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Early life stress – including experience of child maltreatment, neglect, separation from or

loss of a parent, and other forms of adversity – increases lifetime risk of mood, anxiety, and

substance use disorders. A major component of this risk may be early life stress-induced

alterations in motivation and reward processing, mediated by changes in the nucleus

accumbens (NAc) and ventral tegmental area (VTA). Here, we review evidence of the

impact of early life stress on reward circuit structure and function from human and

animal models, with a focus on the NAc. We then connect these results to emerging

theoretical models about the indirect and direct impacts of early life stress on reward

circuit development. Through this review and synthesis, we aim to highlight open research

questions and suggest avenues of future study in service of basic science, as well as

applied insights. Understanding how early life stress alters reward circuit development,

function, and motivated behaviors is a critical first step toward developing the ability to

predict, prevent, and treat stress-related psychopathology spanning mood, anxiety, and

substance use disorders.

Keywords: early life stress (ELS), reward, nucleus accumbens (NAc), ventral tegmental area (VTA), development,

ventral striatum

INTRODUCTION

Early life stress (ELS) increases lifetime risk of depression, suicide, and mood, anxiety, and
substance use disorders, and epidemiological studies suggest that approximately 30% of all
adult-onset psychiatric disorders are associated with the experience of ELS (1–8). Broadly, ELS
includes a range of adverse to traumatic experiences, ranging from socioeconomic disadvantage
to loss of a parent, institutionalization, neglect, abuse, or exposure to domestic or community
violence. These stressful experiences can be categorized as related to deprivation (an absence of
expected age-typical stimuli and experiences) or threat (presence or perceived risk of physical
violation or harm) (9, 10). Timing and chronicity of ELS exposure may also impact psychiatric
outcomes (11–14). Understanding how different forms, timing, or cumulative ELS exposure alter
brain development and function to impart risk is essential in order to develop better interventions
for this vulnerable population (15, 16).

The robust impact of ELS on increased risk for mood and substance use disorders implicates
enduring alterations within reward and motivation circuitry of the brain, which functions at the
intersection of negative and positive valence domains implicated in the pathophysiology of these
disorders (17–23). The brain’s reward circuitry is classically comprised of the ventral tegmental
area (VTA) and its dopaminergic projections to the nucleus accumbens (NAc, part of the ventral
striatum; Figure 1) and other forebrain targets including prefrontal cortex (PFC), amygdala, and
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hippocampus. In addition to dopaminergic modulation from
VTA, theNAc also receives dense glutamatergic innervation from
these same forebrain regions and serves as a central integration
point for cognitive and executive input from PFC, emotional
information from amygdala, and contextual and emotional
input from hippocampus (24–28). Imbalance of these systems
is strongly associated with mood, psychiatric, and substance use
disorders (19, 29, 30). GABAergic medium spiny neurons of the
NAc project locally as well as to VTA, ventral pallidum, bed
nucleus of the stria terminalis, lateral septum, amygdala, and
lateral hypothalamus among other regions to ultimately regulate
motivated behavior. Neurons of the VTA, NAc and broader
reward circuitry undergo protracted development and continue
to mature through adolescence which may leave them vulnerable
to early environmental insults (31–40). Here, we review the
enduring impact of ELS on reward circuit function, connectivity,
and molecular development in humans and rodents, with a focus
on NAc.

IMPACT OF EARLY LIFE STRESS ON
HUMAN REWARD PROCESSING AND
CONNECTIVITY

A growing body of behavioral and neurobiological studies in
humans suggest ELS-related alterations in reward-processing and
connected brain circuitry. Behaviorally, children and adolescents
exposed to ELS show challenges in aspects of reward processing
and decision-making. There are multiple reports of lower reward
responsivity and approach motivation in youth exposed to
physical abuse (41, 42), social neglect (43, 44), and other adverse
childhood experiences (42, 45–47). In such work, participants
often need to make speeded responses to a target to receive
rewards or positive feedback. Looking at different aspects of
reward processing and decision-making, data suggests slower
learning about rewards after adversity. For example, physical
abuse and maltreatment was related to slower reward learning
over time and an insensitivity to the expected value of a reward
(41, 48); this fits with similar results noting lower reward learning
after social neglect (44). Such patterns have also been noted
in adult samples where adversity was retrospectively reported.
Pechtel and Pizzagalli found women who suffered sexual abuse
as children had lower behavioral accuracy when using learned
information during a reward task (49). Interestingly, impaired
reward learning from childhood institutionalization can be
rescued through intervention with high-quality foster care
between 6 and 33 months of age, implicating some plasticity
through early childhood (44).

