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Abstract
We present a meta-analysis procedure for genome-wide linkage studies (MAGS). The MAGS
procedure combines genome-wide linkage results across studies with possibly distinct marker
maps. We applied the MAGS procedure to the simulated data from the Genetic Analysis
Workshop 14 in order to investigate power to detect linkage to disease genes and power to detect
linkage to disease modifier genes while controlling for type I error. We analyzed all 100 replicates
of the four simulated studies for chromosomes 1 (disease gene), 2 (modifier gene), 3 (disease gene),
4 (no disease gene), 5 (disease gene), and 10 (modifier gene) with knowledge of the simulated
disease gene locations. We found that the procedure correctly identified the disease loci on
chromosomes 1, 3, and 5 and did not erroneously identify a linkage signal on chromosome 4. The
MAGS procedure provided little to no evidence of linkage to the disease modifier genes on
chromosomes 2 and 10.

Background
Kofendred Personality Disorder (KPD), as simulated for
Genetic Analysis Workshop 14 (GAW14), is a psychiatric
syndrome characterized by an overwhelming concern
with the meaning of personal inner emotions while
regarding the emotions of others. Like other complex per-
sonality disorders, KPD has numerous behavioral and
biological characteristics. Additionally, KPD, like other
complex diseases, is believed to be linked to many genes.
The possibility of finding the majority of these genes from
one independent study is small. Instead, pooling data
across independent studies (i.e., a mega-analysis) or pool-
ing linkage results across independent studies (i.e., a
meta-analysis) may be the best means to identify these
numerous genes with small effects.

In a mega-analysis, combining raw data from several stud-
ies allows the investigator to increase sample size. A mega-
analysis can lead to an increase in power to detect linkage
and reduce the level of type I error. Combining raw data

would be an ideal approach, but data are not always read-
ily available or freely shared. In a meta-analysis, the inves-
tigator can still combine information from several studies
to obtain a consensus for linkage. The information typi-
cally found in the literature can range from published p-
values, LOD scores, or effect sizes.

Caveats to mega- and meta-analyses involve among-study
heterogeneity, which can include differing marker maps,
informativeness, sample sizes, sampling plans, and link-
age tests. Methods have been proposed to handle such
problems. The genome-scan meta-analysis (GSMA)
method proposed by Wise et al. [1] accommodates differ-
ing marker maps in a meta-analysis, but this test is based
on the level of significance (magnitude of LOD score or p-
value) at each marker. Combining results from signifi-
cance tests can be limited [2-4] where the concordance or
discordance of significant linkage between two studies
may not reflect the existence of true linkage, but rather
may be based on the amount of heterogeneity between

from Genetic Analysis Workshop 14: Microsatellite and single-nucleotide polymorphism
Noordwijkerhout, The Netherlands, 7-10 September 2004

Published: 30 December 2005

BMC Genetics 2005, 6(Suppl 1):S43 doi:10.1186/1471-2156-6-S1-S43
<supplement> <title> <p>Genetic Analysis Workshop 14: Microsatellite and single-nucleotide polymorphism</p> </title> <editor>Joan E Bailey-Wilson, Laura Almasy, Mariza de Andrade, Julia Bailey, Heike Bickeböller, Heather J Cordell, E Warwick Daw, Lynn Goldin, Ellen L Goode, Courtney Gray-McGuire, Wayne Hening, Gail Jarvik, Brion S Maher, Nancy Mendell, Andrew D Paterson, John Rice, Glen Satten, Brian Suarez, Veronica Vieland, Marsha Wilcox, Heping Zhang, Andreas Ziegler and Jean W MacCluer</editor> <note>Proceedings</note> </supplement>
Page 1 of 5
(page number not for citation purposes)

http://www.biomedcentral.com/
http://www.biomedcentral.com/info/about/charter/


BMC Genetics 2005, 6:S43
the two studies. Combining effect sizes may be a better
approach than combining results from significance tests,
but there are still limitations if the studies have differing
marker maps and use different tests to evaluate linkage.
Etzel and Guerra [5] developed a method to evaluate evi-
dence for linkage to a QTL from several linkage studies.
However, this method has not been tested for a genome-
wide scan and it requires that all studies use the same type
of linkage test (i.e., some version of the Haseman-Elston
test). Loesgen et al. [6] developed a meta-analytic method
that computes a weighted average estimate of score statis-
tics where one proposed weighting scheme is a function of
information content at a marker and sample size.
Although this method was first proposed for studies using
a common marker map, it can be extended to combine
studies with differing marker maps.

