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Gut microbes significantly impact animal health, yet research on the gut microbiota of
most birds, especially raptors, is lacking. This study investigated the effects of dietary
and environmental changes on the composition and abundance of gut microbiota in 17
rescued common kestrels (Falco tinnunculus) through 16S rRNA gene high-throughput
sequencing of microorganisms in the feces of the birds. Firmicutes (relative abundance,
43.63%), Proteobacteria (37.26%), Actinobacteria (7.31%), and Bacteroidetes (5.48%)
were the dominant phyla in the gut microbiota of the common kestrels. A comparison
of the gut microbiota before and after captivity revealed that community composition
and abundance of the common kestrel gut microbiota differed among different living
conditions including diet and environment. At the phylum level, the abundance of
Firmicutes was higher (P < 0.05), and that of Proteobacteria was lower (P < 0.05),
after captivity (54.62 and 27.16%, respectively) compared with before captivity (33.67
and 46.41%, respectively), but no significant differences were found among other phyla.
At the genus level, the abundance of Lactobacillus was higher (P < 0.05) after captivity
(15.77%) compared with the abundance before captivity (5.02%). Hierarchical clustering
and principal component analyses showed that common kestrels in different living
conditions exhibited differences (P < 0.05) in gut microbiota at phylum and genus
levels. Functional prediction of gene sequences using PICRUSt2 further revealed that
pathways related to glucose metabolism and amino acid metabolism were enhanced
(P < 0.05) after captivity. Collectively, the findings from this study demonstrated that
the relative abundance of specific microbes in the gut of the rescued common kestrels
either increased or decreased, and that dietary and environment changes might be the
predominant factors affecting the gut microbiota of these birds during rescue or captivity.

Keywords: rescued common kestrel, captivity, gut microbiota, relative abundance, functional analysis

INTRODUCTION

Gut microbes play a crucial role in maintaining animal health, influencing physiological processes
such as nutrient metabolism, vitamin synthesis, and immune function in the host (Round and
Mazmanian, 2009; Hornef and Pabst, 2016; Ashrafian et al., 2019; Xu et al., 2020). Various studies
have shown that gut microbes are extensively involved in the digestion of food in the gut, facilitating
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the breakdown of food into nutrients available to the host
(Turnbaugh et al., 2006; Wu et al., 2010; Ley, 2016; Li et al.,
2019). Carbohydrate metabolism in animals is facilitated by gut
microbes, and many of the gut microbes that are commonly
found can convert monosaccharides to short-chain fatty acids
and transform pyruvate to lactate (Turnbaugh et al., 2009).
Microorganisms in the well-developed crop of the hoatzins
(Opisthocomus hoazin) can pre-ferment complex polymers in
food into products that can be used by the host (Godoy-Vitorino
et al., 2012), and can also degrade the toxic phenolics in plant food
materials thus are involved in detoxification to a certain extent
(Garcia-Amado et al., 2007).

The gut microbiota is also an indispensable part of the
autoimmune function in animals, forming an immune barrier
and preventing the invasion of foreign pathogens (Kamada
et al., 2013; Yoon et al., 2021). Gut microbes coevolved with
the host to form a symbiotic microbiota that maintained
the health of the host, and these symbiotic bacteria have
a close relationship with the host immune system. Rakoff-
Nahoum et al. (2004) reported that the interaction of symbiotic
bacteria and Toll-like receptors can maintain environmental
stability in the animal gut. Meanwhile, Hammami et al. (2013)
demonstrated that gut microbes can also maintain a stable
environment through competitive rejection and production of
antimicrobial compounds (e.g., bacteriocins and other toxins) to
act against pathogens.

In addition to participating in host immune metabolism,
microbes that colonize the gut are also influenced by host genetics
(Lucas and Heeb, 2005; Whittaker et al., 2016; Song et al.,
2020), feeding habits or diet (Preest et al., 2003; Blanco, 2014),
developmental stages (González-Braojos et al., 2011; Escallón
et al., 2019; Zhu et al., 2021), living conditions (Wu et al., 2021),
and specific behaviors such as migration (Wienemann et al., 2011;
Lewis et al., 2017; McCabe et al., 2020) and parasitism (Ruiz-
Rodriguez et al., 2018). During the long-term co-evolution of host
and gut microbes, a unique and stable gut microbial community
or gut microbiota is formed in the host. Youngblut et al. (2019)
studied the gut microbes of 128 wild animals and found that the
gut microbes were predominantly composed of the Firmicutes,
Proteobacteria, Actinobacteria, and Bacteroidetes, and that host
diet and microbial phylogenetic relationships are crucial factors
driving host-gut microbial variation. Similarly, a study of the gut
microbes of 59 neotropical birds revealed that the composition
of core microbes in the bird gut resembled that of previous
studies (Grond et al., 2017; Huang et al., 2018; Kohl et al., 2019;
Capunitan et al., 2020), with diet, different digestive tract regions,
and habitats all influencing bird gut microbes (Preest et al., 2003;
Blanco, 2014; Hird et al., 2015; Gongora et al., 2021).