ELS-associated reward and decision-making differences are
driven by a combination of high levels of risk-taking, insensitivity
to different valences of feedback, and other processes. Maltreated
children take excessive risks during different decision-making
tasks (48, 50). In particular, youth exposed to adversity, such
as maltreatment, have difficulty avoiding losses (48, 51) and
make more impulsive choices (52–54). In addition, adults who
reported high levels of early life adversity showed decreased

positive feedback sensitivity during learning (55), and stress-
exposed adolescents have challenges in initially learning as well
as updating reward contingencies (45). These effects may be
mechanistically due to lower feedback-related brain responsivity
[measured by event-related potentials; (49)].

Functional MRI (fMRI) has been used to examine neural
correlates of reward processing. Early adversity exposure
has been found to lower activity levels in portions of the
mesocorticolimbic circuit including ventral striatum during
different reward-related tasks, such as anticipating monetary
gains. For example, adolescents exposed to early social neglect
had lower ventral striatal and caudate fMRI responses during
the anticipation of rewards (56). These findings are consistent
with studies that found lower ventral striatal activity in youths
exposed to emotional neglect (57) and youth presenting with
attachment issues after maltreatment (58). Moreover, blunted
development of reward-related ventral striatum activity partially
mediated the association between emotional neglect and greater
depressive symptomatology (57). Lower ventral striatal activity
has also been found when using rewarding social stimuli (i.e.,
happy faces) (59). These patterns persist in adults with a history
of early adversity: high levels of adversity in childhood and
adolescence blunted reward-related ventral striatum responses in
adulthood (60–62). In addition to the ventral striatum, higher
childhood adversity has been linked to lower activation in the
putamen for adults during the anticipation of potential rewards
(63), as well as potential losses (64). Other studies, however,
reveal a more complex picture. Lower adolescent neighborhood
quality, a contextual variable likely correlated with adversity, was
associated with greater average fMRI activation in the ventral
striatum during the anticipation of monetary gains (65). Early
adversity was also found to improve learning from positive
outcomes, but also led to impulsive decision-making, both of
which were mediated by ventral striatal responses (52).

In addition to task-related activity, ELS has been found
to alter resting-state connectivity of reward circuitry. Child
maltreatment and early institutional care was associated with
increased coupling between ventral striatum and regions of the
PFC (66, 67), and socioeconomic disadvantage was associated
with increased coupling between ventral striatum and PFC
and cerebellum (68). Including broader reward circuitry, early
adversity and socioeconomic disadvantage were also recently
found to blunt development of VTA-PFC development (69) and
reduce VTA-hippocampal connectivity (70).

These functional consequences of ELS may stem from altered
brain structure and development, including mesocorticolimbic
reward circuitry. For example, in a large cohort of adults (N
= 3036), higher childhood adversity exposure was associated
with smaller caudate volumes (71). Childhood trauma is also
related to lower white matter integrity in fiber tracts connecting
the caudate, ventral striatum, and prefrontal cortex (46, 72,
73). However, rodent models of ELS (discussed below) suggest
changes in reward circuitry are at the level of excitatory and
neuromodulatory signaling rather than gross structural changes.
Focusing on connectivity may provide unique information
about the impacts of ELS, explaining different aspects of the
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FIGURE 1 | Neuroanatomy of key reward circuitry in humans and rodents. The current review focuses on the impact of early life stress on reward circuitry, with a

particular focus on ventral tegmental area (VTA) and nucleus accumbens (NAc), part of the ventral striatum. Created with https://www.BioRender.com.

effects of ELS compared to the task-based activation studies
reviewed above.

