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Recently, the impact of network structure on evolutionary dynamics has been at the center of attention when
studying the evolutionary process of structured populations. This paper aims at finding out the key
structural feature of network to capture its impact on evolutionary dynamics. To this end, a novel concept
called heat heterogeneity is introduced to characterize the structural heterogeneity of network, and the
correlation between heat heterogeneity of structure and outcome of evolutionary dynamics is further
investigated on various networks. It is found that the heat heterogeneity mainly determines the impact of
network structure on evolutionary dynamics on complex networks. In detail, the heat heterogeneity
readjusts the selection effect on evolutionary dynamics. Networks with high heat heterogeneity amplify the
selection effect on the birth-death process and suppress the selection effect on the death-birth process. Based
on the above results, an effective algorithm is proposed to generate selection adjusters with desired size and
average degree.

T
he evolutionary dynamics on complex networks describes the competition and diffusion of variances in
structured biological or social populations1,2. It has been widely applied to explore the emergence of coop-
eration and strategy selection in real-world systems3–8. An evolutionary dynamic model of structured

population generally consists of three basic elements: a behavior set, a behavior updating rule, and an underlying
population structure. The individuals each with a certain behavior acquire a corresponding fitness to characterize
the competitiveness of the behavior9,10. The population structure, which is usually represented by complex net-
works11–14, captures the interactions between individuals. Based on the fitness landscape and population structure,
the behavior updating rule then determines the evolutionary process of population.

One of the extensively studied evolutionary dynamic models is the invasion process, where a single mutant with
fitness r invades a population of N-1 residents with fitness 1. The fixation probability, which is the probability that
the mutant takes over the whole population, characterizes the extinction, speciation and behavior drift of the
invasion process15–17. For r 5 1, the invasion process is determined by random drift. In this case, the fixation
probability of mutant is 1/N. For r ? 1, the invasion process relies on the joint action of random drift and

selection. In this case, if the population is well-mixed, then the fixation probability is
1{1=r

1{1=rN
,which is regarded

as a result of the balance between random drift and selection18–20.
Several recent studies have indicates that the population structure can break the balance between random drift

and selection1,21–25. Some kinds of networks, called selection amplifiers, amplify the selection effect on population
evolution. Examples of selection amplifiers include the star graph and the funnel1. However, some kinds of
networks, called selection suppressors, suppress the selection effect on population evolution. The above finding
evokes an increasing interest in analysis of the network structural effect on evolutionary dynamics26–33. In 2014,
the work by Maciejewski clarified how node degree affects the fixation probability of a neutral mutant. It was
shown that the fixation probability of a node is proportional and inverse proportional to the node degree for
death-birth and birth-death processes, respectively2. However, it is still unclear which structural feature mainly
determines the impact of networks on evolutionary dynamics. In 2010, Broom et al. observed that the network
heterogeneity, defined as the variance of network degree distribution, is positive correlated with the fixation
probability. That is, the network heterogeneity amplifies the selection effect. However, some exceptional cases are
also reported in the above paper34.
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In this paper, we initiate a novel concept, called heat heterogeneity,
to characterize the network structural heterogeneity. Moreover, we
show that the heat heterogeneity mainly determines the impact of
network structure on evolutionary dynamics. The networks with
high heat heterogeneity amplify the selection effect on the birth-
death process and suppress the selection effect on the death-birth
process. Moreover, an effective algorithm is also proposed to design
selection adjusters (amplifiers or suppressors) with specified number
of nodes and edges in this paper.

Results
Model description. Consider the invasion process of a random
single mutant into a network of residents. The fitness of mutant
and resident is r and 1, respectively, where r . 0. The population
evolves according to two typical updating rules: the birth-death (BD)
and death-birth (DB) updating rules35. Under the BD updating, at
each step, an individual is selected out of the population with a
probability proportional to its fitness. And then it reproduces a
copy and places the copy into one randomly chosen neighbor of
him, while the replaced individual is then eliminated. Under the
DB updating, the order of birth and death is reversed. Firstly, a
random chosen individual is eliminated, and then with a
probability proportional to fitness, a neighbor of the eliminated
individual is selected to reproduce an offspring to take over the
eliminated node.