Ex situ conservation is an important method for wildlife
conservation, and many rare and endangered species are
released back to nature after successful artificial rescue by
zoos, rescue centers, and other institutions (Yu et al., 2015).
Captive environments can alter animal behavior, affect normal
physiological status, and in some cases reduce reproductive
success rate (Amato et al., 2013; Amato et al., 2016; Tubbs
et al., 2016). Numerous studies have analyzed the effects of
captivity on wildlife gut microbes from a health management

perspective (Kohl et al., 2014; Clayton et al., 2016). Most
wild animals undergo significant compositional changes in
their gut microbiota after captivity, with alterations in food
and environment potentially being the predominant factors
contributing to these changes (Li et al., 2017b; Gibson et al.,
2019). In Oriental white stork (Ciconia boyciana), changes in
food after captivity was an important factor leading to significant
differences in species diversity and abundance of gut microbial
communities (Wu et al., 2021). For birds, a shift in the survival
environment is one factor that can rapidly alter microbial
community composition (Xenoulis et al., 2010; Wienemann
et al., 2011; Zhu et al., 2021). Despite active efforts to create a
suitable environment for wildlife (enrichment) and feed a diet
similar to that of the wild population during translocation and
conservation, significant differences remain between the living
environment and diet composition of wild and captive animals
(Liu et al., 2021; Suzuki et al., 2021), causing microbial changes
in the gut that impact the health status of the host. Therefore,
investigating changes in gut microbiota composition in captive
animals during rescue is essential to understand the health status
of the animals and adaptation to artificial food supply and
captive environments.

The common kestrel (Falco tinnunculus) is a Class II protected
animal in China, as listed in the CITES Appendix II. This
bird species has a wide distribution and usually inhabits low
hills, farmland, and villages, and can also live in areas with
intensive human activities (Charter et al., 2007). Common
kestrels predominantly feed on small vertebrates such as mice,
passerine birds, frogs, lizards, and snakes, as well as small insects
such as locusts and crickets (Geng et al., 2009; Carrillo et al.,
2017). Common kestrels—rescued for reasons such as weakness,
fractures or poor flying ability—can carry a large number of
microbes, including infectious pathogenic microbes that can
damage their own health and be a source of transmission to other
animals and even rescuers (Chu et al., 1976; Kwan et al., 2014;
Boros et al., 2015; Guan et al., 2020). Rescued common kestrels
are housed in human-built premises, which are different from
their natural habitat. The food in captivity is mainly artificially
bred mice, and this relatively homogeneous diet may cause stress
to the common kestrels. Traditional rescue methods focus on the
diagnosis and treatment of specific diseases, ignoring the impact
of many gut microbes on the host. Focusing on differences in gut
microbiota between wild and captive conditions and analyzing
the possible role of these differences in nutrient absorption and
immune defense might improve the adaptive ability of individual
rescued common kestrels to return to nature from captivity. In
addition, the samples in previous studies in exploring the effects
of wild and captive environments on gut microbiota were mostly
from different populations, and it was inevitable that individual
differences would affect the accuracy of the results (Gibson et al.,
2019; Liu et al., 2021; Suzuki et al., 2021). The current study
utilized 16S rRNA gene high-throughput sequencing technology
to analyze the gut microbiota of common kestrels rescued by
Beijing Wildlife Rescue Center before and after captivity, with
the aim of exploring the changes in composition and diversity
of the gut microbiota during rescue or captivity. Findings from
the study provide a scientific basis for the diagnosis of gut
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diseases of rescued common kestrels and lay a foundation for
the improvement of health management methods in captivity to
facilitate the return of these birds to nature.

MATERIALS AND METHODS

Animals
Animals used in this study were 17 common kestrels rescued by
the Beijing Wildlife Rescue Center from May to June in 2021.
The common kestrels were divided into three different age groups
according to the status of the molting cycle and the shape and
wear of the feathers (Supplementary Table 1), of which five
were adults, six were subadults, and six were juveniles. The sex
of each common kestrel was identified by PCR amplification
of DNA from the back feathers using the universal primers
2550F (5′-GTTACTGATTCGTCTACGAGA-3′) and 2718R (5′-
ATTGAAATGATCCAGTGCTTG-3′) (Cakmak et al., 2017)
(Supplementary Table 1), and eight males and nine females were
identified. All individuals showed no obvious signs of disease
after veterinary examination, so were not treated with drugs, and
were housed individually in isolation cages and fed daily with
freshwater, mice, and/or beef.

Collection and Storage of Samples
Sampling was conducted at two stages: firstly, samples were
collected immediately after the rescue (i.e., before captivity);
secondly, samples were collected immediately before the release
of the recovered common kestrels (i.e., after captivity). For
sampling, each rescued common kestrel was marked and placed
into a shaded cage lined with sterile white paper. Immediately
after the individual defecated, fecal samples were collected with
sterile cotton swabs and placed into centrifugal tubes. All of the
above steps were done under the premise of ensuring that the
samples collected were not contaminated by other environmental
factors including the sampler. The tubes were labeled and stored
in at −80◦C until further use. No less than 2 g fresh feces
were collected in each centrifuge tube. Sampling avoided uric
acid as much as possible to ensure that sequencing was not
affected. After the rescue, quiet common kestrel individuals
were selected for sampling to avoid or reduce the possible
adverse effects of a strong stress reaction. A total of 34 common
kestrel fecal samples were collected in this study, including 17
collected before captivity and 17 after captivity for 4–14 days
(Supplementary Table 2).

