with classic PML–
RARA+ disease. In particular, CRm can be achieved with frontline
therapy and is a prerequisite for disease cure.

As has been clearly demonstrated in PML–RARA+ APL, in
order to reliably predict relapse it is important to adopt a sequen-
tial MRD monitoring approach (reviewed Grimwade and Tallman,
2011). This was applied in the patient with STAT5b–RARA+ APL,
showing a failure to achieve CRm following intensive frontline
therapy. Based upon the rising transcript level, further therapy was
given to prevent impending relapse followed by a sibling allogeneic
transplant. This approach was based on published data showing
that patients with PML–RARA+ APL with persistent PCR positiv-
ity can potentially be salvaged by allogeneic transplant (Lo-Coco
et al., 2003; Grimwade et al., 2009; Kishore et al., 2010). However,
unfortunately there was an unsuccessful outcome in our patient
with STAT5b–RARA due to transplant-related complications.

Therefore in conclusion, we have used 5′ RACE PCR to char-
acterize simple variant translocations in APL, identifying cases
involving the PLZF and STAT5b genes. Having defined breakpoint
regions by sequence analysis, we adapted standardized RT-qPCR
assays used for disease monitoring in patients with the classic
t(15;17) in order to detect leukemic transcripts in these retinoid
resistant subtypes of APL. As a consequence of the rarity of these
disease entities, the number of cases analyzed was very small and

study of further patients is merited to identify thresholds that may
be useful to predict risk of relapse. Nevertheless, this study high-
lights the potential of RT-qPCR to guide management in patients
with infrequent recurring translocations for which there is cur-
rently a paucity of robust prognostic information on which to
base treatment decisions, particularly with respect to the role of
allogeneic transplant in first remission.
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