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Abstract

The migration timing of Pacific salmon in the Columbia River basin is subject to multiple
influences related to climate, human water resource management, and lagged effects such
as oceanic conditions. We apply an information theory-based approach to analyze drivers of
adult Chinook salmon migration within the spring and fall spawning seasons and between
years based on salmon counts at dams along the Columbia and Snake Rivers. Time-lagged
mutual information and information decomposition measures, which characterize lagged
and nonlinear dependencies as reductions in uncertainty, are used to detect interactions
between salmon counts and lagged streamflows, air and water temperatures, precipitation,
snowpack, climate indices and downstream salmon counts. At a daily timescale, these inter-
dependencies reflect migration timing and show differences between fall and spring run
salmon, while dependencies based on variables at an annual resolution reflect long-term
predictability. We also highlight several types of joint dependencies where predictability of
salmon counts depends on the knowledge of multiple lagged sources. This study illustrates
how co-varying human and natural drivers could propagate to influence salmon migration
timing or overall returns, and how nonlinear types of dependencies between variables
enhance predictability of a target. This information-based framework is broadly applicable to
assess driving factors in other types of complex water resources systems or species life
cycles.

1 Introduction

Salmon population abundances have declined from historical estimates in the Pacific North-
west, with the Chinook Salmon (Oncorhynchus tshawytscha) species listed as endangered or
threatened for all segments of the Columbia and Snake rivers [1]. Like other anadromous fish,
most Pacific salmon home, or return, to their freshwater birth location when it is time to
spawn, after living several years in the ocean [2], and migration timing during the freshwater
stages is a predictor of survival in other life stages [3]. Hydroelectric dams play a central role in
salmon migration within the Columbia River Basin, as they alter natural flows, water tempera-
tures, and dissolved gas levels that influence salmon health, migration timing, and habitat [4].
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For example, when water temperature increases to around 70°F, salmon face health risks that
compound the stresses inherent to migration [5]. Additionally, all salmon must pass through
each dam along the river twice during their lifetimes, which presents a compounding effect for
salmon that originate from farther upstream [6]. Efforts to directly increase salmon popula-
tions include “trap-and-haul”, or the transportation of juveniles downstream or adults
upstream [7, 8], but it is often difficult to assess the efficacy of these operations [8]. Other miti-
gation efforts in the Columbia River Basin include fish ladders and juvenile bypass systems at
dams [9] and coordinated spilling procedures and flow augmentation from higher elevation,
colder reservoirs [10, 11]. These efforts have varying influences on salmon migration dynam-
ics. For example, high temperatures at fish ladders have been found to cause migration delays
[12], and managed pulse flows do not always lead to significant changes in migration [13].
Meanwhile, dams provide renewable energy and other ecosystem and economic services, such
that salmon populations are only one aspect of a complex system spanning multiple and often
conflicting objectives [14, 15] with economic, environmental, or cultural importance.

In general, both human and natural drivers influence salmon migratory dynamics and pop-
ulation abundances. These factors, such as stream flows, reservoir storage and spill, water tem-
perature, water quality, ocean conditions, and climate dynamics also interact with each other,
resulting in complex and nonlinear interdependencies. These interdependencies also combine
with physiological drivers of salmon. Previous studies highlight the importance of considering
salmon dynamics as a complex network, where multivariate interactions occur with different
timescales and strengths. For example, considering nonlinear environmental drivers has been
found to improve forecast accuracy in fisheries models [16] and the extent to which a variable
is predictive can depend on nonlinear thresholds [13]. It has also been found that there are
multiple relevant indicators of salmon returns [17], carryover effects within salmon lifecyles in
which conditions experienced at one life stage affect a subsequent stage [18] and marine sur-
vival [19], but no single indicator or subset of indicators is highly explanatory. Moreover, it
has been found that the relationships between indicator variables themselves can be non-sta-
tionary [20, 21], which has implications for predictive skills of models based on certain input
combinations, and indicates the difficulty in distinguishing causal drivers from temporary cor-
relations. Within this complex system, the particular influence of an individual driver remains
uncertain [22], and the system can be considered non-interventional in that we cannot “inter-
vene” or perturb the dynamics and isolate a response [23]. This necessitates the inference of
casual dependencies using statistical methods, and the differentiation between correlations
and causality.

We focus on drivers of salmon migration as an illustrative case where information theory-
based metrics, which measure information flows as reductions in uncertainty, provide a useful
framework to study a complex system with many interdependent aspects. We particularly use
video count data to focus on drivers of upstream migration timing of adult Chinook salmon
on a daily timescale, which is relevant in terms of seasonal migration dynamics, and adult pop-
ulation abundances at dams on a multi-year timescale, which reflects the entire salmon life-
cycle and long term effects on salmon. Although numerous species of salmon and steelhead
inhabit this region, Chinook are an important species in the two distinct ecosystems of the
Columbia River Basin and Pacific Ocean [24]. From daily data, we study influences on migra-
tion timing between locations, and from annual total counts, we consider lagged predictors of
population abundances that pass different sites from year to year. We take a complex network
perspective [25] on salmon migration dynamics between dams as measured by video-based
counts. Specifically, we consider temporal dynamics overlaid on a spatial network formed by
dams along the Columbia and Snake Rivers, where time-dependent couplings between counts
and environmental variables reveal individual and joint types of interactions between them.
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Fig 1. Map of Columbia River Basin with dams and observation sites marked. Abbreviations are listed in Table 1.
Flow and temperature gage stations correspond with dam locations (white circles). SNOTEL sites correspond with
snow-water-equivalent (SWE) measurements.

https://doi.org/10.1371/journal.pone.0269193.9001

We use an information theory-based framework to characterize a “process network” [26] of
lagged dependencies between daily and annual salmon counts, temperatures, streamflow rates,
and other variables at dams along the Upper Columbia, Snake, and Lower Columbia reaches
(Fig 1, Table 1).