DNA Extraction
Bacterial DNA was extracted from feces using the QIAamp
DNA Stool Mini Kit (QIAGEN, Hilden, Germany) and
the concentration and integrity of the extracted DNA were
determined by NanoDrop and agarose gel electrophoresis,
respectively. Samples with a concentration greater than
5 ng/µL and a distinct main band on the agarose gel
were selected for PCR amplification with universal primers
338F (5′-ACTCCTACGGGAGGCAGCA-3′) and 806R (5′-
GGACTACHVGGGTWTCTAAT-3′). The 10 µL reaction
system was composed of 5 ng DNA, 0.3 µL each primer (10 µM),

5 µL KOD FX Neo Buffer, 2 µL dNTPs (2 mM), 0.2 µL PCR
enzyme (KOD FX Neo), and ddH2O to 10 µL. PCR cycling
conditions included a pre-denaturation step at 95◦C for 5 min, 25
cycles of denaturation at 95◦C for 30 s, annealing at 50◦C for 30 s,
and extension at 72◦C for 40 s, followed by an extension step at
72◦C for 7 min and then termination at 4◦C. The amplified PCR
products were detected by electrophoresis using agarose gels at
a concentration of 1.8%, and samples with distinct main bands
were selected for building the database. The database was then
checked by the Qsep-400 method and quantified by Qubit 3.0.
Double-end sequencing was performed on the Illumina Novaseq
6000 platform after the library was qualified quantitatively (i.e.,
concentration ≥ 1 ng/µL, fragment center value 430–530 bp,
average value 420–580 bp, peak shape normally distributed, and
the fragment being single without heteropeaks).

Sequencing Data Processing
Raw reads obtained from sequencing were filtered using
Trimmomatic v0.33 software, then the primer sequences were
identified and removed by Cutadapt 1.9.1 software to obtain
high-quality clean reads. Sequences from each sample were
spliced and then length filtered by Usearch v10 software, and
chimeric sequences were identified and removed by UCHIME
v4.2 software to obtain the final valid data (effective reads). The
sequences were clustered at the 97% similarity level using Usearch
v10 software to obtain operational taxonomic units (OTUs).
Raw sequences obtained in this study are available through the
National Center for Biotechnology Information (NCBI) database
(accession number PRJNA797889).

Operational Taxonomic Unit Sequence
Annotation and Taxonomic Analysis
Taxonomic analysis of OTU sequences was performed using
a plain Bayesian classifier with SILVA as the reference
database. This generated taxonomic information on the species
corresponding to each feature and then allowed analysis of
microbial community composition at different levels, including
phylum, class, order, family, genus, and species. Species
abundance lists at different taxonomic levels were generated
using QIIME software, and then the community structure at each
taxonomic level was mapped using R software.

Statistical Analysis
Species richness and diversity indices, including ACE, Chao1,
Shannon, and Simpson indices, were calculated using the vegan
package (Dixon, 2003) in R software (3.6.3) and were used
to analyze species diversity and complexity. Weighted UniFrac
distances between samples were calculated using the phyloseq
package, then differences in gut microbial communities between
the two groups of samples at the phylum and genus levels were
assessed separately using NMDS analysis, and the significance of
differences between the two groups was tested by the permutation
multivariate analysis of variance (PERMANOVA). Hierarchical
clustering among samples was obtained by using the unweighted
pair group method with the arithmetic means (UPGMA)
function of the vegan package. Heatmaps, dendrograms, venn
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diagram, and between-group analysis of variance maps were
generated using R software and categorized by the online linear
discriminant analysis effect size (LEfSe) website.1 A microbial
co-occurrence network was constructed based on the Spearman
correlation coefficients between the relative abundances of
genera, and the association network was visualized using Gephi
0.9.1 software. The function of each OTU was predicted using
Phylogenetic Investigation of Communities by Reconstruction
of Unobserved States (PICRUSt2) (Douglas et al., 2020). The
predicted functions (KOs) were then collapsed into hierarchical
KEGG (Kyoto Encyclopedia of Genes and Genomes) pathways
in the PICRUSt2 pipeline. Annotation of the function of gut
microbes of common kestrels was performed according to the
KEGG database (Kanehisa et al., 2014). A correlation heatmap
between microbial taxa and three levels of metabolic pathways
was plotted using the pheatmap function based on the Pearson
correlation coefficient between the relative abundance of bacterial
populations and the relative abundance of predicted pathways.
Relative abundances were expressed as Mean ± SE. Differences
between samples before and after captivity were tested for
significance. Paired sample t-test was used for data satisfying the
conditions of normality; otherwise, the paired Mann-Whitney
U-test was used. P values were corrected by false discovery rate
(FDR), and P < 0.05 was considered statistically significant.

