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Abstract
Background: The premature fusion of one cranial suture, also referred to as non-syndromic craniosynostosis, most commonly involves 
premature fusion of the sagittal, coronal, or metopic sutures, in that order. Population-based epidemiological studies have found that the 
birth prevalence of single-suture craniosynostosis is both suture- and sex-dependent.
Methods: Transcriptomic data from 199 individuals with isolated sagittal (n = 100), unilateral coronal (n = 50), and metopic (n = 49) 
synostosis were compared against a control population (n = 50) to identify transcripts accounting for the different sex-based frequencies 
observed in this disease.
Results: Differential sex-based gene expression was classified as either gained (divergent) or lost (convergent) in affected individu-
als to identify transcripts related to disease predilection. Divergent expression was dependent on synostosis sub-type, and was exten-
sive in metopic craniosynostosis specifically. Convergent microarray-based expression was independent of synostosis sub-type, with 
convergent expression of FBN2, IGF2BP3, PDE1C and TINAGL1 being the most robust across all synostosis sub-types.
Conclusions: Analysis of sex-based gene expression followed by validation by qRT-PCR identified that concurrent upregulation of 
FBN2 and IGF2BP3, and downregulation of TINAGL1 in craniosynostosis cases were all associated with increased RUNX2 expression 
and may represent a transcriptomic signature that can be used to characterize a subset of single-suture craniosynostosis cases.
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Introduction
Craniosynostosis is the pathologic fusion of calva-
rial bones and occurs in approximately 1/2500 live 
births. A genetic component to the disease is likely 
given a 7%–10% recurrence risk.1 Craniosynostosis 
cases can be classified into two categories, syndromic 
and non-syndromic forms. Over one hundred forms 
of syndromic craniosynostosis have been identified, 
including Apert, Crouzon, Muenke, Pfeiffer, and 
Saethre-Chotzen syndromes, which are associated 
with various phenotypic manifestations in addition 
to premature fusion of calvarial sutures.2 In contrast, 
individuals with non-syndromic craniosynostosis 
lack non-sutural phenotypes.

Mutations in genes such as FGFR1-3, TWIST1, 
EFNB1, FBN1, MSX2, RAB23, RECQL4, and 
TGFBR1-2 have been associated with syndromic 
craniosynostosis,3 whereas markers for the patho-
genesis of non-syndromic forms of the disease 
have proven more difficult to identify.3–5 Improving 
our understanding of what causes non-syndromic 
craniosynostosis remains an important endeavor 
considering non-syndromic forms of this disease 
account for approximately 85% of all cases. In fact, 
recent reports suggest the incidence of all forms 
of non-syndromic craniosynostosis, especially 
metopic cases, is on the rise.6,7 Generally, half of 
non-syndromic cases involve premature fusion of 
the sagittal suture, whereas premature coronal and 
metopic suture closure occurs in 22% and 15% of 
cases, respectively.8

The differences between syndromic and non-
syndromic forms of craniosynostosis including 
clinical features, classified mutations, and incidence 
suggest that these two forms of craniosynostosis are 
unique. In this paper, another characteristic differ-
ence between syndromic and non-syndromic cranio-
synostosis is investigated, namely sex predilection. 
In non-syndromic craniosynostosis, males have an 
overall higher frequency of developing craniosynos-
tosis than females. In isolated sagittal and metopic 
craniosynostosis there is a near four-fold increased 
incidence among males, whereas in coronal cases 
the male/female ratio is nearly even.8 The observa-
tion that maleness has been shown to predispose 
individuals to craniosynostosis suggests that if tran-
scriptomic changes are driving this predilection, 
then females with male-patterned expression of 

select disease-related genes may be predisposed to 
developing non-syndromic craniosynostosis.