Definition of heat heterogeneity. Consider an undirected connected
network G 5 (V,E) of size N. Denote the degree of each node as d1, d2,
..., dN. The temperature of node i is defined by Ti~

X
k[N(i)

1=dk
,

where N(i) denotes the neighbor set of node i1. For connected
networks, dk $ 1 holds for all nodes k 5 1, 2, ..., N. Hence the
above definition is valid for all connected networks.

The heat heterogeneity of a network is defined by the variance of

its temperature distribution. In detail, let �T~
1
N

XN

i~1
Ti be the

average temperature and Ht(G) be the heat heterogeneity of network
G, then Ht(G) is defined by

Ht(G)~
1
N

XN

i~1

(Ti{�T)2: ð1Þ

The above heat heterogeneity characterizes the structural heterogen-
eity of a complex network, as illustrated in Fig. 1. For networks with
zero heat heterogeneity, the temperature of each node is identical.
This kind of networks is called isothermal networks1,22. Regular
graphs are typical isothermal networks, as shown in Fig. 1(a). For
networks with high heat heterogeneity, there must exist some relative
‘‘hot’’ and ‘‘cold’’ nodes in the network. From the definition of node
temperature, the ‘‘hot’’ nodes have many low-degree neighbors, and
the ‘‘cold’’ nodes have few but high-degree neighbors. Star networks
are representative networks with high heat heterogeneity.

Correlation between heat heterogeneity and fixation probability
on some specific graphs. To begin with, consider the evolutionary
dynamics on some specific networks proposed by Broom et al.34, as
shown in Fig. 2. The heat heterogeneity and degree heterogeneity of
each network are listed in Table 1. Here, the degree heterogeneity is

defined by Hd(G)~
1
N

XN

i~1

di{�d
� �2

, where �d denotes the average

degree of a network. Let a random mutant with relative fitness 1.5
invade each network, the corresponding fixation probability r1 of the
mutant is computed respectively, as shown in Table 1.

Broom et al. have shown that the degree heterogeneity is a strong
indicator of the fixation probability r1 for evolutionary dynamics on
complex networks. However, the networks in Fig. 2 contradict this

Figure 1 | Illustration of temperature distribution in (a): regular graph, (b): star graph, and (c): complete bipartite graph. In each graph, nodes with

relative high temperature, low temperature and averaged temperature are colored in red, blue and cyan, respectively.

Figure 2 | Some specific networks34. On these networks, the fixation probability of a random mutant cannot be evaluated by degree heterogeneity,

however, it can be revealed by heat heterogeneity. The color of each node is a symbol of its temperature. Red nodes are relatively ‘‘hot’’, blue nodes are

relatively ‘‘cold’’, and the temperature of cyan nodes falls in between.

www.nature.com/scientificreports

SCIENTIFIC REPORTS | 4 : 5034 | DOI: 10.1038/srep05034 2



observation34. In contrary, it can be observed from Table 1 that the
fixation probability is completely consistent with the heat heterogen-
eity on these networks. Indeed, on these networks, the fixation prob-
ability is monotone increasing with the heat heterogeneity for the BD
process, and it is monotone decreasing with the heat heterogeneity
for the DB process. These results partly confirm that the heat het-
erogeneity mainly determines the structural effect on the fixation
probability of a random mutant for evolutionary dynamics on
networks.

Correlation between heat heterogeneity and fixation probability
on complete bipartite graphs. The previous example gives a glimpse
of the strong correlation between heat heterogeneity and fixation
probability of a network. Here, the correlation between heat
heterogeneity and fixation probability is further assessed on a class
of complete bipartite graphs (see Methods).

For complete bipartite graphs, the fixation probability of mutant
can be derived through theoretical analysis for both the BD and DB
processes (see the Supplementary Information (SI) for details). With
the fixation probability of mutant on each graph, one can investigate
the impact of graph structure on evolutionary dynamics. Fig. 3 and
Fig. 4 display the correlation between heat heterogeneity and fixation
probability of a random mutant for the BD and DB processes,
respectively. The underlying network structures are a class of com-
plete bipartite graphs with size N 5 50.