Process networks have previously been constructed to analyze the influence of weather con-
ditions on joint variability of atmospheric states [27-29], connectivity between ecosystem
fluxes [26, 30], biosphere responses to climate forcing [31], and spatial and temporal connec-
tivity within a delta system [32]. Information theory-based measures have also been used in a
water resources management context to infer drivers behind reservoir release decisions [33,
34] and connectivity between precipitation and streamflow [35]. Advantages of an information
theory framework include an inherent focus on predictability and uncertainty, as measures
quantify reductions in uncertainty, and the detection of both linear and non-linear types of
dependencies that can range from pairwise to highly multivariate [36]. In general, process net-
works enable us to address questions pertaining to causality and predictability [37, 38]. This is
the first application of process networks to a biological species, and can be used to identify
combinations of dominant drivers and risk factors within a migratory network. Here, ques-
tions include “given the knowledge of adult salmon returning from the ocean, how impactful
are flow rates and temperatures to salmon counts at upstream dams?” and “how interdepen-
dent are salmon counts between neighboring and distant dams?” In addition to quantifying
the timescales associated with migration dynamics and environmental influences, this analysis
indicates levels of predictability, or connection strengths, between different variables in the
system. We hypothesize that drivers of salmon migration dynamics will vary by season due to
both environmental conditions and the number of salmon entering the system from the Pacific
Ocean. Rather than analyzing any specific population of Chinook or a reservoir, we focus on
nonlinear interactions between potential driving factors and salmon counts between distant
dams throughout the Columbia River Basin. While we take a network approach to study one
aspect of the salmon lifecycle, particularly drivers of migration timing, our framework is
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Table 1. Time-series variables included in analyses of CRB salmon counts. Chinook counts were obtained from the Fish Passage Center [39]. Water temperatures and
flow rates were obtained from USACE and USGS [41, 45]. Air temperature and precipitation were obtained from the Hanford Site [42]. Snow-water-equivalent (SWE) was
obtained from NRCS [44]. The PDO was obtained from NOAA [46].

Variables™*

Chinook counts at Bonneville Dam
Chinook counts at McNary Dam
Chinook counts at Priest Rapids Dam
Chinook counts at Wells Dam
Chinook counts at Ice Harbor Dam
Chinook counts at Lower Granite Dam
Flow at Bonneville Dam

Flow at Lower Granite Dam

Flow at Priest Rapids Dam

Water temperature at BON

Water temperature at LWG

Water temperature at PRD

Flow at Dworshak Dam

Spill at Dworshak Dam

Days with water temp > 68°F at BON
Days with water temp > 70°F at BON
Days with water temp >68°F at PRD
Days with water temp > 70°F at PRD
Days with water temp >68°F at LWG
Days with water temp> 70°F at LWG
Precipitation at The Hanford Site
Air temperature at the Hanford Site
SWE at Rainy Pass, WA

SWE at Bumping Ridge, WA

SWE at Arbuckle Mountain, OR
SWE at Hemlock Butte, ID

Pacific Decadal Oscillation Index

*35-year (annual totals), 10-year (daily)

Variable Abbr.
BON

MCN

PRD

WEL

IHR

LWG

Qron
QLwe
Qprp

Tron

Tiwe

Terp
Qowr
Sppwr
TDgones
TDgonzo
TDprpes
TDprp70
TDrwaes
TDrwaro
Precip

Ta
SWEypcrp
SWEMmidacrs
SWELowcrB
SWEsnake
PDO

Site Abbr.
BON
MCN
PRD
WEL
IHR
LWG
BON
LWG
PRD
BON
LWG
PRD
DWR
DWR
BON
BON
PRD
PRD
LWG
LWG
HWS
HWS
RPW
BRW
AMO
HBI
N/A

Location
45.644, -121.940
45.936, -119.298
46.644, -119.910
47.948, -119.865
46.250, -118.879
46.661,-117.428
45.644, -121.940
46.661,-117.428
46.644, -119.910
45.644, -121.940
46.661, -117.428
46.644, -119.910
46.515, -116.298
46.515, -116.298
45.644, -121.940
45.644, -121.940
46.644, -119.910
46.644, -119.910
46.661,-117.428
46.661,-117.428
46.557, -119.526
46.557, -119.526
48.583, -120.718
46.817,-121.333
45.19, -119.25
46.483, -115.63
N/A

**bold variables: MI statistically significant in 35-yr analysis for counts for at least one site (excluding counts themselves)

https://doi.org/10.1371/journal.pone.0269193.t001

Analysis type”
10 yr, 35 yr
10 yr, 35 yr
10 yr, 35 yr
10 yr, 35 yr
10 yr, 35 yr
10 yr, 35 yr
10 yr, 35 yr
10 yr, 35 yr
10 yr, 35 yr
10 yr, 35 yr
10 yr, 35 yr
10 yr, 35 yr
35yr

35yr

35yr

35yr

35yr

35yr

35yr

35yr

35yr

35yr

35yr

35yr

35yr

35yr

35yr

broadly applicable to explore dynamics in other environments subject to natural or human-

induced variability.

2 Methods: Characterizing dependencies in the CRB system

We consider salmon dynamics and drivers based on two levels of analysis: (a) a 10-year study
based on daily data from 2009-2018 to analyze short-term drivers of upstream migration tim-
ing and (b) a 35-year study based on annually resolved data from 1984-2018. For both analyses,
we use daily video-based salmon counts. As the life-cycle of a Chinook is typically 4 to 5 years,
the 10-year study captures several cohorts. Meanwhile, the dynamics based on daily informa-
tion measures represent the effects of fluctuations in returning salmon counts, water tempera-
ture, and streamflows on migration timing rather than overall populations or survival. We

note here that salmon may spend different lengths of time in the oceanic phase, such that

returning salmon are from a combination of cohorts that may have experienced different envi-

ronmental conditions over their lifespans. At a longer timescale considered in the 35-year
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analysis of annual data, these factors and others, such as ocean and freshwater conditions, can
be cumulatively influential on annual salmon counts. For example, high salmon mortality in
one season due to high temperatures can propagate to influence populations in subsequent
years, or an altered flow regime could change future spawning behaviors, leading to variability
in total annual counts. In this section, we first describe data sources and locations, followed by
our information-theory based framework.

2.1 Salmon counts and environmental data sources

We obtain adult Chinook counts from the Fish Passage Center [39] from 6 different dams on
the Columbia and Snake Rivers: Bonneville (BON), McNary (MCN), Ice Harbor (IHR), Lower
Granite (LWG), Priest Rapids (PRD), and Wells (WEL) (Fig 2a). These were chosen as they
are the most upstream and downstream dams on the Lower Columbia, Snake, and Upper
Columbia reaches. Each dam observes two different populations of adult Chinook returning to
spawn, designated here as the “spring” and “fall” runs (Fig 2). The magnitudes of these runs
differ between reaches due to regional geography and river conditions. In this study, we choose
a specific day, DOY (day of year) 220, in early August, as the divide between the two runs.
Although there could be overlap, and arrivals are lagged in time for the farthest upstream
dams, we assume that the separate time-series datasets appropriately reflect the dominant
dynamics in season. For example in this analysis, the spring run by default includes the “sum-
mer” run in the Snake (Fig 2f and 2g). The Snake River spring run is often referred to as the
spring-summer run because it includes fish that return in early summer as well as in the

e
a) PRD  WEL d) .. BON )3 e MCN
network map i i
6
Upper Columbia count : 2 :
2 | |
BON MCN 0 0
CowarGalummils 100 150 200 250 300 100 150 200 250 300
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Fig 2. Distributions of salmon counts from day of year (DOY) 90 to 330 (early March through November) for 2009-2018. (a) An
illustration of the network map of dams on the Lower Columbia, Upper Columbia, and Snake Rivers, where downstream flow rate is from right
to left, while salmon migration is in the opposite direction. (b-i) Colored shading indicates minimum and maximum (b) flow rates and (c)
temperatures at the Lower Columbia gage site, and (d-i) salmon counts for a given day. Solid black lines indicates the median values over the
10-year study period. The dotted vertical line in each plot separates defined spring (DOY 90-220, or March to August) and fall (DOY 221-330,
or August to November) salmon runs. Note vertical axes have different ranges (e.g. maximum BON and MCN counts are higher than those at

upstream dams).