To this end, transcriptomic arrays from a large 
cohort of individuals with non-syndromic cranio-
synostosis were analyzed in order to identify sex-
related changes in gene expression that predispose 
individuals to developing this disease. First, differ-
ential gene expression between control males and 
females was compared against differential gene 
expression between males and females with cranio-
synostosis in order to create divergent and conver-
gent gene sets. Sex related expression was defined 
as divergent in craniosynostosis cases when sex dif-
ferences were not observed in controls and conver-
gent when sex differences present in controls were 
absent in cases (Fig. 1). Next, the divergent and con-
vergent gene expression of affected male and female 
cases was compared directly against sex-matched 
controls to confirm that the gain or loss of transcript 
expression was significantly different (Fig. 1). Results 
from these comparisons identified sex-dependant dis-
turbances to genes involved in Ca2+-mediated phos-
phatidylinositol 3-kinase/protein kinase B (PI3K/
Akt) signaling as key targets that predispose females 
to craniosynostosis, whereas TINAGL1 expression 
plays a more important role in predisposing males to 
the disease by potentially disrupting TGF-β activity. 
More importantly, differential expression of genes 

“Divergent”
gene set

“Convergent”
gene set

“Shared”
gene set

Controls Cases Controls CasesControls Cases

Compare divergent
expression vs. sex-
matched controls

Compare convergent
expression vs. sex-
matched controls

Figure 1. Comparative approach used to identify transcripts that 
may predispose individuals to non-syndromic craniosynostosis based 
on sex.
Notes: Sex-based differences associated with affected individuals and 
not seen in controls are contained within the divergent gene set, whereas 
sex-based differences unique to the control population and not seen 
in affected individuals are contained within the convergent gene set. 
Those transcripts contained within the shared gene set are sex-based 
differences associated with both controls and affected craniosynostosis 
cases. Once identified, gene expression considered divergent or 
convergent was reanalyzed by comparing affected individuals to their 
respective sex-matched controls.
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related to these pathways can be directly linked to 
increased RUNX2 activity, a mechanism known to 
cause premature fusion of calvarial sutures.

Methods
Informed consent
Written informed consent was obtained from all 
participants with single-suture craniosynostosis, 
whereas a waiver of consent was obtained from the 
Seattle Children’s Hospital Institutional Review 
Board (IRB) for the anonymous control samples 
used in this study. This study is HIPAA compliant, 
and we obtained independent prospective IRB 
approval from each participating center, including 
Seattle Children’s Hospital, Northwestern University 
in Chicago, Children’s Heath Care of Atlanta, and 
St. Louis Children’s Hospital.

Cell culture
All primary osteoblast cell lines were derived from 
participants in a previously described craniosynos-
tosis study.9 Subsets of the 249 cell lines included 
50 controls and 100  sagittal, 50 coronal, and 
49 metopic craniosynostosis cases. Craniosynostotic 
calvaria were obtained from discarded tissues during 
surgical reconstructive procedures, whereas control 
calvaria were obtained from discarded tissues from 
anonymous surgical or autopsy specimens. Harvested 
calvaria samples were then washed and expanded in 
Waymouth’s media (Sigma: St. Louis, MO) supple-
mented with 2X Penicillin/Streptomycin/Fungizone 
(Hyclone: Logan, UT) and 10% heat-inactivated 
fetal bovine serum (FBS) (Hyclone: Logan, UT). 
Osteoblasts were grown at 37 °C, 5% CO2, and 99% 
humidity, trypsinized using 0.05% Trypsin (Hyclone: 
Logan, UT) upon reaching 75% confluence, counted 
and passaged at a cell density of 175,000 cells per 
25 cm2.

Cell harvest and RNA isolation
Once the re-plated cells reached 75% confluence, 
they were photographed for quality control pur-
poses, washed twice with 1X PBS, and trypsinized. 
An equal volume of media containing FBS was 
added after trypsin exposure, and cells were centri-
fuged at 200 × g for 10 minutes at 4 °C in nuclease 
free 15 mL conical tubes (Corning: Lowell, MA). 
Following a washing step, cells were centrifuged 

again at 200 × g for 10  minutes at 4 °C. RNA 
extraction from cell pellets was performed using 
the Roche High Pure miRNA Isolation Kit in 
accordance to the manufacturer’s protocol (Roche: 
Indianapolis, IN). RNA was stored immediately in 
−80 °C and either analyzed by quantitative reverse 
transcriptase PCR (qRT-PCR) or submitted for 
microarray processing on dry ice.