From Figs. 3 and 4, one has the following observations:

. The heat heterogeneity and fixation probabilities are completely
correlated for both the BD and DB processes. It indicates that the
heat heterogeneity determines the impact of network structure on
evolutionary dynamics for complete bipartite graphs.

. The fixation probability and heat heterogeneity are positively
correlated for advantageous mutants (r 5 1.1) and negatively
correlated for disadvantageous mutant (r 5 0.9) in the BD pro-
cess. And in DB process, they are positively correlated for dis-
advantageous mutant and negative correlated for advantageous
mutant. Thus, for the BD (DB) process, high heat heterogeneity
promotes (inhibits) the fixation of advantageous mutants and
inhibits (promotes) the fixation of disadvantageous mutants.
That is, the heat heterogeneity amplifies the selection effect on
evolutionary dynamics for the BD process and suppresses the
selection effect for the DB process.

. The degree heterogeneity and fixation probability are also corre-
lated. However, the correlation is not universal. Heat heterogen-
eity is better than degree heterogeneity to assess the impact of
network structure on evolutionary dynamics

Correlation between heat heterogeneity and fixation probability
on general networks. We have shown that the heat heterogeneity
can capture the structural effect on evolutionary dynamics for some
specific networks and complete bipartite graphs. A follow-up
question is whether the above principle also holds for general
networks. To answer this question, the correlation between heat
heterogeneity and fixation probability is further tested on a set of
randomly sampled undirected networks.

Suppose that the network size is N. The set of randomly sampled
undirected networks are generated with the following method. Step
one: Assign each node to a random degree from 1 to N-1, which
returns a degree sequence. Step two: Generate a network according to
the above degree sequence by the sequential algorithm proposed by
M. Bayati et al.36. Step three: Repeat the above two steps until enough
samples of connected networks have been got. Since the degree
sequence is randomly sampled and the sequential algorithm gener-
ates almost uniformly random networks with a specified degree

Table 1 | The fixation probability of a random mutant r1, degree
heterogeneity Hd(G), and heat heterogeneity Ht(G) of the specific
networks in Fig. 224

Graph label r1(BD) r1(DB) Hd(G) Ht(G)

a 0.424 0.209 1.918 2.157
b 0.409 0.224 1.347 1.369
c 0.398 0.248 0.776 0.913
d 0.374 0.258 2.816 0.774
e 0.352 0.285 2.244 0.243

Figure 3 | Correlation between the heterogeneity and fixation probability for the birth-death process on a class of complete bipartite graphs.
(a) The heat heterogeneity; (b) the fixation probability of a random mutant with fitness 0.9; (c) the fixation probability of a random mutant with fitness

1.1; (d) the degree heterogeneity. The rank order correlations of the fixation probability with heat heterogeneity are 21 and 1 for r 5 0.9 and r 5 1.1

respectively.
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sequence, the generated set of networks are almost uniform samples
from the set of undirected connected networks with size N.

Fig. 5 shows the correlation between the heat heterogeneity and
fixation probability r1 for the BD process on a set of randomly
sampled networks. It can be observed that the fixation probability
is highly correlated with the heat heterogeneity of networks. In fact,
the rank order correlation (see Methods) between the fixation prob-
ability and heat heterogeneity is 0.94, 0.91, 0.83,20.84 for r 5 1.9, 1.5,
1.1, 0.7, respectively. Here r is the relative fitness of mutant. The
above correlation coefficients greatly outperform those between
degree heterogeneity and fixation probability, which are less than

0.5 for all r. The results indicate that the heat heterogeneity can still
capture the impact of network structure on evolutionary dynamics
for the BD process on general undirected networks.