In this paper, we present an updated meta-analysis
method for assessing linkage to a quantitative trait locus
(QTL) that generalizes the meta-analytic procedure first
proposed by Etzel and Guerra [5] such that it does not
assume that all studies use the same test for linkage and
extends the weighting procedure proposed by Loesgen et
al. [6] to incorporate differing marker maps. The result
from the meta-analysis procedure of genome-wide link-
age studies (MAGS) method is a genome-wide weighted
average of evidence of linkage to a complex disease.
Although this approach was developed to evaluate linkage
to a QTL, we applied it to evaluate evidence of linkage to
KPD (affection status) using the four simulated data sets
provided for the GAW14 with knowledge of the disease
gene locations.

Methods
The MAGS procedure
The MAGS method that we developed is based on proce-
dures proposed by Loesgen et al. [6] and Etzel and Guerra
[5]. For MAGS, it is not assumed that the studies use the
same marker map or that they use the same test for link-
age. However, it is assumed that the marker maps are
available as well as the sample size, information content
at each marker (preferred), and linkage summary statistics
(LOD scores, nonparametric linkage (NPL) scores, or p-
values).

The MAGS method is based on a weighted average of
transformed normal variates that are obtained through
the reported linkage summary statistics. Suppose that we
wish to complete a meta-analysis on k studies. Each study
k has mk number of markers. It is not assumed that the
studies have the same number of markers, mi ≠ mk, i ≠ j nor
it is assumed that the studies have the same marker maps.
For a specified chromosome, let Mst denote the tth marker
from study s, for s = 1, ..., k and t = 1, ..., mk. Define {Lq,q
= 1, ..., l} as the set of analysis points such that the Lq are

equally spaced across the chromosome. For each set of Mst
on a chromosome,

1. Transform the summary statistic for each marker Mst to
a p-value, pst, for example

a. HLOD to Chi-square variate: Xst = 4.6* HLODst and

obtain a p-value for each chi-square variate [7]:

b. Transform NPL to a p-value: pst = Pr(Z <NPLst). This Z is
not necessarily a standard normal random variable.
Rather, Z is a normal variable with mean 0 and standard
deviation of σ2. The calculation of σ2 is difficult and may
be influenced by incomplete information. However, we
have found that in practice (data not shown) that this sit-
uation does not erroneously affect the meta-analysis.

2. Transform the resulting p-value to a normal variate: Zst
= Φ-1 (Pst)

3. For each analysis point Lq, calculate the weighted nor-
mal variate:

where wstq is the weight given to marker Mst and Zst is the

normal variate for marker Mst. The indicator function

 is defined as 1 if marker Mst is within a set distance

D cM from analysis point Lq and 0 otherwise. The weight

wstq for marker Mst can be a function of study sample size,

information content at that marker, and/or distance

(recombination fraction, θstq) between marker Mst and

analysis point Lq, say .

4. Calculate the p-value for each meta-analytic variate:

The p-values from step 4 can then be compared to a set
level to determine areas with combined evidence for link-
age. NOTE: If all studies use the same marker map, then

p Xst st= − <



0 5 1 2

1
2. * Pr ( )χ

Z

I w Z

I w

MA

q M
t

m

stq st
s

k

q M
t

m

stq
s

kq

st

k

st

k
= ==

==

∑∑

∑∑

{ }

{ }

11

1

2

1

Iq Mst{ }

w f n g I hstq s q M stqst
= ( ) ( ){ }( ) θ

p ZMA MAq q
= ( )Φ
Page 2 of 5
(page number not for citation purposes)



BMC Genetics 2005, 6:S43
the combined set of markers can replace the analysis

points Lq and step 3 simplifies to 

MAGS applied to GAW 14 simulated microsatellite 
datasets

The provided genome-wide microsatellite marker maps
were identical for all four simulated data sets. We used
GENEHUNTER2 [8,9]) to assess evidence for linkage to

KPD for all 100 replicates of chromosomes 1, 2, 3, 4, 5,
and 10 within all four studies. We then applied the MAGS
method as described above to the linkage results, one
chromosome at a time. Within each chromosome repli-
cate the NPL scores obtained from GENEHUNTER2 were
transformed to p-values using step 1b. The subsequent
normal variates were weighted by wst = Istns, where ns is

defined as the total number of individuals used in the
linkage analysis of study s and Ist is the information con-

tent (given as output from GENEHUNTER2) for marker t
in study s. For AI, n1 = 683, for DA, n2 = 700, for KA n3 =

Z

w Z

w

MA

st st
s

k

st
s

kt
= =

=

∑

∑
1

2

1

Frequency (out of 100 replicates) that the MAGS test statistic exceeded the critical value associated with alpha levels of 0.01, 0.001, 7.4 × 10-4 and 2.2 × 10-5Figure 1
Frequency (out of 100 replicates) that the MAGS test statistic exceeded the critical value associated with 
alpha levels of 0.01, 0.001, 7.4 × 10-4 and 2.2 × 10-5  for (a) chromosome 1, (b) chromosome 2, (c) chromosome 3, (d) 
chromosome 4, (e) chromosome 5, and (f) chromosome 10.