https://doi.org/10.1371/journal.pone.0269193.9002

PLOS ONE | https://doi.org/10.1371/journal.pone.0269193  June 9, 2022

5/23


https://doi.org/10.1371/journal.pone.0269193.g002
https://doi.org/10.1371/journal.pone.0269193

PLOS ONE

Information theory to characterize drivers of salmon migration

spring. At the Lower Columbia dams, BON and MCN, the fall run is typically more significant.
However, PRD, the first dam on the Upper Columbia, observes a larger median spring run. At
WEL, the last passable dam on the Upper Columbia, the spring run is considerably lagged rela-
tive to BON due to travel times and the fall run is nearly non-existent in some years (Fig 2i).
At this dam, it has previously been found that fallback and re-ascension at the fish passage
causes more overestimates in salmon counts relative to lower elevation dams [40]. While we
do not explicitly account for this source of error, it illustrates how uncertainties can vary
between dams. The Snake River dams, IHR and LWG, have a more pronounced and highly
variable spring/summer run. The major distinction between the dams with higher spring run
counts (WEL, IHR, LWG, PRD) versus those with higher fall run counts (BON, MCN) is the
location and elevation of the dams and the tributaries between segments.

We use video-based counts in this study instead of PIT-tag data that capture the trajectories
of individual salmon, in order to apply information theory-based measures on a representative
time-series. In other words, we consider overall lagged distributions of salmon counts and
environmental indicators, rather than focusing on actual trajectories of a smaller number of
salmon. This enables questions such as “how much does the knowledge of past flow rates
reduce the uncertainty in the number of salmon passing a certain dam?” In contrast, tag data
would provide insight into specific travel times and migration destinations, with fewer data
points.

We use daily streamflows (Q) and water temperatures (T) at Lower Columbia, Upper
Columbia, and Snake gage stations from USACE Northwestern Division [41] to compare with
salmon counts. Since we find that the influences of flows and temperatures on salmon counts
are similar between gage stations, we focus on the Lower Columbia gage to simplify the 10-year
analysis of daily data (Fig 2b and 2c). While flow rates peak during the spring run (Fig 2b),
water temperatures peak at the end of the spring run and the beginning of the fall run (Fig 2c¢).

For a longer term analysis of drivers and interdependencies related to salmon population
abundances on multi-year timescales between 1984-2018, we also incorporate annual average
water temperatures and flows, and annual cumulative precipitation and mean air temperature
at the Hanford Site in Washington [42], located near the confluence of the Snake and Upper
Columbia Rivers. We also consider the annual average Pacific Decadal Oscillation (PDO)
index [43], and cumulative snow water equivalent (SWE) for four sites across the Columbia
River Basin [44] as potential influences on salmon counts at the six dams (Table 1). Additional
inputs derived from these data included the number of days a certain water or air temperature
was exceeded (68 and 70°F for water and 90°F for air) at a site. 70°F is chosen as a relevant
threshold for salmon health [5], while 68°F is used as a test to include water temperatures that
approach the threshold. In our process network analysis, we consider all variables, including
salmon counts, as potential lagged “sources” of information and salmon counts at upstream
dams as potential “targets”. For example, lagged counts at BON are considered a potential
source of information to counts at PRD, but not the other way around.

2.2 Information theory-based measures

We use information theory [47] measures to characterize information flows between lagged
source and target variables. Here, target variables are salmon counts, and source variables
could be salmon counts or environmental drivers (Table 1). Shannon Entropy measures the
uncertainty of a random variable, X, and is defined as follows:

H(X) = pr(x,-)logzp(xi), (1)
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Fig 3. Venn diagrams illustrating range of information theory-based measures. (a) Mutual information (MI) between two random variables, where
one is defined as a target and the other is a source that may be lagged in time. (b) Transfer Entropy (TE) between a source and target. Here we define TE
as the MI conditioned on the knowledge of lagged salmon counts at BON. (c) Total mutual information, I, from two sources to a target is comprised
of unique, synergistic, and redundant components.

https://doi.org/10.1371/journal.pone.0269193.9003

where p(.) indicates a probability distribution over a variable, and the summation is over all
possible states x;. The units of H(X) are bits, and can be interpreted as the average number of
“yes” or “no” questions needed to determine the answer to a question, or the value of a random
variable. We estimate probability distribution functions (pdfs) with a fixed bin approach with
N =11 equally spaced bins for the 10-year daily analysis, and N = 3 bins for the 35-year annual
analysis due to more sparse data (35 data points per variable). The bins are spaced between
minimum and maximum values for a given variable over the time period of record after
extreme outliers have been removed. Since for the daily datasets, we consider fall and spring
runs as separate time windows, this constitutes a “global” binning strategy in that the bins are
defined over the same global range even though the range within a time window may be more
narrow.

Mutual information (MI) is the reduction in uncertainty of one random variable, given the
knowledge of another (Fig 3a). Here we use MI to determine the extent to which the knowl-
edge of a 7-lagged source (X;,_,), such as a downstream salmon count or environmental vari-
able, reduces the uncertainty about a current target salmon count (X,,,.,). We consider a
lagged version of MI as follows:

I(Xs.t—r; er,t) = H(X

tar,t )

— H(X,

tart‘ 5t— r) =

p(xs t—> Xtar t) (2)
p(x i3 Xtars l:g olx. olx. ) x )(, ’
Z ( S5 ) 2<P( 5‘[7‘[)p( mr,t)>

where the sum is a double summation over all source and target states. Here we define a
dominant lag time, 7 (units of days or years) as that which corresponds with the highest
value of MI over a range of lags from 0-30 days in the daily analysis, and 0-7 years in the
annual analysis. These lags ensure that enough data is available for robust estimations of
lagged pdfs. As shown in Eq 2, mutual information is the difference between the entropy of
a target variable, H(X,,,,), and the conditional entropy of that variable given the knowledge
of another source, H(X;,/| X, ,—) (Fig 3a). For the 10-year analysis of daily data we can next
determine how source variables influence the target salmon counts jointly.