RESULTS

Validation of 16S rRNA Gene Sequencing
of Common Kestrel Feces Samples
All samples were subjected to 16S rRNA gene sequencing, and
after quality control, a total of 3,139,268 high-quality sequences

1www.biocloud.net

were obtained, of which 3,126,045 were valid sequences,
accounting for 99.58% of the total high-quality sequences. An
average of 91,943 valid sequences were obtained for each sample,
indicating that the sequencing data were sufficient to cover
most of the gut microbes. The dilution curve (Supplementary
Figure 1) showed that the number of OTUs increased rapidly
with a linear growth pattern when the sequencing volume was
small. However, when the sequencing volume was larger, the
increase rate of the OTUs gradually decreased and finally leveled
off, indicating that the amount of sequencing data obtained was
sufficient to reflect the species diversity in the samples and thus
ensured the reliability of the subsequent analyses.

Gut Microbe Composition of Common
Kestrels
A total of 23 phyla, 51 classes, 124 orders, 222 families, 484
genera, and 561 species of microbes were detected among the
34 feces samples. At the phylum level, there were six phyla
with a relative abundance higher than 1% (Supplementary
Figure 2), namely Firmicutes (43.63%), Proteobacteria (37.26%),
Actinobacteria (7.31%), Bacteroidetes (5.48%), Acidobacteria
(2.03%), and Verrucomicrobia (1.04%), which accounted for
96.75% of the total bacteria, and the sum of the two most
abundant phyla was 80.89%. Before captivity (Figure 1A),
there were seven phyla with a relative abundance greater than
1%, including Proteobacteria (46.41%), Firmicutes (33.67%),
Actinobacteria (6.80%), Bacteroidetes (5.58%), Acidobacteria
(2.47%), Epsilonbacteraeota (1.41%), and Verrucomicrobia
(1.16%), which accounted for 97.50% of the total bacteria, and
the sum of the two most abundant phyla was 80.08%. In contrast,
only five phyla with a relative abundance of more than 1% were
found after captivity, including Firmicutes (54.62%), Aspergillus
(27.16%), Actinomycetes (7.86%), Bacteroidetes (5.36%), and
Acidobacteria (1.56%) (Figure 1A); these phyla accounted for

FIGURE 1 | Gut microbial compositions of the common kestrel before and after captivity. The compositions are presented as relative abundances at the phylum (A)
and genus (B) levels.
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96.56% of the total, and the sum of the two most abundant
phyla was 81.78%.

At the genus level (Figure 1B), the nine genera with
a relative abundance exceeding 2% before captivity were
Escherichia-Shigella (20.45%), Clostridium_sensu_stricto_1
(9.08%), uncultured_bacterium_ f_Enterobacteriaceae (6.59%),
Lactobacillus (5.02%), Paeniclostridium (4.91%), Psychrobacter
(3.39%), Romboutsia (2.55%), Acinetobacter (2.27%), and
Oceanisphaera (2.07%). These genera accounted for 59.12%
of the total bacteria, but only one genus, Escherichia-Shigella,
had a relative abundance greater than 10%. In addition, there
were seven genera with a relative abundance above 1% (totaling
10.71%). In contrast, the nine genera whose relative abundance
exceeded 2% after captivity were Lactobacillus (15.77%),
Escherichia-Shigella (13.43%), Clostridium_sensu_stricto_1
(12.98%), Paeniclostridium (4.06%), uncultured_bacterium_
f_Actinomycetaceae (3.05%), Oceanisphaera (2.94%),
uncultured_bacterium_f_Muribaculaceae (2.57%), Fructobacillus
(2.44%), and Weissella (2.09%). These genera accounted for
59.32% of the total, of which three genera—Lactobacillus,
Escherichia-Shigella, and Clostridium_sensu_stricto_1—had
relative abundances exceeding 10%. In addition, there were six
genera with a relative abundance of more than 1% after captivity,
accounting for 7.83% of the total.

Differences in Gut Microbes of Common
Kestrels Before and After Captivity
Alpha- and Beta-Diversity Analyses
For alpha-diversity analysis, the abundance and diversity of
the gut microbes of common kestrels under different living
conditions were assessed using ACE, Chao1, Simpson, and
Shannon indices (Table 1). The ACE index was higher after
captivity (640.66) compared with before captivity (636.19), while
the Chao1 index was higher before captivity (622.85) compared
with after captivity (607.51). Simpson and Shannon indices were
both higher after captivity (0.84 and 4.78, respectively) compared
with before captivity (0.81 and 4.55, respectively). A comparison
of the differences in richness and diversity indices between the
two groups of feces samples before and after captivity showed that
the ACE (Wilcoxon test: W = 80, P = 0.890), Chao1 (Wilcoxon
test: W = 62, P = 0.517), Simpson (Wilcoxon test: W = 94,
P = 0.431), and Shannon (Wilcoxon test: W = 85, P = 0.712)
indices were all not significantly different at the P > 0.05 level.
The effects of captive environment on the alpha diversity of gut
microbes in different age and sex groups were then examined.
The results showed that there was no significant effect on alpha
diversity in the gut of common kestrel with different genders and
ages (P > 0.05, Supplementary Table 5).