Preparation of samples for quantitative 
real-time PCR
cDNA was synthesized from total RNA using the 
High RevertAid First Strand cDNA Synthesis Kit 
(Fermentas: Glen Burnie, MD) according to the 
manufacturers protocol. Reactions were set up in 
duplicate with the following components in each well 
of an ABI microAMP Fast Optical 96-well Reaction 
Plate (Life Technologies: Carlsbad, CA), 10 µL 2X 
SensiMix SYBR low-ROX master mix (Bioline: 
London, UK), 2  µL primers (1–5  µM) (Sigma: 
St. Louis, MO), and 8 µL sample cDNA (1.25 ng/µL). 
All primers were designed using PrimerBank (http://
pga.mgh.harvard.edu/primerbank/) to amplify the 
following targets: CD24 (NM_013230), FBN2 
(NM_001999), IGF2BP3 (NM_006547), PDE1C 
(NM_005020), RUNX2 (NM_001024630), and 
TINAGL1 (NM_022164). Reaction plates were then 
sealed and centrifuged for 1  minute at 1,000  ×  g. 
qRT-PCR was performed on an Applied Biosystems 
ABI7500 Fast Real-Time PCR System (Life 
Technologies: Carlsbad, CA). Ct values were nor-
malized to 18s expression (NR_003286) and rela-
tive differences in mRNA expression were compared 
between craniosynostosis cases and controls.

Validation of divergent CD24 expression 
by qRT-PCR
Quantitative real-time PCR was performed on 32 
randomly selected primary cell lines (24 cranio-
synostosis cases and 8 controls). Eight coronal, 
eight metopic and eight sagittal cases comprised 
the twenty-four total craniosynostosis cases 
assayed. Within each group of eight, four females 
and four males were assayed in order to determine 
whether divergent expression was consistent among 
all craniosynostosis sub-types. Similarly, of the 
eight controls assayed, four were female and four 
were male.
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qRT-PCR on cell lines expressing high 
FBN2, high IGF2BP3, and low PDE1C
Quantitative real-time PCR was performed on pri-
mary cell lines in which microarray-based expression 
of both FBN2 and IGF2BP3 were in the top third of 
the entire cohort (n = 249), while maintaining PDE1C 
expression within the bottom third (n = 21; 17 cranio-
synostosis cases and 4 controls).

Microarray analysis
Raw microarray data were pre-processed 
and normalized with Affymetrix® Expression 
Console™ Software using RMA normalization 
(http://affymetrix.com). Microarray quality control 
metrics include the manufacturer’s recommended 
guidelines: visual inspection of probe array images, 
proper ranking of hybridization and Poly-A controls, 
and area under the curve values for a receiver operat-
ing characteristic plot comparing the positive control 
and negative control signal values. Other microar-
ray quality control metrics were generated with the 
Bioconductor R package named “aroma.affyme-
trix” and included the relative log expression (RLE) 
values (assessing the potential spread or shifting of 
expression values), and the normalized unscaled 
standard errors (NUSE) (assessing variability of 
genes across arrays) (R: A Language and Environ-
ment for Statistical Computing, R Foundation for 
Statistical Computing, http://www.R-project.org).10 
All microarray data have been deposited in the 
Gene Expression Omnibus Database under acces-
sion number GSE27976 (http://www.ncbi.nlm.nih.
gov/geo/).

Statistical analysis
From the normalized data, genes with significant 
evidence for differential expression were identi-
fied using the limma package11 in Bioconductor.12 
P-values were calculated with a modified t-test 
in conjunction with an empirical Bayes method 
to moderate the standard errors of the estimated 
log-fold changes. P-values were adjusted for 
multiplicity using Bioconductor’s implementation 
of the Benjamini-Hochberg13 p-value adjustment 
method, which allows for selecting statistically 
significant genes while controlling the estimated 
false discovery rate.

Results
Identification of divergent, convergent, 
and shared transcripts
249 primary osteoblast cell lines were developed 
from individuals with non-syndromic craniosynosto-
sis and controls. Transcriptomic analysis of these cell 
lines identified sex-based differential gene expres-
sion that persisted during in vitro culture. Divergent 
genes unique to craniosynostosis were highly depen-
dent on the synostosis sub-type, in that the number of 
sex-related, craniosynostosis-related transcripts was 
variable among coronal, metopic, and sagittal cases 
(Table  1). In fact, only CD24 downregulation was 
considered significant over all three sutures (Supplemental 
Table 1). Divergent CD24 expression was verified by 
qRT-PCR (Supplemental Table 2), confirming female 
cases had lower expression of CD24 than their male 
counterparts (fold change  =  −2.8, P  =  0.06) with 
no significant differences seen between female and 
male controls (P  =  0.61). Expression of COL11A1, 
F2R, FAM38B, PLA2G16, and VCAM1 was con-
sistent among coronal and metopic cases, whereas 
significant expression of all other divergent tran-
scripts was unique to one specific synostosis sub-type 
(Supplemental Table 1). These data suggest that diver-
gent sex-related gene expression in non-syndromic 
craniosynostosis is generally suture-dependent, 
and that divergent expression is most prominent in 
metopic cases since 99 transcripts were identified in 
this synostosis sub-type alone (Table 1).