Moreover, Fig. 5 also indicates that the heat heterogeneity amp-
lifies the selection effect for the BD process. Indeed, the fixation
probability generally increases with the heat heterogeneity for
advantageous mutants (r 5 1.1, 1.5, and 1.9). However, it generally
decreases with the heat heterogeneity for disadvantageous mutants (r
5 0.7). In other words, in networks with high heat heterogeneity,
superior mutants are more likely to be preserved, while unfit mutants
are more likely to be eliminated. In general, the amplification effect of

Figure 4 | Correlation between the heterogeneity and fixation probability for the death-birth process on a class of complete bipartite graphs.
(a) The heat heterogeneity; (b) the fixation probability of a random mutant with fitness 0.9; (c) the fixation probability of a random mutant with fitness

1.1; (d) the degree heterogeneity. The rank order correlations of the fixation probability with heat heterogeneity are 1 and 21 for r 5 0.9 and r 5 1.1

respectively.

Figure 5 | Correlation between the heterogeneity and fixation probability for the birth-death process on general undirected networks. (a) The heat

heterogeneity; (b) the fixation probability of a random mutant with fitness 1.9; (c) the fixation of a random mutant with fitness 1.5; (d) the fixation

probability of a random mutant with fitness 1.1; (e) the fixation probability of a random mutant with fitness 0.7; (f) the degree heterogeneity. The 40

networks are almost uniformly randomly sampled from the undirected connected graph set with 12 nodes. Here the network index is ordered according

to increasing its heat heterogeneity. The rank order correlations of the fixation probability with heat heterogeneity are 20.84, 0.83, 0.91, 0.94 for r 5 0.7,

1.1, 1.5, 1.9, respectively; while with degree heterogeneity, they are only 20.37, 0.34, 0.45, 0.48 for r 5 0.7, 1.1, 1.5, 1.9, respectively.
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a network on selection increases with the heat heterogeneity of the
network structure.

In contrary, the heat heterogeneity of network structure sup-
presses the selection effect for the DB process. For advantageous
mutants (r 5 1.1, 1.5 and 1.9), the fixation probability generally
decreases with the heat heterogeneity of networks. However, for
disadvantageous mutants (r 5 0.7), the fixation probability generally
increases with the heat heterogeneity of networks, as shown in Fig. 6.
That is, networks with high heat heterogeneity inhibit fixation of
advantageous mutants and promote fixation of disadvantageous
mutants in the DB process.

For the DB process on general networks, the impact of network
structure on evolutionary dynamics is also mainly dominated by the
heat heterogeneity. The rank order correlation between fixation
probability and heat heterogeneity is 20.95, 20.96, 20.92, and
0.93 for r 5 1.9, 1.5, 1.1, and 0.7, respectively. The above correlation
coefficients greatly outperform those between degree heterogeneity
and fixation probability, which are less than 0.71 for all r.

Robustness of the strong correlation. In the above Sections, the
strong correlation between the fixation probability and heat
heterogeneity has been observed on various undirected connected
networks, including some specific networks in Ref. 34, complete
bipartite networks, and most importantly, random samples of
undirected connected networks. Moreover, it is observed that the
strong correlation between the fixation probability and heat
heterogeneity is also valid for networks with different order (See
Figs. S2 and S3 in Supplementary Information (SI)). Thus, the
obtained results are generally robust against different kinds of
undirected network structures.

Discussion
The above results have shown that the network structure and the
fixation probability of a random mutant are strongly correlated for
both the BD and DB processes. However, when the mutant’s relative
fitness r approaches 1, a decrease is observed in the rank order
correlation between fixation probability and heat heterogeneity
(see Fig. 5 and Fig. 6). The reason lies in that random drift dominates
the evolutionary dynamics when r is close to 1, whereas the network
structure affects the fixation probability only through readjusting the

selection effect. Indeed, for both the neutral BD and DB processes,
the fixation probability of a random mutant is 1/N for all kinds of
networks with size N (see the Supplementary Information (SI) for
details). That is, the fixation probability of a random mutant is irrel-
evant to network structure in neutral evolutionary processes.