NMDS analysis and UPGMA clustering analysis were used
to evaluate the beta diversity of fecal microbial composition
(Figure 2). NMDS analysis based on the weighted Unifrac
distances revealed significant separation (P < 0.05) in the
composition of gut microbes between the before and after
captivity groups at both the phylum (PERMANOVA test:
R2 = 0.112, P = 0.018; Figure 2A) and genus (PERMANOVA
test: R2 = 0.082, P = 0.014; Figure 2B) levels. Similarly, UPGMA
clustering analysis based on the weighted Unifrac distances
showed a higher similarity of microbial communities within
groups compared with between groups at both the phylum
and the genus levels (Figures 2C,D). The effects of captivity
environment on the beta diversity of gut microbes in different age
and sex groups were subsequently analyzed. The results showed
that the captive environment had a significant effect on the beta
diversity at the phylum level in the gut of male common kestrels
(R2 = 0.225, P = 0.020), but had no significant effect in female
common kestrels (P > 0.05, Supplementary Table 6). And there
was no significant difference in beta diversity among individuals
of different age groups before and after captivity (P > 0.05,
Supplementary Table 6).

Comparison of Specific Microbes Between the
Rescued Common Kestrels Before and After Captivity
Operational taxonomic unit clustering of non-duplicate
sequences was performed according to 97% similarity, and a
total of 1,107 OTUs were selected as representative sequences.
Among these representative sequences, there were 1,088 and
1,086 OTUs obtained before and after captivity, respectively,
with 1,076 OTUs shared between both groups, 10 OTUs uniquely
detected after captivity, and 21 OTUs only detected before
captivity (Figure 3A).

LEfSe analysis, under the threshold of LDA > 4.0, revealed
significant differences between the common kestrels before and
after captivity (Figure 3B), of which the relative abundances
of Proteobacteria and Gamma-proteobacteria were higher
(P < 0.05) before captivity compared with after captivity. In
contrast, the relative abundances of Bacilli, Lactobacillaceae,
and Leuconostocaceae were higher (P < 0.05) after captivity
compared with before captivity.

The top five phyla (i.e., the sum of relative abundances
of the top five phyla, >90%) and the top 10 genera (i.e.,
the sum of relative abundances of the top 10 genera, >50%)
were selected for comparison of differences between the two
groups of fecal bacteria. At the phylum level, Firmicutes was
higher after captivity compared with before captivity (t-test:
t = 2.515, df = 30.774, P = 0.017), while Proteobacteria
was higher before captivity compared with after captivity
(Wilcoxon test: W = 77, P = 0.020). The relative abundances of

TABLE 1 | Comparisons of gut microbial abundance and diversity indices between the common kestrels before and after captivity.

ACE Chao1 Simpson Shannon Coverage

Before captivity 636.19 ± 35.38 622.85 ± 30.53 0.81 ± 0.04 4.55 ± 0.47 0.9989

After captivity 640.66 ± 37.80 607.51 ± 27.81 0.84 ± 0.03 4.78 ± 0.32 0.9989

P values 0.89 0.52 0.71 0.43
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FIGURE 2 | Beta-diversity analysis of gut microorganisms between the rescued common kestrels before and after captivity. (A,B) NMDS analyses based on
weighted UniFrac distances at phylum and genus levels, respectively. (C,D) UPGMA clustering at phylum and genus levels, respectively.

Actinobacteria (Wilcoxon test: W = 131, P = 0.658), Bacteroidetes
(Wilcoxon test: W = 143, P = 0.973), and Acidobacteria
(Wilcoxon test: W = 137, P = 0.812) were not significantly
different between the two groups of feces (Figure 4A). At
the genus level, Escherichia-Shigella (Wilcoxon test: W = 134,
P = 0.734), Clostridium_sensu_stricto_1 (Wilcoxon test: W = 148,
P = 0.919), Paeniclostridium (Wilcoxon test: W = 133, P = 0.708),

Oceanisphaera (Wilcoxon test: W = 144, P = 1), Psychrobacter
(Wilcoxon test: W = 105, P = 0.182), Rhodanobacter (Wilcoxon
test: W = 152.5, P = 0.796), Carnobacterium (Wilcoxon test:
W = 142, P = 0.945), Romboutsia (Wilcoxon test: W = 138.5,
P = 0.850), and Acinetobacter (Wilcoxon test: W = 144,
P = 1) did not differ among the two groups of feces. In
contrast, the relative abundance of Lactobacillus was higher
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FIGURE 3 | Comparison of the unique bacteria in gut microbiota of the common kestrels before and after captivity. (A) Venn diagram showing numbers of common
and unique OTUs. (B) LEfSe analysis at the genus level.

after captivity compared with before captivity (Wilcoxon test:
W = 236, P = 0.001) (Figure 4B). Next, the effects of captivity
environment on the abundance of dominant phylum and genus
in different age and sex groups were analyzed. The abundance
of Proteobacteria (t = −2.476, df = 13.969, P = 0.027) and
Lactobacillus (t = 2.409, df = 11.742, P = 0.033) in male common
kestrels was significantly different before and after captivity. The
abundance of dominant phylum and genus was not significantly
affected by captivity environment in females and individuals of
different ages (P > 0.05, Supplementary Table 7).