Unlike the divergent gene set, transcript expres-
sion within the convergent gene set was not depen-
dent on the synostosis sub-type. This was evidenced 
by the fact that sex-related expression in 30 of the 
32 convergent genes was consistent among all three 
synostosis sub-types (Table 2). These results suggest 
that losing sex-based differences in transcriptional 

Table 1. Number of divergent, shared, and convergent 
transcripts identified based on craniosynostosis sub-type 
(gene symbols for the transcripts represented here are 
listed in Table 2).

Transcripts  
in divergent  
gene set

Transcripts  
in shared  
gene set

Transcripts  
in convergent  
gene set

Coronal 6 21 31
Metopic 99 21 31
Sagittal 1 20 32
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Table 2. Divergent, shared and convergent transcripts that underwent large (|log2FC| . 1.5) and significant (P , 0.05) 
changes when comparing either male and female craniosynostosis cases directly or male and female control populations 
directly.

Divergent gene set Shared gene set Convergent gene set
Coronal cases (6): CDH6, FAM38B,  
NEFM, OGN, S100A4, VCAM1 
Metopic cases (99): ABCA8, ADAMTS5,  
ADAMTSL3, AK5, ANLN, ARHGAP11 A,  
ARHGDIB, ASPM, AURKA, BRIP1,  
BUB1, BUB1B, CA12, CASC5, CCNA2,  
CCNB1, CCNB2, CCNE2, CD24, CDC2,  
CDC20, CDCA2, CDKN3, CENPF, CENPI,  
CEP55, CLDN1, CLDN11, COL11A1,  
COL14A1, CRISPLD1, CTSC, CYTL1,  
DEPDC1, DLGAP5, DTL, ESCO2, EXO1,  
EYA4, F2R, F2RL2, FAM111B, FAM38B,  
FLG, FNDC1, HAPLN1, HELLS, HEY2,  
HIST1H1B, HIST1H2BM, HIST1H3B,  
HJURP, HMCN1, HMMR, IFI30, KIAA0101, 
KIF11, KIF14, KIF15, KIF20A, KIF20B,  
KIF2C, LMNB1, LOC100289612, MELK,  
MKI67, MOXD1, MXRA5, MYCT1,  
NCAPG, NEIL3, NUF2, NUSAP1, PAMR1,  
PBK, PLA2G16, PLK1, PLK4, PLXDC2,  
PRC1, PRR11, PTGER2, PTTG1,  
RAD51AP1, RRM2, SCRG1, SGCG,  
SGOL1, SHCBP1, SKA1, SKA3, SLITRK6,  
SPC25, SULF2, TOP2 A, TRIP13, TTK,  
VCAM1, ZIC1 
Sagittal cases (1): CD24

All cases (20): BPY2, CYorf15A,  
CYorf15B, DDX3Y, EIF1AY,  
GAGE12C, KDM5D, JPX,  
TTTY14, NLGN4Y, PRKY,  
RBMY1A1, RBMY1B, RBMY2EP,  
RPS4Y1, RPS4Y2, TSPY1,  
USP9Y, UTY, ZFY

All cases (30): ACAN, 
ACTG2, CNTNAP3, 
CHI3L1a, COL4A1, 
COL4A2, DSG2b, ENPP2, 
FBN2, FGL2, FLT1, 
GCNT4, GFRA1, GREM2, 
ID4, IGF2BP3, LAMC2, 
LOXL4, LPPR4, LUZP2, 
MCAM, MYOCD, OXTR, 
PDE1C, PENK, PLA2G5, 
SEMA3C, SEMA3D, 
SFRP4, SLC7A2, 
SULT1E1, TINAGL1

Notes: aConvergent CHI3L1 expression was observed in metopic and sagittal cases only; bConvergent DSG2 expression was observed in coronal and 
sagittal cases only.