Transfer entropy (TE) [48] is a version of conditional mutual information, which measures
the reduction in uncertainty of a target due to the knowledge of a source, beyond the uncer-
tainty already reduced given the target history. Here we consider an altered version of TE,
where we condition on the knowledge of the lagged salmon counts at BON instead of the
immediate history of the target variable (Fig 3b). As any adult Chinook that reaches a dam in
the CRB must first pass through BON, the counts at BON represent the total population that is
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“available” to the system. This conditioning also accounts for prior conditions in the marine
environment that could impact salmon life cycles. For example, a weak observed mutual infor-
mation relationship between water temperatures and salmon migration in a given season
could be due to high ocean mortality that leads to fewer returning salmon. In this case, condi-
tioning on the returning salmon with a transfer entropy measure makes the causal relationship
between freshwater temperature and salmon counts more clear. We define TBON as the domi-
nant lag time at which the salmon count at BON informs the salmon count at the upstream
dam of interest (X,,, ;) based on the MI measure in Eq 2. TE is then computed as follows:

TE = I(Xs.tff; Xtar,t |XBON.thBON)

= Ep(xs,tfr’ Xiart xBONﬁt—rBON) X

p(-x&[717 xtar.t’ xBON.tf‘cBON)

p(-x&[717 'xtarAt)p(xBON.tfrBON)

log,

In addition to transfer entropy, we also consider the total information that different combi-
nations of sources provide jointly to daily salmon counts at a given location. We particularly
focus on counts at BON, flow rates (Q), and water temperatures (T), and compute total infor-
mation as follows:

I, = I(Xsl,t—ﬂ?XsZt—ﬂ; Xtmt,t)' (4)
Here, X,; and X, are source variables defined as counts at BON, Q, or T. Lags 71 and 72 are
the dominant time lags associated with the source variable based on MI individually. We note
that I, is symmetric with respect to the two source variables, but not between a source and the
target. In other words, the information that two sources provide to a target is not necessarily
equal to the information that the target and one source provide to the other source. In an
information decomposition, this total information quantity can be partitioned into four com-

ponents as follows [49]:

Irot = Usl\s? + Us?\s] + Rsl,s? + Ssl,s? (5)

where Uyy|; and Uy, are information components that a source provides to the target
uniquely, or individually, when the other source is also known. Ry; ¢, is information that both
sources provide redundantly, or in overlap, and S, is information that sources provide syn-
ergistically, or jointly only when both sources are known together. Together, I,, and the four
information components provide a measure of total reduced uncertainty given the knowledge
of two sources, in addition to features of the multivariate dependency (Fig 3¢). For example, if
one unique component is very high relative to other components, this would indicate that one
source is a strong individual source of information to the target. Meanwhile, high redundancy
indicates that the two sources are interdependent and provide overlapping information, and
high synergy would indicate that the two sources predict the target only when known jointly.
Other information theory measures also can be expressed in terms of information decomposi-
tion components [49]. Specifically, both MI and TE, which are used in this study, capture a
unique information component between the source and the target, which here is information
that is not also provided by knowing the lagged count at BON. In addition to this unique
aspect, MI contains a redundant component, or overlap in information that both the source
and the lagged returning salmon from BON provide to the target site. In contrast, TE captures
a synergistic component, or information only obtained when both sources are known together.
For example, if MI > TE for a given source-target pair, the conditioning in TE “explains away”
some of the observed dependency based on MI, and we know R > S. If MI < TE, the
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conditioning actually enhances the observed dependency by incorporating extra, or synergis-
tic, information (S > R).

These unique, synergistic, and redundant components are useful constructs with which to
interpret joint dependencies, but information theory does not provide a direct method to com-
pute them and multiple methods have been proposed. We use a re-scaled redundancy metric
[27] to compute redundancy, or the “overlap” in information between two sources. This re-
scaled metric considers that redundancy is upper and lower bounded by information theory,
and can be scaled between these bounds based on the mutual information (MI) between the
two source variables. Specifically, two source variables that have a high MI lead to maximally
high redundancy, while independent source variables (MI = 0) lead to minimal redundancy.
We refer to [27] for detailed methodology and example applications of this measure. A redun-
dancy measure such as this, in addition to known information theoretic relationships, enables
us to compute the other measures of uniqueness (one from each source) and synergy. Hereaf-
ter, when the sources, sI and s2, are defined, we remove the subscripts and refer to information
components as S, R, Uy, and Uy, to simplify notation.

For the 35-year analysis of annual total salmon counts, we only compute lagged MI, and do
not consider higher order measures such as TE or information decomposition. Instead, to
study multi-year dependencies between environmental drivers and adult salmon abundances
rather than migration dynamics within seasons, we normalize annual total salmon counts
upstream of BON by counts at BON, such that MCN, LWG, IHR, PRD, and WEL in the
35-year study represent fractions of salmon from BON that arrive at each dam in a given year.
This enables us to account for the number of salmon entering the system without computing
higher order measures, as we have fewer data points for information theory computations that
involve 3D pdfs. In other words, higher order information theory measures have larger data
requirements in order to obtain robust results, so we restrict this analysis to two-dimensional
measures. While other studies aim to determine the best combination of variables to predict
salmon returns for a given year [17], we focus on non-linear relationships between pairs of var-
iables in our longer term analysis of annual totals.

We normalize TE, MI, and I,,; measures by the entropy of the target variable, H(X,,,), such
that each information measure indicates the fraction of total uncertainty that is reduced. For
statistical significance testing of any given information measure, we perform 100 shuffled sur-
rogate tests in which the target time-series data are randomly shuffled to remove time correla-
tions between the sources and target [26, 28]. This shuffling results in no change in entropy of
an individual variable, but typically a decrease in shared information, or de-coupling, between
the multiple variables. We compute the relevant information theory measure (MI, TE, or I,,,)
using the shuffled datasets, and a critical information value is defined as I.,i; = Iyt mean
+ 3Lt stder- Any information measure that is below this critical threshold is determined to be
non-statistically significant and is set to zero. In other words, we test observed information
measures against measures computed based on many iterations of randomized data with the
same individual distribution. While there are confounding factors and inherent uncertainties
in salmon count data such that no combination of predictive factors can fully reduce uncer-
tainty, we assume that statistically significant information measures indicate a predictive rela-
tionship that is potentially causal. For both the 10-year study using daily data and the 35-year
study using annual values, we compare values of entropy and mutual information with linear
counterparts of the coefficient of variation (CV = ) and the correlation coefficient, respec-
tively. While it is expected that a high correlation between two variables generally corresponds
to high MI, we note that this is not always the case since MI may be less sensitive to linear cor-
relations due to binning for pdf estimations, but also captures non-linear relationships that
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would not be detected as correlations. Meanwhile, there are no linear comparisons for IT-
based measures of TE or information decomposition, as these are based on multivariate distri-
butions of source and target variables.