Gut Microbiota Association Network Analysis and
Functional Annotation
The top 100 genera in terms of relative abundance
(Supplementary Table 3) were selected and their Spearman
correlation coefficients were calculated and used to analyze the
correlation between the gut microbiota in the two groups of feces
(Figure 5). The degree of microbial co-occurrence networks of
the two groups conformed to a power-law distribution (Before
captivity: y = 7.464x−0.481, R2 = 0.467, P = 0.001; After captivity:
y = 6.597x−0.467, R2 = 0.224, P = 0.012). Genera with highly
correlated relative abundance changes clustered in connected
modules. The group before captivity formed seven modules
(Figure 5A), with 477 links between 100 nodes (mean degree
13.068, mean path length 2.694, and mean clustering coefficient
0.717), while the group after captivity formed six modules

(Figure 5B), including 547 links between 100 nodes (mean
degree 16.328, mean path length 3.064, and mean clustering
coefficient 0.76).

Before captivity, most of the genera in which microbial
communities tended to co-occur (positively correlated) belonged
to the phyla Firmicutes, Proteobacteria, Bacteroidetes, and
Actinobacteria. In contrast, the genus Brevundimonas belonging
to the phylum Proteobacteria, and the genus Rothia of the
Actinobacteria, showed co-rejection (negative correlation). After
captivity, all microbial communities tended to co-occur, but
compared with those before captivity, the co-occurrence network
was more complex in the phyla Firmicutes, Proteobacteria,
Bacteroidetes, and Actinobacteria, as well as in some genera of
the phyla Verrucomicrobia and Epsilonbacteraeota.

Functional Annotation of Gut Microbes
The functional potential of the microbial communities
present among common kestrel gut microbes was predicted
by PICRUSt2 and involved functional pathways such as
“metabolic pathways,” “biosynthesis of secondary metabolites,”
“biosynthesis of antibiotics,” “microbial metabolism in
diverse environments,” “biosynthesis of amino acids,” “ABC
transporters,” “carbon metabolism,” and “two-component
system” (Supplementary Table 4).

The top 30 functional pathways in terms of relative
abundance were analyzed and significant differences (P < 0.05)
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FIGURE 4 | Comparison of differences in the main compositions of gut microbiota of the common kestrels before and after captivity. Differences in relative
abundance among the top five core phyla (A) and the top 10 core genera (B) were analyzed. ∗ and ∗∗∗ indicate significant differences at P < 0.05 and P < 0.001,
respectively.

FIGURE 5 | Spearman correlation network analysis of gut microbiota of the common kestrels before and after captivity at the genus level. (A,B) Correlation networks
before and after captivity, respectively, with the node size reflecting the number of connections and the color of the node corresponding to the phyla as listed. Red
and green lines represent positive and negative correlations, respectively, and the thickness of the line indicates the strength of the correlation.

were found between the common kestrels before and after
captivity in the pathways of “microbial metabolism in diverse
environments,” “carbon metabolism,” “purine metabolism,”
“ribosome,” “pyrimidine metabolism,” “amino sugar and
nucleotide sugar metabolism,” “glycolysis/gluconeogenesis,”
“aminoacyl tRNA biosynthesis,” “alanine/aspartate and
glutamate metabolism,” “homologous recombination,”
“glyoxylate and dicarboxylate metabolism,” “mismatch repair,”
and “peptidoglycan biosynthesis” (Supplementary Table 4).

A heatmap of correlations between the different phyla
and the top 30 functional pathways (based on relative

abundance) (Figure 6) showed that Firmicutes were
positively correlated with glucose metabolism- and amino
acid metabolism-related pathways, including “pentose
phosphate pathway,” “amino sugar and nucleotide sugar
metabolism,” “glycolysis/gluconeogenesis,” “peptidoglycan
biosynthesis,” “cysteine and methionine metabolism,” and
“starch and sucrose metabolism,” while Proteobacteria were
negatively correlated with these pathways. In contrast,
Firmicutes were negatively correlated with pathways related
to “glyoxylate and dicarboxylate metabolism,” “bacterial
secretion system,” and “glycine, serine and threonine
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FIGURE 6 | Heatmap of correlation between metabolic pathways and gut microbiota of the common kestrels at the phylum level. The horizontal axis shows
metabolic pathways, and the vertical axis shows different phyla. Red and blue indicate positive and negative correlations, respectively, and the deeper the color, the
stronger the correlation. *and ** indicate significant differences at P < 0.05 and P < 0.01, respectively.

metabolism,” whereas Proteobacteria were positively correlated
with these pathways.

DISCUSSION

The gut microbiota of vertebrates is closely related to the health,
growth, and development of the host (Kim et al., 2014), thus the
study of bird gut microbiota has become an important element
of wild bird conservation research. The current study compared
the gut microbial compositions of common kestrels under two
different living conditions (i.e., before and after captivity), and
showed that the gut microbiota composition of the wild common
kestrels changed to some extent during rescue.