activity is consistent among affected individuals and 
is therefore independent of synostosis sub-type. Like 
the convergent gene set, transcript expression within 
the shared gene set was also not dependent on the 
synostosis sub-type. This was evidenced by the fact 
that in 20 of the 22 genes were shared among controls 
and all three forms of craniosynostosis (Table  2). 
Furthermore, of the 20  genes shared among con-
trols and all three craniosynostosis types, all 20 are 
sex-linked (Supplemental Table 3). GAGE12C and a 
pseudogene of AARSD1 are the only X-linked genes 
in the shared set and are upregulated in females, 
whereas the remaining 18 Y-linked genes are upreg-
ulated in males (Supplemental Table  3). By defini-
tion, the shared gene set includes genes in which 
expression was found to be differentially regulated 
between control males and females as well as case 
males and females. While this gene set may not pro-
vide insight in differential sex-related gene expres-
sion between cases and controls, it does validate our 

methodology in that differential expression of X- and 
Y-linked genes is consistent with respect to the sex of 
the individual.

Divergent genes differentially expressed 
from controls
The identification of divergent synostotic expres-
sion may provide insight into genes that shape 
the observed sex frequencies found in the disease 
state, however, it is also of interest to investigate 
whether divergent synostotic expression differs 
significantly from control populations. To this 
end, affected individuals were separated based on 
sex and compared against their respective sex-
matched controls to determine whether divergent 
synostotic gene expression differed from controls 
to a significantly large extent (|fold change| . 1.5, 
P , 0.05) (Supplemental Table 4). VCAM1 was the 
only divergent transcript differentially expressed 
between sex-matched cases and controls to a large 
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and significant extent in males with all forms of 
non-syndromic craniosynostosis (Table 3). It is also 
worth noting that increased VCAM1 expression was 
observed in female coronal and sagittal cases com-
pared to female controls as well, suggesting that 
VCAM1 upregulation may not be a male-specific 
craniosynostotic effect (Table 3).

Convergent genes differentially 
expressed from controls
Analogous to the analysis performed on the divergent 
gene set, affected individuals were separated based 
on sex and compared against sex-matched controls 
to determine whether convergent gene expression 
in craniosynostosis differed from controls to a sig-
nificantly large extent. It was expected that transcript 
expression would be more consistent between sex-
matched cases and controls based on the fact that 
convergent expression was independent of synostosis 
sub-type. Four convergent genes (IGF2BP3, FBN2, 
PDE1C and TINAGL1) lost significantly large differ-
ences in expression between males and females in all 
cases, while still maintaining large (|fold change| . 
1.5) and significant (P , 0.05) differences in expres-
sion from sex-matched controls (Fig. 2). Compared 
to sex-matched controls, female cases had lower 
expression of PDE1C and higher expression of 
IGF2BP3 and FBN2, while male cases had decreased 
expression of TINAGL1. The identification of these 
four transcripts where sex-specific expression was 
lost, yet differential expression from sex-matched 
controls was maintained, may indicate critical patho-
genic roles for these genes. In other words, male 
and female cases are becoming more similar to each 
other, while simultaneously distancing themselves 
from control-like expression patterns where sex dif-
ferences once existed. Finally, all four of these tran-
scripts are capable of modulating RUNX2 expression/
activity. Because of this, the dataset was mined to 
determine whether sex-based differences in RUNX2 
expression were present. The search revealed RUNX2 
to be a significantly convergent transcript that did not 
meet our threshold cutoff (|% change|  , 50%), as 
female controls expressed 32% more RUNX2 than 
their male counterparts (P  ,  0.05). No significant 
sex-based differences were observed when compar-
ing males and females in each of the craniosynosto-
sis sub-types.
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Table 4. qRT-PCR validation of differential expression between craniosynostosis cases and controls both concurrently 
expressing the high FBN2, high IGF2BP3 and low PDE1C (P , 0.05).

Transcript Case_control (fold change) Primers
FBN2 3.2 fwd: CTGAAGGCGGGTTTCTAGCG 

rvs: CAAATCGGGACAATGCACTGG
IGF2BP3 4.5 fwd: TATATCGGAAACCTCAGCGAGA 

rvs: GGACCGAGTGCTCAACTTCT
RUNX2 6.5 fwd: TGGTTACTGTCATGGCGGGTA 

rvs: TCTCAGATCGTTGAACCTTGCTA
TINAGL1 -4.8 fwd: ATGGGACCCACTCAGTCAAGA 

rvs: GTTGGCCGCAGTCCAGTATTT

Differential expression between male
and female controls

No differential expression between
male and female cases

Female cases becoming
“male-like”
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IGF2BP3,
FBN2

PDE1C TINAGL1

Male cases becoming
“female-like”

Figure 2. Consistently convergent gene expression.
Notes: Convergent transcripts were defined as those genes that 
were differentially expressed between male and female controls (|fold 
change| . 1.5, P , 0.05), but lost these sex-related differences when 
male and female cases were compared. Four genes fit these criteria and 
were consistent in all three synostosis sub-types (coronal, metopic and 
sagittal) to a large and significant extent.