(c) Chromosome 3

(e) Chromosome 5

(a) Chromosome 1

(f) Chromosome 10

(b) Chromosome 2

(d) Chromosome 4
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694, and for study NY, n4 = 943. Since the four studies had

identical marker maps, we used the simplified version of

step 3 to calculate the weighted MAGS estimate  for

each marker location t.

MAGS applied to GAW 14 simulated single-nucleotide 
polymorphism (SNP) datasets
The provided genome-wide SNP marker maps were also
identical for all 4 simulated data sets. In order to fully
evaluate the MAGS method using studies with differing
marker maps and different analysis packages, we created
unique genome-wide SNP marker maps for each study for
chromosomes 1, 2, 3, and 10. The unique marker maps
were created by simply randomly assigning the available
markers on each chromosome to one of the four studies.
We then used a different linkage test within each study to
assess linkage to KPD one chromosome at a time: the Sib-
pal procedure from SAGE [10] for study AI,
GENEHUNTER2 [8,9] for studies DA and KA, and the
mlink procedure of LINKAGE [11] for study NY. We then
applied the MAGS method as described above to the link-
age results, one chromosome at a time, using a set of anal-
ysis points that spanned each chromosome with one
analysis point positioned every 2 cM and D = 10 cM. We
chose D = 10 cM because a polymorphism at a marker
linked to an analysis point can provide information about
the polymorphism at the putative QTL. If an analysis
point had only one marker within a 10-cM radius, then no
meta-analysis was conducted. For studies DA and KA, we
transformed the NPL scores obtained from GENE-
HUNTER to p-values using step 1b; for study NY, we trans-
formed the MaxLOD scores obtained from LINKAGE
using step 1a; for study AI, we transformed the t-value
obtained from SAGE in a similar fashion to the NPL score
in step 1b. The subsequent normal variates were weighted
by wstq = (1 - 2θstq)2 ns, where ns is defined as the total
number of individuals used in the linkage analysis of
study s. Note that the weights in this application do not
include information content because the measure was not
available from all analysis packages (e.g., Sibpal). For
study AI in which we used Sibpal, n1 = 483 possible sib-
lings were included in the analyses. For the studies in
which we used GENEHUNTER2 (DA and KA), n2 = 700
and n3 = 694 individuals, respectively, were included in
the analyses. For study NY, n4 = 943 individuals were
included in the analyses.

We calculated the frequency (across the 100 replicates)

that the resulting MAGS values (  for the microsatel-

lite analysis and  for the SNP analysis) exceeded a

set critical value at varying alpha levels (p = 0.01, 0.001,

7.4 × 10-4 and 2.2 × 10-5) [12] to evaluate power and type
I error.

Results
Figure 1 presents the MAGS results for the microsatellite
marker maps. The MAGS method identified the disease
gene D1 (located approximately at 167 cM on chromo-
some 1) in more than 90% of the replicates even for very
small alpha levels. For disease gene D2 (located approxi-
mately at 299 cM on chromosome 3), the MAGS method
localized its location in all replicates. Likewise for disease
gene D3 (located approximately at 5 cM on chromosome
5), the MAGS method detected its location in more than
90% of the replicates even at alpha levels as low as 2.2 ×
10-5.

For the disease modifier gene D6 (located approximately
at 15 cM on chromosome 2) that affects the penetrance of
phenotype 2, the MAGS method was not able to distin-
guish its signal from that of background genetic noise.
Furthermore, D6 was not identified in any of our analyses
of the individual studies. Likewise for the modifier gene
D5 that is located on chromosome 10 (approximately 67
cM). The location of gene D5 was only identified in 10 of
the 100 MAGS replicates when the alpha level was set at
1% and in none of the replicates when the alpha level was
set at 2.2 × 10-5. Additionally, this gene was not identified
in any of our single-study replicates. Meta-analysis of
chromosome 4, which did not contain any disease genes,
did not detect any erroneous linkage signals for alpha lev-
els less than 1%.

In the analyses using the modified SNP marker maps
(data not shown), D1 was identified in over 80% of the
replicates while D2 was only identified in 20% of the rep-
licates at an alpha level 2.2 × 10-5. Difficulty in identifying
D2 was attributable to the sparseness of SNPs in the mod-
ified marker maps in the region at the very end of chromo-
some 3 surrounding D2. As with the microsatellite results,
the modifier genes, D5 and D6, were not clearly identi-
fied.