3 Results: Seasonally varying Chinook drivers

For daily salmon counts of fall and spring runs from 2009-2018, we find that entropies are
higher for fall run salmon counts in the Lower Columbia River, spring run counts in the Snake
River, and vary for the Upper Columbia sites (Table 2). These higher entropies correspond
with the season with larger ranges of counts for each dam location (Fig 2). For example, the
lower Columbia dams, BON and MCN, have wide ranges of counts in the fall relative to the
spring (Fig 2d and 2e), corresponding to high entropy. The coefficient of variation (CV) for
salmon counts shows a similar pattern, except for IHR and PRD, the most downstream sites
on the Snake and Upper Columbia Rivers, respectively. This illustrates that these measures of
variability are not directly comparable and depend on the shape of the distribution. Mean-
while, both entropy and CV for flow rate and water temperature are considerably higher for
the spring run relative to the fall. Since entropy represents uncertainty, these results indicate
that most variables are more difficult to predict on a day to day basis during the spring run.

3.1 Dependencies between salmon counts

Salmon counts at a given dam tend to be most tightly connected with those at their nearest
downstream neighbor and BON, where salmon enter the CRB network. Peak MI decreases
with greater distance between BON and a given dam, indicating that distance traveled leads to
a loss of information in Chinook counts between dams (Fig 4). The dominant lag, 7, associated
with peak MI, can also be associated with travel time between dams, and we see that the domi-
nant 7 tends to increase with travel distance from BON (Fig 4). MCN and IHR, the two closest
dams to BON, both have sharp peaks with a well-defined dominant 7, particularly for spring
run salmon. WEL, the farthest dam from BON, has a much more gradual peak, which can be
attributed to compounding impacts from fluctuations in river dynamics along the reach. In
other words, there is greater probability of exposure to factors that effect salmon with distance.
These cause salmon to be more distributed over a longer distance and arrival timings are more
variable. At WEL, it has been found that migration delays do not necessarily lead to higher
mortality [40], but timing may impact other life stages, such as spawning behaviors. For
instance, cumulative thermal exposure has been found to be strongly connected to migration
duration, and salmon may pause at thermal refuges near tributary entrances in extreme tem-
perature conditions [50]. For Chinook traveling great distances such as those that arrive at

Table 2. Entropy (H(X)) in units of bits for fall and spring runs for daily salmon counts at six dams (listed by site
name) and flow rate (Q) and water temperature (T) in the Lower Columbia River, along with the coefficient of var-
iation (CV) for comparison. The largest value of the two time windows is highlighted in bold for each category.

spring run H(X) fall run H(X) spring run CV fall run CV
BON (daily counts) 231 3.16 0.21 0.35
MCN (daily counts) 2.68 2.93 0.35 0.55
IHR (daily counts) 3.21 3.04 0.43 0.60
LWG (daily counts) 3.16 3.13 0.53 0.41
PRD (daily counts) 2.79 2.92 0.51 0.42
WEL (daily counts) 2.95 2.89 0.70 0.47
Q (cfs, daily) 3.18 1.37 0.37 0.22
T (deg C, daily) 3.05 2.77 0.14 0.11

https://doi.org/10.1371/journal.pone.0269193.t002
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Fig 4. Mutual information (MI) (a,b) and linear correlation (Corr) (c,d) between BON daily salmon counts and
counts at upstream dams for spring run (a,c) and fall run (b,d) salmon, for time lags, 7, from 0 to 30 days. Dots
indicate lag times associated with peak MI, which are used as 70y in TE computations for conditioning on knowledge
of lagged salmon counts at BON.

https://doi.org/10.1371/journal.pone.0269193.g004

WEL, these environmental influences have more time to act upon the migrating Chinook,
resulting in more spread in the timescales that we observe here. We also compare MI with
lagged correlations between salmon counts and upstream dams (Fig 4c and 4d). The lagged
correlations show some similar patterns as MI, but the peaks are less distinct and correlation
values are grouped more closely together. In general, lagged correlations are similarly statisti-
cally significant, but MI distinguishes peak dominant lag times more clearly.

Lagged salmon counts directly downstream of a target dam often provide high MI, but
the magnitude is run-specific (Fig 5a-5e¢). On the Upper Columbia, MI between counts at
PRD and WEL for fall is very low, and higher for the spring run (Fig 5d). In contrast, at the
Snake River dams, IHR and LWG, MI between counts is similar for fall and spring runs, but
TE is higher for spring run salmon. (Fig 5¢). In general, cross-tributary MI connections (Fig
5f) are weaker than connections between neighboring dams. For these cross-tributary con-
nections where salmon are not physically migrating from the source to the target site, we see
that MI has less of a distinct peak, but is often statistically significant along with TE at multi-
ple lag times. Particularly in the spring, TE is greater than MI at longer time lags, indicating
that there are some predictive relationships between cross-tributary salmon counts that are
enhanced given the knowledge of lagged counts at BON. While this predictive relationship
cannot be construed as causal, it does indicate connectivity between the Upper Columbia
and Snake River salmon counts. This could relate to the mass balance relationship between
these two major tributaries and the relative timing of Chinook passage at the dams. Specifi-
cally, when Chinook pass BON, the portion that reaches the confluence of the Snake and
Upper Columbia Rivers is split between spawning in lower Columbia tributaries or migrat-
ing toward either PRD or IHR. This could create an inverse type of relationship between
these counts when also considering the lagged count at BON. In other words, if a Chinook
that passed BON reaches IHR, it becomes (relatively more) certain that it will not reach
PRD. As the travel time, estimated by the dominant lag of MI, from BON to IHR is
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statistically significant values. Gray shaded plots (f) indicate cross-tributary connections, where salmon do not actually migrate from one dam to

another.

https://doi.org/10.1371/journal.pone.0269193.9005

considerably shorter than from BON to PRD in both fall and spring runs (Fig 4), we find
that knowing the counts on the Snake at ITHR reduces the uncertainty of future counts on
the Upper Columbia at PRD in the coming days.