Quantitative real-time PCR on cases 
with high FBN2, high IGF2BP3,  
and low PDE1C expression
qRT-PCR was performed on 21 primary cell lines 
(17 craniosynostosis cases and 4 controls) that were 
identified in the microarray study to have high FBN2, 
high IGF2BP3, and low PDE1C levels (ie, female 
cases becoming male-like) (Fig. 2 and Supplemental 
Table  5). These samples were specifically chosen 
to investigate whether consistently convergent 
gene expression in craniosynostosis cases leads to 
dysregulation of RUNX2 expression/activity, due to 
the fact that the three genes are known to modulate 

its activity. First, convergent expression of FBN2, 
IGF2BP3, PDE1C, RUNX2, and TINAGL1 was con-
firmed in the selected cases by qRT-PCR, based on 
the fact that female and male cases showed no sig-
nificant differences in the expression of these tran-
scripts (Supplemental Table  5). When compared to 
controls, qRT-PCR was unable to detect significant 
downregulation of PDE1C in cases suggesting con-
current upregulation of FBN2 and IGF2BP3 is more 
critical to the disease state. This was found to be true 
in that three-fold FBN2 upregulation and four-fold 
IGF2BP3 upregulation, in addition to nearly five-fold 
TINAGL1 downregulation were observed in cases 
compared to controls (Table  4). Furthermore, qRT-
PCR not only confirmed that these same case lines 
expressed RUNX2 to a greater extent than matched 
controls, but also found this upregulation to be more 
than six-fold (Table 4). These results suggests that the 
↑FBN2, ↑IGF2BP3, ↓TINAGL1 transcriptomic sig-
nature represents a polygenic signature (and potential 
cause) of craniosynostosis that acts through coopera-
tive RUNX2 upregulation.

Discussion
Unlike the majority of syndromic forms, non-
syndromic craniosynostosis is much more common, 
is not associated with predictable non-calvarial phe-
notypic manifestations, and has unique sex-based fre-
quencies depending on the suture that is prematurely 
fusing.2,8 One notable exception is the P250R fibro-
blast growth factor receptor 3 (FGFR3) mutation in 
Muenke syndrome, which is associated with a more 
severe phenotype in females compared to males.14 To 
investigate sex-based differences in the frequency 
of non-syndromic craniosynostosis, a unique com-
parative transcriptomic approach was developed to 
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identify transcriptional changes driving sex predilec-
tion (Fig. 1). This model was necessary because there 
are sex specific effects differentially expressed among 
controls that are not related to craniosynostotic mech-
anisms (ie, genes on the sex chromosomes and those 
genes regulated by genes on the sex chromosomes). 
These normal differences need to be “removed” in 
order to understand sex related effects that are spe-
cific to the disease state. As proof of principle, our 
approach was internally validated by the fact that only 
sex-linked genes were identified in the shared region 
of the Venn diagrams (Supplemental Table 3).

Sex-related transcript expression that “diverged” 
in craniosynostotic individuals was dependent on 
the synostosis sub-type. In fact, extensive divergent 
expression was exclusive to metopic cases (Table 1). 
It was expected that metopic and sagittal cases would 
share similar divergent gene expression profiles 
considering metopic and sagittal craniosynostosis 
not only have defined male to female ratios greater 
than 3:1, but also share many other epidemiological 
similarities.8 It is worth noting that expression of one 
transcript (CD24) was found to be divergent in both 
sagittal and metopic cases, suggesting that reduced 
levels of CD24 expression may be associated with 
developing craniosynostosis in females (Table 3). In 
fact, recent evidence suggests that CD24 may inhibit 
cell invasiveness,15 suggesting that loss of CD24 
expression may promote cell invasion, perhaps at the 
osteogenic front, and act as a mechanism for prema-
ture suture closure.