Changes of Dominant Gut Bacteria in the
Rescued Common Kestrels During
Artificial Feeding
Members of the phylum Proteobacteria are mostly
pathogenic and usually associated with gut ecological
imbalance, metabolic disorders, and immune dysregulation

(Colston and Jackson, 2016), whereas members of the Firmicutes
play important roles in the metabolism, digestion, and absorption
of proteins and other nutrients, and participate in the synthesis
of digestive enzymes to assist the digestion and absorption of
nutrients by the host. The Firmicutes can also produce a large
amount of butyrate, which improves insulin sensitivity, regulates
energy metabolism, and enhances leptin gene expression (Grond
et al., 2018). In the current study, the highest abundance of
Proteobacteria (46.41% relative abundance) was found before
captivity, followed by Firmicutes (33.67%), while the highest
abundance of Firmicutes (54.62%) was found after captivity,
followed by Proteobacteria (27.16%) (Supplementary Figure 2).
This was consistent with the study of Zhou et al. (2020) but
different from that of other wild raptors reported by Oliveira
et al. (2020). Similar studies conducted in other bird species,
such as the bar-headed goose (Wang et al., 2017) and the
oriental stork (Wu et al., 2021), found that Firmicutes was
the dominant species in both wild and caged populations, but
the relative abundance of this phyla was lower in the caged
population compared with the wild population. This may
be due to differences in species or in the environment and
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diet between wild and caged common kestrels. Under wild
conditions, the diet of the common kestrels include rodents,
small reptiles, and other species, and is more diverse and
of complex origin, with many wild animals also carrying
pathogenic microorganisms (Bevins et al., 2016; Li et al., 2017a).
Such pathogenic microorganisms acquired through the diet
will inevitably increase the species and number of pathogenic
microorganisms in the gut of wild common kestrels. In contrast,
common kestrels in captivity were predominantly fed on
artificially bred mice or beef, which had a single food source
and species and carried fewer microorganisms, thus resulting
in a higher abundance of the phylum Firmicutes and a lower
abundance of the phylum Proteobacteria in the gut of the caged
common kestrels.

Genera such as Escherichia-Shigella, Acinetobacter,
Pseudomonas, Psychrobacter, and Lactobacillus are widely
present in the gut of wild birds (Hird et al., 2015; Xie
et al., 2016). The present study showed that the genera
with high relative abundance before captivity, including
Escherichia-Shigella, Psychrobacter, Acinetobacter, and
Oceanisphaera, were predominantly from the phylum
Proteobacteria (Figure 1) and were mostly opportunistic
pathogens (Maria et al., 2016; Castano-Rodriguez et al., 2018;
Liu et al., 2020; Zhang et al., 2021). In contrast, the genera
with higher relative abundance after captivity, including
Lactobacillus, Clostridium_sensu_stricto_1, Paeniclostridium,
and Fructobacillus, were predominantly from the phylum
Firmicutes (Figure 1), and were mostly associated with
nutrient metabolism. Broadfield et al. (2021) recently reported
that fat-induced glucose metabolism was enhanced in the
liver of mice fed a high-fat diet and that with this type of
high-fat diet, 13C markers in the liver were mostly enriched
in glucose molecules among the glycolytic metabolites and
the metabolites of many branching pathways such as the
pentose phosphate pathway and serine biosynthesis pathway.
Xenoulis et al. (2010) reported that Lactobacillus were the
major gut microbes in caged birds, while Magnusson et al.
(2015) demonstrated that a significant increase in the
number of Lactobacillus in the gut of mice was related to
their high-sugar diet. In the current study, the abundance
of Lactobacillus in the gut microbiome of common kestrels
after captivity were significantly higher compared with that
before captivity (Figure 4), which may contribute to the
digestion and absorption of high-fat and high-sugar foods in
the caged kestrels. Meanwhile, since the relative abundance of
Lactobacillus in males was significantly different before and
after captivity (Supplementary Table 7), it is speculated that
males were probably more sensitive to the captive environment
and food changes.

LEfSe analysis also showed that the common kestrels under
different living conditions had distinct characteristic taxa among
their gut microbes. A total of eight taxonomic units (from phylum
to genus) with LDA thresholds > 4.0 were identified in both
groups, which were consistent with the findings obtained from
other analytical methods in this study, i.e., the Proteobacteria
were characteristic before captivity whereas the Firmicutes were
characteristic after captivity (Figure 3B).

Gut Microbial Diversity Characteristics of
the Rescued Common Kestrels During
Captivity
Alpha-diversity analysis showed that the cage environment had
no significant effect on the abundance and diversity of the
gut microbes of the common kestrels (Table 1), but NMDS
diversity analysis based on weighted Unifrac distances showed
a certain degree of relative separation between groups at
both the phylum and genus levels before and after captivity.
Meanwhile, because the captive environment has a significant
effect on the beta diversity of males at the phylum level
(Supplementary Table 6), therefore males were probably more
sensitive to the changes of environment. UPGMA clustering
analysis based on weighted Unifrac distances revealed that,
at the phylum level, most individuals exhibited higher intra-
group similarity compared with inter-group similarity. There
were also a few individuals whose microbial composition after
captivity was more similar to that before captivity, for example,
some individuals retained a high abundance of the phylum
Proteobacteria after captivity. This phenomenon may be due
to the short duration of caging (Supplementary Table 2)
and the limited influence of the environment, which was
not yet sufficient to alter the community composition of
the gut microbes. OTU clustering analysis showed a higher
number of common OTUs before and after captivity and a
lower number of OTUs that were unique to each of the two
groups of feces samples (Figure 3A). The difference between
individuals before captivity, which had a high abundance
of Proteobacteria, and those after captivity, which had a
high abundance of Firmicutes (Figure 1), was mainly due
to differences in the relative abundance of Proteobacteria
and Firmicutes, and not caused by phyla that were unique
between the two groups.