MI also differs between seasons for the dams at the confluence of the Snake (IHR) and
Upper Columbia (PRD) with respect to the Lower Columbia (MCN). MCN is similarly
predictive of IHR and PRD counts in spring and fall runs (Fig 5b and 5¢). However, this is
not true for the Lower and Upper Columbia dams farther from the confluence. For exam-
ple, lagged MI from PRD to WEL is low in the fall run (Fig 5d). In this way, the low MI
between counts at BON and WEL during the fall can actually be attributed to low MI
between counts at PRD and WEL along the Upper Columbia, and is not particularly related
to dynamics at the confluence. We also note that spring run Chinook prefer to spawn in
the high elevation tributaries (many of which are located past WEL) due to the high flow
and low temperature during this time [40], while the fall run favors the lower elevation

streams prior to WEL.
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3.2 Flows and temperatures as drivers

When we view lagged T, Q, and counts at BON as pairs of potentially joint predictors of
salmon counts (Fig 6), we see that pairs of sources provide unique, redundant, and synergistic
information to counts3.2 at a given location to different extents. For all pairs of variables, we
see that predictability, in the form of 2., tends to decrease for upstream dams, especially PRD
and WEL on the Upper Columbia. The predictability of salmon at WEL in the fall is particu-
larly low (about 0.4 bits/bit, or 40% of total uncertainty) given any pair of source variables.
Meanwhile, the predictability of counts given lagged BON and T is close to 60% for the down-
stream dams (Fig 6a). In Fig 6 we only show information partitioning results for the fall run,
since spring run partitioning results are extremely similar except that information flows from
Q to salmon counts at some dams are not statistically significant. While flow rates are more
highly variable in the spring as shown from higher entropies (Table 2), this variability causes
the predictive relationship between flows and salmon counts to be weaker.

T and BON provide the most redundant information relative to other pairs of variables (T
and Q, BON and Q). While the amounts of redundant and unique information from T remain
similar between upstream and downstream dams, unique information from counts at BON
decreases with distance from BON. We note that unique information from T is lowest at BON
(Fig 6a), which is expected since salmon passing BON are unlikely to have been impacted by
freshwater temperatures. We see a similar pattern of decreasing predictability for upstream
dams for the combination of sources of Q and BON, but here the main information compo-
nent is unique information from BON, indicating that Q is a much weaker source (Fig 6b).
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Fig 6. Total information (Eq 4), normalized by entropy of salmon counts, and information decomposition components (Eq 5) to counts
at each dam, from combinations of two joint sources for fall run salmon counts. Bar heights indicate total information, while colors are
proportions of unique, synergistic, or redundant information types. (a) Lower Columbia water temperature T}, and counts at BON as lagged
information sources. (b) Lower Columbia flow rate Qj,,,., and BON as lagged information sources. (¢) Tiower and Qjoyer as lagged information
sources. Patterns of joint information are similar for spring run salmon, but some information from Q was found to be non-statistically
significant.

https://doi.org/10.1371/journal.pone.0269193.9006

PLOS ONE | https://doi.org/10.1371/journal.pone.0269193  June 9, 2022 13/23


https://doi.org/10.1371/journal.pone.0269193.g006
https://doi.org/10.1371/journal.pone.0269193

PLOS ONE

Information theory to characterize drivers of salmon migration

However, the unique information from Q to counts increases from downstream to upstream,
and Uy, is highest for WEL. Meanwhile, synergistic and redundant information are relatively
small. Finally for the combination of T and Q, T is typically the strongest unique source, and
redundancy and synergy are both relatively low (Fig 6¢c). For the combination of Q and T as
information sources to counts, we see less of a pattern of decreasing information with distance
from BON, and the joint predictability peaks for counts at IHR, the most downstream dam on
the Snake River.

While here we only compare pairs of sources rather than many joint sources in order to
maintain a low dimensionality of information theory measures, we can compare the three sets
of pairs and make several inferences about their three-way interaction as predictors of counts.
For instance, we see that T tends to be the strongest predictor of counts relative to both BON
counts and Q. However, the level of predictability from Q and BON together is similar or
greater than unique, or individual, information from T. This highlights that water temperature
is a strong individual predictor of salmon counts in the Upper Columbia, but lagged Q and
BON are similarly strong predictors when they are accounted for jointly. The time lags associ-
ated with lagged BON counts for each dam are highlighted in Fig 4, and we do not specifically
discuss dominant time lags associated with mutual information from Q and T at the different
dams as they are less correlated to geographical distance and mutual information varies less
over the range of lag times. In other words, lagged counts at BON are most predictive of
salmon counts when considered at a very particular time lag, but Q and T provide similar
information quantities at a range of time lags. This indicates the presence of long term mem-
ory in flow and temperature variables that does not exist in salmon counts.

3.3 Process networks based on daily data

Here we present an analysis of a process network, which involves the entire range of pairwise
connections between salmon counts, water temperature, and flow rate based on daily data.
Here we find that normalized MI values range from 0.07—0.47 in the spring run and from
0.07-0.57 in the fall run. Since normalized MI ranges from 0 to 1, this indicates that lagged pre-
dictor variables span a relatively wide range of strengths in terms of the information they pro-
vide. Particularly, the knowledge of lagged salmon counts or flow and temperature conditions
can reduce uncertainty of salmon counts at a given dam by up to 57%, and on average we find
that any given source variable reduces about 20% of uncertainty. Fig 7 shows the statistically
significant linkages between salmon counts, temperature, and flows in terms of MI and TE, for
spring and fall runs, in addition to lagged linear correlations. As found in previous studies
focusing on marine survival [19], the complete life-cycle [3], or adult returns [17], this indi-
cates a high level of connectivity within the system, and no single variable is likely to explain
more than half of the observational uncertainty. While TE < MI overall (circle sizes and link
widths in Fig 7), the higher TE in spring indicates less redundancy, and more unique drivers of
salmon counts during that season. Meanwhile, lagged linear correlations (Fig 7c and 7f) are all
relatively similar in magnitudes, and similar across seasons, such that they do not highlight
any particularly strong drivers or differences between salmon runs.