Conclusion
Meta-analysis provides a means of combining informa-
tion about linkage from smaller independent studies to
identify genetic linkage to a complex trait while adjusting
for among-study heterogeneity (different sample sizes,
different marker maps, etc.). Because multiple genes are
believed to be involved in a complex disease, many with
modest effects, the probability of identifying them from
single studies and replicating the results is low. This meta-
analysis procedure correctly identified the three major
genes we analyzed with high power even under quite
restrictive conditions. Furthermore, this method did not
erroneously identify linkage where no linkage was simu-
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lated when alpha levels of 0.1% or lower were used. In
fact, based on the results for chromosome 4 (where no
linkage was simulated) depicted in Figure 1d, the overall
chromosome-wide alpha level of 0.1% resulted in point-
wise alpha levels of 5% or less. Neither meta-analysis
using the SNP or microsatellite data identified the modi-
fier genes directly, but it might be possible to have identi-
fied them if the meta-analysis was performed using results
from analyses performed conditional on the known
genes.

The MAGS method performed better for the microsatellite
marker maps than for the modified SNP marker maps.
The microsatellite maps had higher marker density than
the modified SNP maps with possibly different informa-
tion content per marker. Also, when we analyzed the
modified SNP maps, we did not use the same test for link-
age in each study and we did not include information con-
tent in the MAGS calculation. The linkage tests that we
used (GENEHUNTER2, Sibpal, mlink) vary in the type of
pedigree structure and data that is used to test for linkage
and hence vary in power to detect linkage which therefore
affected the SNP meta-analysis. However, any meta-ana-
lytic procedure that is conducted on studies using varying
linkage tests (with varying levels power to detect linkage)
will be affected by these among-study differences. Meta-
analysis provides a way to obtain consensus for linkage to
a disease and is clearly an important step in the localiza-
tion of genes involved in complex diseases.

Abbreviations
GAW14: Genetic Analysis Workshop 14

KPD: Kofendred Personality Disorder

MAGS: Meta-analysis procedure for genome-wide linkage
studies

NPL: Nonparametric linkage

QTL: Quantitative trait locus

SNP: Single-nucleotide polymorphism

GSMA: Genome scan meta-analysis

Authors' contributions
CJE conceived of the application of this methodology as
well as developed the meta-analytic method to the simu-
lated data provided by GAW14. ML conducted the analy-
ses of the simulated data with the assistance of CJE and
TJC. All authors contributed to the writing and approval
of the final manuscript.

Acknowledgements
This research was supported by a cancer prevention fellowship funded by 
the National Cancer Institute grant R25 CA 577730 and K07 CA 093592-
02 and R03 CA110936.

References
1. Wise LH, Lanchbury JS, Lewis CM: Meta-analysis of genome

scans.  Ann Hum Genet 1999, 63:263-272.
2. Hedges LV, Olkin I: Statistical Methods for Meta-analysis New York: Aca-

demic Press; 1985. 
3. Rice WR: A consensus combined p-value test and the family-

wide significance of component tests.  Biometrics 1990,
4:303-308.

4. Province MA: The significance of not finding a gene.  Am J Hum
Genet 2001, 69:660-663.

5. Etzel C, Guerra R: Meta-analysis of genetic linkage analysis of
quantitative trait loci.  Am J Hum Genet 2002, 71:56-65.

6. Loesgen S, Dempfle A, Golla A, Bickeboller H: Weighting schemes
in pooled linkage analysis.  Genet Epidemiol 2001, 21(Suppl
1):S142-S147.

7. Faraway JJ: Distribution of the admixture test for the detec-
tion of linkage under heterogeneity.  Genet Epidemiol 1993,
10:75-83.

8. Markianos K, Daly MJ, Kruglak L: Efficient multipoint linkage
analysis through reduction of inheritance space.  Am J Hum
Genet 2001, 68:963-77.

9. Terwilliger JD, Ott J: Handbook of Human Genetic Linkage Baltimore:
John Hopkins University Press; 1994. 

10. Kruglyak L, Daly MJ, Reeve-Daly MP, Lander ES: Parametric and
nonparametric linkage analysis: a unified multipoint
approach.  Am J Hum Genet 1996, 58:1347-1363.

11. Lander E, Kruglyak L: Genetic dissection of complex traits:
guidelines for interpreting and reporting linkage results.  Nat
Genet 1995, 11:241-247.

12. Department of Epidemiology and Biostatistics, Case West-
ern Reserve University.  In S.A.G.E.: Statistical Analysis for Genetic
Epidemiology, Release 3.1 Cleveland; 1997. 
Page 5 of 5
(page number not for citation purposes)

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10738538
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10738538
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11481587
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12037716
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12037716
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11793657
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11793657
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8472936
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8472936
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11254453
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11254453
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8651312
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8651312
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8651312
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7581446
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7581446
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/publishing_adv.asp
http://www.biomedcentral.com/