Changes in Gut Microbial Interactions
During Captivity of the Rescued
Common Kestrels
Analysis of association networks among microbes can provide
a basis for the composition of microbial communities, and
the study of patterns of interactions between genera that
are co-existing or mutually exclusive can lead to inferences
on whether different microbes are in a “cooperative” or
“competitive” relationship. When two species are strongly
related under the same environmental conditions, it means
that the two species have a certain degree of ecological niche
overlap, and co-exclusion may be caused by competition or
niche differentiation (Olesen et al., 2007). In the current
study, the correlation between microbes in the gut of the
common kestrels was complex. Before captivity, potentially
pathogenic organisms associated with intestinal diseases (e.g.,
Desulfovibrio, Ochrobactrum, and Neisseria) were positively
correlated with beneficial bacteria (e.g., Alistipes, Lactobacillus,
Akkermansia, and Parabacteroides) (Supplementary Table 3),
suggesting that pathogenic bacteria and beneficial bacteria may
occupy similar ecological niches in the gut of individuals
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living in the wild. The genus Brevundimonas of the phylum
Proteobacteria was negatively correlated with some genera
of the phylum Actinobacteria, further suggesting that the
collaborative and competitive effects of the bacteria work
together to maintain the stability of the gut microbiota in
the common kestrels. The co-occurrence network of bacterial
communities in the gut of the common kestrels after captivity was
more complex compared with those obtained before captivity.
Genera associated with fat metabolism (e.g., Eubacterium
coprostanoligenes group, Lactobacillus, and Parabacteroides)
formed the core nodes of the association network after
captivity (Figure 5 and Supplementary Table 3), which
reflected that the fat content in the food of the caged
common kestrels might be higher than that of the same
individuals living in the wild. Interactions between bacteria
are clearly instrumental in maintaining the stability of the
microbial community structure of caged common kestrels
digesting higher fats.

Adaptation of Gut Microbial Functional
Groups to Environmental Changes in the
Rescued Common Kestrels
The metabolic pathways of functional genes of the common
kestrel gut microbes predicted using the PICRUSt2 algorithm
are consistent with those predicted for metabolic functions of
gut microbes in other wildlife (Jiang et al., 2021). Most functions
were associated with carbohydrate metabolism, amino acid
metabolism, nucleotide metabolism, and energy metabolism
(Supplementary Table 4), suggesting that the gut microflora
is important in the construction of metabolic capacity of the
host. The current study also revealed significant changes in
metabolic pathways such as carbon metabolism, amino sugar
and nucleotide sugar metabolism, glycolysis/gluconeogenesis,
polysaccharide biosynthesis and metabolism, and alanine,
aspartic acid, and glutamate metabolism before and after
captivity (Supplementary Table 4). Furthermore, the correlation
heatmap between the phyla and metabolic pathways showed
that the enhancement of sugar metabolism and amino acid
metabolic pathways after captivity was significantly and
positively correlated with the increase in abundance of
Firmicutes (Figure 6). A high-fat and high-protein diet was
previously shown to increase abundance of the Firmicutes
and Proteobacteria (Cani et al., 2007; Murphy et al., 2010),
implying that the enhanced glucose metabolism and amino
acid metabolic pathways of the gut flora after captivity may
be related to the feeding of a high-fat and high-protein
diet. Although the PICRUSt2 algorithm contains a larger
gene family and reference genomic database with higher
accuracy than prior methods (Douglas et al., 2020), it does
not represent a 100% correlation between the predicted
genes and the true metabolic pathways of the population.
The gut microbial community of the common kestrels was
complex and may contain many additional undiscovered taxa.
Therefore, further metagenomic approaches are necessary
to provide insights into the important roles of the gut
microbiome in the metabolism of common kestrels under
captive ecology.

CONCLUSION

This study revealed that different foods and living environments
significantly affected the gut microbiota of rescued wild common
kestrels during captivity. These data verified that Proteobacteria
and Firmicutes as well as Lactobacillus were more sensitive
to changes in the environment and food in captivity. The
dominant phylum changed from Proteobacteria to Firmicutes,
and the dominant genus Lactobacillus significantly increased
after captivity. Meanwhile, the functions related to glucose
metabolism and amino acid metabolism were significantly
enhanced after captivity. Therefore, high quality food provided
by humans might improve the nutritional metabolism of the
gut microbiota of common kestrels. Although gut microbes
facilitate the adaption of hosts to environmental changes,
some potential health risks associated with changing from
natural foods to a high-fat and high-protein diet cannot be
ignored, such as decreased nutrient absorption efficiency and
increased metabolic burden on the liver. This also suggests
that a balance must be sought between the ratio of natural
food and artificial food in the dietary management of rescued
wild animals. This could potentially narrow the gap between
wild and captive conditions in terms of dietary composition
and subsequently ensure a successful return to nature for
the rescued animals. Finally, for the rescued common kestrel
individuals of different ages, developmental stages, and genders,
the possible impact of cage rearing on the composition
and abundance of gut microbiota is also a topic worthy of
future exploration.
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