MI between Chinook counts at BON and the upstream dams is higher in the fall run relative
to spring for every dam except WEL (Fig 7a and 7b, peaks in Fig 4). Lower variability in
streamflow in the fall run (Fig 2b, Table 2) likely contributes to the increase in peak MI
between counts at BON and most dams during this run, since streamflow is a less important
factor in upstream migration. Meanwhile, the smaller magnitude of the fall run for Chinook at
WEL (Fig 2i) causes the lower MI for that case. Water temperatures (T) appear to be stronger
drivers of Chinook counts relative to flows (Q) based on MI in both spring and fall runs (Fig
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Fig 7. Mutual information MI (a,d), Transfer Entropy TE (b,e), and linear correlation Corr (c,f) links between salmon counts at dams, flow
rate (Q), and water temperature (T) for spring run (a-c) and fall run salmon (d-f). Q and T correspond to Lower Columbia data only, as
strengths are similar for other Q and T variables. Link widths for MI and TE indicate relative information strengths, and colors correspond to
information sources.

https://doi.org/10.1371/journal.pone.0269193.g007

7a and 7b). This is in agreement with a previous finding that salmon migrate fastest at an opti-
mal temperature, and flow velocity is a less significant driver [51]. Higher water temperatures
can particularly cause salmon to delay their migration and use thermal refuges [50, 52], which
may cause a strong relationship between lagged temperatures and salmon counts. Meanwhile,
low flows are generally linked with higher temperatures, and high flows are associated with
bed scour which can influence salmon, but on a more lagged time-scale since these high flow
events occur in early spring [53]. While the influence of bed scour is likely to be very weak for
adult salmon, this illustrates how high flow rates may be either beneficial or detrimental to
migrating salmon.

Several key aspects of seasonal and geographic variability are summarized as follows, and
illustrated in Fig 7:

1. MI between salmon counts at BON and upstream dams decreases with distance from BON,
while associated lag times increase (Fig 4). This MI is higher in the fall run relative to spring
for every dam except WEL.
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2. MIbetween counts at neighboring dams is generally higher than MI between counts at
more distant dams, but some cross-tributary connection strengths between salmon counts
are statistically significant, indicating predictive relationships. We also detect relatively
weak but statistically significant connections from upstream to downstream salmon counts,
which are opposite to the direction of migration and cannot be construed as causal.

3. TE < MI for dependencies between salmon counts, indicating that the knowledge of lagged
counts at BON provides redundant information that tends to partially explain observed
dependencies between counts at other sites.

4. MI from water temperature (T) to salmon counts is higher than MI from streamflow (Q) to
salmon counts, particularly for the spring run.

4 Results: 35-year study (1984-2018)

Of the 25 annual variables that we consider as potential sources of information in the longer
term study, nine (and the counts themselves) are found to be predictive of annual salmon
counts in the form of statistically significant MI (Fig 8a, and bold variables in Table 1), where
statistical significance testing is described in the methods section. These are the PDO, precipi-
tation (Precip), air temperature (Ta), snow water equivalent (SWE) measured at most
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Fig 8. MI and dominant lags between indicator variables and annual total counts for 35-year windows, and comparison of statistically
significant links based on MI versus linear correlation. (a) Mutual information divided by entropy of annual salmon counts. (b) Associated
dominant time lags (years) for each MI measure. (c) Statistically significant (p < 0.01) detections of MI, linear correlation, or both for each
variable pair. White areas indicate pairs for which neither MI or correlations are detected. (d) Scatter plots of certain annual variables,
normalized to a 0-1 range, showing lagged relationships for selected source-target pairs labeled in (a-c), illustrating both linear and non-linear
dependencies captured as MI (B,D) or both linear correlations and MI (A,C).

https://doi.org/10.1371/journal.pone.0269193.9008
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locations within the basin, flow rate at PRD (Qpgp), spill from the Dworshack dam (Sppwr)s
and degree days above 68 at LWG (TDpwgss)-

The most tightly synchronized salmon counts, on an annual basis, are IHR and LWG,
located on the Snake River (Fig 8a). Annual totals at these dams share mutual information that
peaks at an instantaneous (zero-lag) time scale (Fig 8b). This dependency between the two
neighboring sites is further confirmed by a correlation analysis (Fig 8c), indicating that the
relationship is somewhat linear. Counts at dams also share statistically significant MI with
counts at most other dams, in addition to being linearly correlated. For example, the knowl-
edge of salmon counts at BON in one year are highly predictive of normalized counts at WEL
the following year. In general however, lag times associated with peak MI vary from 0 to 5
years. We note that MI-based connectivity between neighboring dams or between tributaries
does not indicate casual relationships, particularly since no conditioning is involved, but it
does indicate predictive relationships that arise due to spatial synchrony of weather and cli-
mate conditions across the basin in addition to salmon life cycles. While the time lag analysis
based on daily data clearly reflects the migration timing of salmon, dominant lag times
between counts at different dams show less of a clear pattern at the annual scale.

Other dependencies between environmental variables and salmon counts are more likely to
be captured by either statistically significant MI or correlations, but not necessarily both (Fig
8c). This indicates that given a small sample size (35 years of annual data), information theory-
based measures may not capture linear relationships as strongly as correlations, but they still
detect other dependencies. Of all environmental drivers, TD; wges, the number of days with
water temperatures above 68 degrees F at LWG on the Snake River, has the most correlations
and MI with salmon counts. Panels C and D of Fig 8d show the actual data points for one case
where only MI is detected and another where both MI and correlation is detected. From a visual
inspection however, it appears that for both cases, salmon counts are negatively correlated with
TDrwaes> indicating that higher water temperatures, particularly along the Snake River, are
associated with lower salmon counts either within a year or over a several year window.
TD1wass is also the only environmental source variable that provides information to salmon
counts in all three major tributaries (Fig 8a). This shows that water temperature is a major fac-
tor in Chinook dynamics for both instantaneous interactions, as it influences migrating adult
Chinook within a season and over multiple years. Within a year, water temperature can lead to
higher disease, parasites, higher predation rates, and poorer ability to evade predators, and
across years it may influence salmon over different life stages due to carryover effects [18].

The mutual information relationship between lagged PDO and BON salmon counts is rela-
tively strong (Fig 8a, A), but weaker between the PDO and upstream salmon counts normal-
ized by BON counts. In other words, dividing annual salmon counts by counts at BON
partially omits the ocean influence, indicating that ocean conditions influence the number of
salmon that reach BON, but does not further influence salmon once they reach that location.
The PDO also has a negative correlation with BON Chinook counts (Panel A of Fig 8), in
agreement with the relationship initially discovered [54] and other recent findings [55]. The
dominant lag of several years approximately corresponds to the oceanic growth phase of a Chi-
nook life cycle, which is when a population would most likely be impacted by oceanic
conditions.

Finally, MI from precipitation (Precip) and snow water equivalent (SWE) at several sites
across the basin are also statistically significant at lags of 3 years or more, indicating weather-
related impacts to juvenile Chinook that then propagate to returning adult populations. Precip
is only predictive of fractional counts at MCN, and only based on MI. This likely reflects man-
agement in the basin, that results in an indirect relationship between precipitation and flows
that varies depending on seasonal timing and whether the precipitation is rain or snow. For
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example, precipitation as rainfall allows ground pollutants to enter the river system, which can
result in mass mortality events for salmon [56]. In this way, precipitation can have a positive
or negative effect on salmon populations, depending on timing relative to migratory seasons
and rain versus snow conditions. This type of relationship precludes any detection of a linear
correlation, but an information measure may still detect it.