In males, divergent upregulation of VCAM1 was 
observed in coronal and metopic cases, but not in 
sagittal cases. However, both male and female sagit-
tal cases had increased VCAM1 expression compared 
to their sex-matched controls (Table 3). Even though 
VCAM1 expression was divergent in coronal and 
metopic cases and upregulated in all male cases com-
pared to sex-matched controls, the increase seen in 
affected females with coronal and sagittal synostosis 
makes it unlikely that upregulation of this transcript 
is a male-specific effect. While male cases gener-
ally have higher VCAM1 levels than female cases, 
female coronal and sagittal cases still have higher 
VCAM1 expression than their sex-matched controls 
to a significantly large extent (Table 3). These results 
suggest that while increased VCAM1 expression is 
related to craniosynostosis, its upregulation may 

be sex-independent. This observation substantiates 
an earlier report from our lab identifying VCAM1 
upregulation as a novel biomarker in single-suture 
craniosynostosis.16

Unlike divergent expression, convergent expres-
sion in craniosynostotic individuals was independent 
of the synostosis sub-type (Table  2). Convergent 
transcripts were then mined to identify gene expres-
sion that was also significantly different between the 
cases and their sex-matched controls (Supplemental 
Table  4). Only three of the convergent transcripts 
were differentially expressed in all three synostosis 
sub-types and confirmed by qRT-PCR; IGF2BP3 and 
FBN2 in females, and TINAGL1 in males (Table 3). 
Convergent expression of IGF2BP3 and FBN2 is 
interesting on two levels. First, gain of IGF2BP3 and 
FBN2 expression in female cases results in “male-
like” expression of these transcripts (Fig.  2). The 
fact that males have a higher incidence for devel-
oping craniosynostosis would suggest that females 
with “male-like” expression of craniosynostosis-as-
sociated genes may have a higher risk of developing 
the disease. Second, increased IGF2BP3 and FBN2 
expression in case females would have a the same 
effect on RUNX2 activity, a transcription factor that 
is expressed in fusing cranial sutures.17 Mutations 
of the RUNX2 modulator, TWIST1, are associated 
with a syndromic form of craniosynostosis known as 
Saethre-Chotzen syndrome.18 TWIST1 is a negative 
regulator of RUNX2, therefore loss of function muta-
tions in TWIST1 lead to increased RUNX2 activity 
accounting for the presumed mechanism of action 
by which these mutations lead to non-syndromic 
craniosynostosis.19 This mechanism is consistent 
with the finding that duplication of the RUNX2 gene 
is associated with metopic craniosynostosis.20

In osteoblasts, RUNX2 activation can also occur 
through Ca2+-mediated PI3K/Akt activation and sub-
sequent FOXO1/4 phosphorylation.21,22 The male-like 
expression of IGF2BP3 and FBN2 in female cranio-
synostosis cases can impact this pathway at various 
points to promote RUNX2 activity (Fig. 3). Increased 
IGF2BP3 expression promotes IGF2 translation 
leading to PI3K/Akt-mediated RUNX2 activity.23 
Upregulation of FBN2 has been shown to increase 
bone mass by restricting RUNX2 microRNA expres-
sion and processing, thereby attenuating the transla-
tional repression of RUNX2.24 Another mechanism by 
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Figure 3. Proposed RUNX2 activation model for differentially expressed 
convergent transcripts.

which increased FBN2 expression leads to increased 
RUNX2 activity is through the negative regulation of 
TGF-β signaling, a cascade known to repress RUNX2 
activity.25,26 In fact, type 1  Loeys-Dietz syndrome, 
which is caused by mutations in TGF-β receptors, is 
associated with craniosynostotic phenotypes.27 Finally, 
high FBN2 expression may increase osteoblast migra-
tion, as alterations to intracellular Ca2+ levels have 
been shown to promote cell migration along fibrillin 
paths.28 Mutations in FBN2 cause congenital contrac-
tual arachnodactyly,29 and while there are currently 
no known FBN2 mutations that cause craniosynosto-
sis, mutations in FBN1 cause Marfan Syndrome30 and 
possibly Shprintzen-Goldberg Syndrome,31,32 a syn-
dromic form of craniosynostosis with Marfanoid fea-
tures that is associated with arachnodactyly.29,33 The 
fact that alterations to FBN1 and FBN2 gene function 
lead to similar phenotypes, coupled with the fact that 
FBN1 and FBN2 share overlapping functionality,24,34 
strongly implicates the role fibrillin dysregulation in 
the pathogenesis of craniosynostosis. Taken together, 
craniosynostosis cases with high FBN2 and IGF2BP3 
expression compared to controls with high expres-
sion of these same transcripts demonstrated a six-
fold increase in RUNX2 expression (Table  3). This 
suggests that significantly high FBN2 and IGF2BP3 
expression coupled with RUNX2 upregulation might 
act as a pathogenic mechanism for craniosynostosis 
(Fig. 3).