It has shown that the selection effect on evolutionary dynamics on
networks is mainly determined by the heat heterogeneity of net-
works. This result indicates us an effective algorithm to design selec-
tion adjusters with desired average degree d and size N. The
algorithm is as follows. Firstly, generate M nodes and randomly
connect them with (d/221)N 1 M edges. Then, add the other N-
M nodes in and link each added node to one of the above M nodes.
Here, M is set as the smallest integral value larger than
1:5z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2:25zN(d{2)

p
to guarantee the existence of network.

Networks generated with the above algorithm possess high heat
heterogeneity. In fact, there are N-M nodes in the network which
have only one high-degree neighbor, so the temperature of these
nodes is very low. And the other M nodes connect with a large
number of one-degree nodes, thus, their temperature is then very
high. Fig. 7 presents a typical generated network by the above algo-
rithm. The temperature distribution of the network is clearly
displayed.

Generally, human, economic, and industrial organizations have
complicated network structures. Different ideas, behaviors, tech-
nological innovations compete and diffuse on these networked orga-
nizations37–41. Understanding the effect of network structure on
evolutionary dynamics is one of the main goals in studying the
evolutionary collective behaviors of networked systems42–44.
Through analysis, numerous facts show that the heat heterogeneities
of most real-world networks are much larger than those of random
networks (refer to Table S1 and Fig. S4). Thus, these real-world
network structures have significantly impact on the evolutionary
processes of populations.

In this paper, it is shown that the impact of network structure on
evolutionary dynamics is mainly determined by the heat heterogen-
eity of network. In detail, for the BD process, a network with high
heat heterogeneity acts as a selection amplifier, favoring spread of
advantageous mutants and inhibiting propagation of disadvantage-
ous ones. However, for the DB process, a network of high heat
heterogeneity behaves like a selection suppressor, diminishing the

Figure 6 | Correlation between the heterogeneity and fixation probability for the death-birth process on general undirected networks. (a) The heat

heterogeneity; (b) the fixation probability of a random mutant with fitness 1.9; (c) the fixation of a random mutant with fitness 1.5; (d) the fixation

probability of a random mutant with fitness 1.1; (e) the fixation probability of a random mutant with fitness 0.7; (f) the degree heterogeneity. The 40

graphs are almost uniformly randomly sampled from the undirected connected graphs set with 12 nodes. Here the graph index is ordered

according to increasing its heat heterogeneity. The rank order correlation of the fixation probability with heat heterogeneity is 0.932 for r 5 0.7 and

20.916, 20.956, 20.953 for r 5 1.1, 1.5, 1.9, respectively.
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fixation probability of advantageous mutants and increasing that of
disadvantageous ones. These results may further help us understand
questions such as how a network structure affects the spreading
process of innovations and how to design suitable collaboration net-
works to enhance the spread of favorable innovations and inhibit the
propagation of unfit ones.

Methods
Complete bipartite graphs. A complete bipartite graph G 5 (U 1 V,E) is a bipartite
graph such that for any two nodes, u [ Uand v [ V , uv is an edge in G. Let Km,n

denote a complete bipartite graph G 5 (U 1 V,E), where m and n are the number of
nodes in set U and V, respectively. By fixing m 1 n 5 N and varying m from 1 to N/2,
one gets a class of complete bipartite graphs {Km,N2mjm 5 1,2,…,N/2}. Here, the
constant N denotes the graph size. The heat heterogeneity of graphs in {Km,N2mjm 5

1,2,…,N/2} can is given by

Ht Km,N{mð Þ~ N{2mð Þ2�
m N{mð Þ: ð2Þ

Rank order correlation. The rank order correlation coefficient between two vectors
is the Pearson correlation coefficient between the rank vectors of the above two
vectors. Given a vector x 5 (x1, x2,…, xn), the rank of the i-th components is

r(xi)~1z j=ijxjwxi

�� ��z 1
2

j=ijxj~xi

�� ��, ð3Þ

where the notation jsj denotes the number of elements in set s. The rank order
correlation coefficient measures the strength of monotonic association between two
vectors. The rank order correlation coefficient can take values from 11 to 21,
where 11 (21) indicates a perfect increasing (decreasing) association relationship
and zero indicates no association.
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