5 Discussion and conclusions

Our findings align with several known interactions in this system, and also highlight novel
aspects due to our process network framework. For example, the PDO and water temperature
are known to significantly impact Chinook population dynamics [21]. Accordingly, we find
that the knowledge of water temperature-related variables reduces the uncertainty of salmon
counts at both seasonal and multi-year timescales, and the PDO reduces count uncertainty at
lags similar to the oceanic phase of a salmon life span. We also find that the connections
between salmon counts across tributaries of the Snake and Upper Columbia reaches, in addi-
tion to environmental drivers that span across the basin, indicate correlations across the large
geographical region of the Pacific Northwest, as found in other studies [17]. A recent synthesis
of declining salmon populations [57] determined that Pacific salmon smolt-to-adult return
ratios (SARs) have declined to one third of their historic size, but this decline is similar across
basins, indicating that other factors are at play besides reservoir management. Additionally, it
has been found that managed pulse flows are not always significant drivers of salmon migra-
tion [13], indicating the presence of multiple and nonlinear drivers that can vary between
years [20]. However, migration timing is an indicator of cumulative salmon stress levels, and is
influenced by both human management of reservoir systems and climate change [3]. Results
presented here confirm that salmon migrations are influenced by multiple freshwater habitat-
based drivers on both long and short timescales, in addition to ocean conditions. We also
show that the knowledge of sources jointly can provide similar information about salmon
counts as a single stronger individual source. In models, these input combinations, whether
they are predictive due to correlative or causal relationships, are important to consider.

An information theory-based approach such this enables the detection of joint interac-
tions in addition to nonlinear dependencies relative to other techniques such as regression
models based on linear correlations. In terms of joint interactions, we find that lagged
streamflows provide information to salmon counts, but the predictive relationship is stron-
ger when we condition on salmon entering the basin. For example, the knowledge of
streamflow and counts at BON at certain lag times provide synergistic information about
upstream counts, which indicates that there is some predictability that could not have been
realized given the knowledge of those sources individually. While we focus on levels and
thresholds of predictability rather than the development of a specific predictive model, this
provides a useful framework with which to compare model hypotheses, based on their rep-
resentations of observed interactions [58]. In this way, the framework presented here is use-
ful for model development, in terms of selecting predictors that may have non-linear or
joint relationships with the target output, or for developing hypotheses that can be tested by
new modeling approaches. The ability of information theory-based measures to characterize
nonlinear dependencies also differentiates our framework from techniques based on vari-
ances or linear correlations. For example, while a mutual information (MI) measure does
not specify whether a value indicates a “positive” or “negative” correlation, mutual informa-
tion captures relationships that would not be detected at all based on the correlation mea-
sure, as shown in the 35-year example based on annual variables. While “process
connectivity” using similar information measures has been explored in hydrology and
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ecohydrology contexts [29, 32], this is the first application to an aspect of the life cycle of a
species. In general, this framework could be extended to explore nonlinear and multivariate
interactions for different parts of salmon life cycles to further study carry-over effects,
model predictive skill, and shifting drivers of ocean and freshwater survival.

Additional variables of interest that we did not consider include total dissolved gasses
(TDG) and spill from multiple dams, juvenile Chinook counts, other salmon species, or
weather at a higher spatial resolution. These variables also impact water quantity and quality,
and could impact migration. A more detailed analysis that incorporates additional spatial and
temporal variability could detect drivers at a specific location, such as a particular dam location
that is subject to spills, has certain areas for refuge, or has inflows that influence water tempera-
ture and quality. There are also timescales that are important to salmon, such as monthly lags
that we did not account for in this study that focused on adult migrating salmon at daily and
annual scales. For examples, winter snowfall has an influence on water temperatures the fol-
lowing spring, and ocean temperatures could have an influence on salmon entering the CRB
on a weekly to monthly timescale. Another source of uncertainty in our annual analysis is the
combination of fall and spring runs into the annual total salmon counts. Here, the fall and
spring salmon populations could have different drivers that we do not distinguish. There are
also sources of error and limitations in the salmon count dataset, and other methods exist to
track salmon migrations [59]. For example, there is considerable debate regarding the best way
to accurately track drivers of salmon mortality based on different measurement or tagging
techniques [22, 60]. The video-based counts used in this study represent upstream escapement
rather than abundances, and do not distinguish between hatchery and wild salmon. The
counts do not account for salmon that are transported or harvested between dams along the
route, and also include uncertainties due to overshoot and fallback, which cause overestimates
in the counts. For example, salmon that were transported as juveniles may exhibit different
behavior in terms of their likelihood to home to their natal stream. These features of fisheries,
trap-and-haul operations and fallback are therefore embedded into the salmon count data and
a more detailed analysis would be needed to separate these influences. However, we assume
that daily video-based counts generally reflect the upstream migration timing of adult Chi-
nook, rather than the trajectories of individual salmon which can be obtained with PIT tagged
data. While this migration timing does not directly link to survival because salmon are some-
what adaptable to changes in climate or obstacles such as dam passage fallback and re-ascen-
sion [61], it does relate to cumulative stress and impacts other life stages. More specific
datasets such as tagged salmon counts, smolt-to-adult return ratios (SARs) [57], and fish pas-
sage success [61] that are available for certain dams and time windows could be integrated to
further disentangle complex drivers throughout the salmon life cycle.

A recent report released by multiple agencies outlined several goals and operational mea-
sures to mitigate the decline in salmon populations in the Columbia River Basin [62]. Under-
standing magnitudes and geographic characteristics of interactions between Chinook
populations and environmental drivers is essential to decision-making in these ongoing recov-
ery efforts. For example, the PDO likely switched into a warm phase around 2015, which is
accompanied by decreases in Chinook populations across the Pacific Northwest [46]. More-
over, climate change in the Pacific Northwest is expected to involve regional air temperatures
increases 0of 0.1 to 0.6° C per decade which will increase the number of extreme water tempera-
ture events [63, 64]. Under human management decisions and future climate uncertainty in
many regions of the world, it is increasingly important to further explore drivers of declines in
endangered species. Particularly, this framework can help management and modeling efforts
by detecting changing levels of predictability at various timescales. In general, this framework
could be extended to study nonlinear and multivariate interactions for different parts of
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salmon life cycles to further study carry-over effects, model predictive skill, and shifting drivers
of ocean and freshwater survival.
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