With respect to convergent expression that was dif-
ferentially expressed between male cases and male 
controls, only TINAGL1 downregulation surfaced as a 
potential marker associated with all male forms of non-
syndromic craniosynostosis. TINAGL1 is a matricellu-
lar protein that has been shown to promote cell adhesion 
and invasion through its interactions with cell surface 
receptors and cell matrix proteins such as laminin and 
integrin α5-β1.35,36 Our previous findings implicating 

extracellular matrix-mediated focal adhesion as the 
strongest signal associated with non-syndromic cran-
iosynostosis cases strongly supports the identification 
of TINAGL1 as a transcript associated with the dis-
ease state.16 Furthermore, TINAGL1 overexpression 
has been shown to couple TGF-β to SMAD2/3 phos-
phorylation in endothelial cells, a mechanism by which 
TGF-β attenuates RUNX2 function in osteoblasts.37,38 
Presumably, lower levels of TINAGL1 observed in 
craniosynostotic males would lead to decreased TGF-β 
signaling through SMAD2/3, and increased RUNX2 
function (Fig.  3).37,38 This mechanism is further sup-
ported by the fact that cases with high FBN2 and 
IGF2BP3 expression have low TINAGL1 levels in 
addition to high RUNX2 expression (Table 4).

In conclusion, non-syndromic craniosynostosis is a 
complex disease with multiple causes, of which only a 
handful have been discovered. By utilizing this unique 
sex-based transcriptomic approach, our lab was able 
to generate novel candidate genes that predispose 
individuals to developing the disease state. Based on 
the likelihood that non-syndromic craniosynostosis 
is a polygenic disease, sub-populations within each 
synostosis sub-type are likely driving the significant 
changes in gene expression that surfaced using this 
approach. Finding commonality among these diverse 
targets is critical to understanding the mechanism by 
which premature fusion of calvarial sutures occurs. 
Our approach was able to identify convergent sex-
based gene expression that cooperatively upregulates 
RUNX2 expression (Table 4), implicating the ↑FBN2, 
↑IGF2BP3, ↓TINAGL1 transcriptomic signature in 
the development of single-suture craniosynostosis. 
A potential limitation of this study is that while care 
was taken to age-match the case and control samples, 
the primary control lines in the entire cohort were 
generally from older children due to the limited avail-
ability of calvaria samples from controls less than one 
year of age.16 Future work will focus on large-scale 
sequencing of the candidates presented here, as well as 
any transcriptional regulators (promoter regions, tran-
scription factors, nuclear receptors, etc.) in individuals 
that are known to have divergent/convergent tran-
scriptomic profiles to identify causal mutations. The 
identification of transcripts associated with osteogenic 
differentiation and proliferation in this study suggests 
that these candidates are of interest, and that this novel 
approach has potential utility in the identification of 
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gene candidates and transcriptomic signatures in other 
diseases with disparate sex-based frequencies.
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Supplementary Information

Supplementary Table 1. (divergent): Expression of the 103 divergent transcripts differentially expressed 
to a large and significant extent between the sexes in craniosynostosis cases and not in controls.

Supplementary Table 2. Individual qRT-PCR data for CD24 expression in randomly selected cases (n = 24) 
and controls (n = 8).

Supplementary Table 3. (shared): Expression of 21 shared transcripts differentially expressed to a 
large and significant extent between the sexes in both controls and craniosynostosis cases.

Supplementary Table 4. (convergent): Expression of 32 convergent transcripts differentially expressed 
to a large and significant extent between the sexes in controls and not in craniosynostosis cases.

Supplementary Table 5. Individual qRT-PCR data for cases and controls in which FBN2 and IGF2BP3 
expression were both in the top third of the entire cohort (n = 249), while maintaining PDE1C expression 
within the bottom third.
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