Of note, there are multiple open questions related to
this research area, suggesting many important future research
directions in human samples. First, while many projects
conceptualize adversity as impacting mesocorticolimbic and
reward-related processes, it is possible, instead, that the
interaction between adversity and neurobiology could be
diagnostic of resilience after stress exposure. Some studies have
found childhood adversity was not related to mesocorticolimbic
functional activity per se, but rather reduced activity - in the
context of high levels of adversity - predicted poorer mental
and physical health (74–76). For example, high early adversity
in combination with lower ventral striatal responses to reward
was related to more depression symptoms (74). Second, it is
not yet clear how adversity might impact brain areas outside
of the mesocorticolimbic circuit that may be related to reward
processing. Conflicting results have noted lower (45, 77), as
well as higher activity (78), in portions of the prefrontal cortex
including the middle frontal gyrus and subgenual cingulate.
Finally, it is still necessary to refine and clarify how reward-
related processes are impacted by adversity. As noted above,
there is ongoing debate about whether adversity may influence

the processing of rewards or punishments, as well as brain
activity during the anticipation or the consumption of rewards,
although animal studies are providing insights into these
questions. Relatedly, research groups have also noted lower
mesocorticolimbic reactivity specifically for social, as opposed to
monetary, rewards (79, 80). Rich experimental paradigms aimed
at decomposing these different processes will be critical to move
the field forward.

IMPACT OF EARLY LIFE STRESS ON
MOTIVATED BEHAVIOR AND REWARD
CIRCUIT ACTIVITY FROM NON-HUMAN
ANIMAL MODELS

Brief Overview of Rodent Models for
Studying ELS
Lack of access to brain tissue, experiential and genetic
heterogeneity, and ethical constraints on conducting studies
with humans have underscored the need for non-human animal
models for understanding the neurobiological consequences of
ELS. Researchers have modeled ELS in rodents using a variety
of paradigms, including separation of pups from their mothers
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(typically done in the first two wk of life for 3–4 hours/day, with
or without early-weaning); a single bout of prolonged (24-h)
maternal deprivation; or limited bedding and nesting resources
(LBN) provided in the home cage (81, 82). The types of human
ELS that these paradigms model are not entirely clear, however.
On the surface, maternal separation or deprivation paradigms
appear to model neglect (lack of access to or failure of the
caregiver to provide adequate care and address the needs of
offspring). However, studies have documented that dams increase
nursing and grooming time with pups upon reunion, potentially
to compensate for lost time nursing during separation (83), and
the cognitive and emotional consequences of rodent maternal
separation or deprivation are unknown. Limited bedding and
nesting paradigms have been described as modeling a lack of
resources, erratic, dysfunctional, or fragmented maternal care, or
mimicking aspects of abusive behavior – which span dimensions
of deprivation and threat (84–87). An important consideration is
how human and rodent developmental timing of reward circuitry
aligns. Direct comparison of rodent and human reward circuitry
development in the neonatal periods is lacking, although it is
suggested that rodent brain development is shifted relative to
human development such that the first week of rodent life is
approximately aligns with the last trimester of human gestation
(16, 88). While a majority of rodent models of ELS begin ELS
in the first few days after birth (86, 89), some shift stress to
start around P9-10 (82, 90, 91). Each of these models of ELS
have been documented to alter pups’ plasma corticosterone levels
acutely (85, 92, 93), although the long-term impact on basal
and stress-induced corticosterone appear to depend on type and
timing of stress (reviewed in (86). Each of these paradigms has
also been shown to alter offspring defensive, depression-like,
and reward-related behaviors, although again type and timing
of stress have distinct impact, and sex differences have been
documented (82, 89, 94–99).

Motivated Behaviors
Rodent models of ELS have identified alterations in motivated
and reward-seeking behavior, as well as alterations in
physiological functions in the reward circuitry (23, 96, 100–102).
ELS impacts motivation for natural rewards, although the
literature employing natural rewards in behavioral tasks is scant
compared to studies with drugs of abuse (reviewed below),
and currently available studies paint a complicated picture,
particularly with respect to sex differences in behavior. In one
study, maternal separation ELS decreased lever bar pressing for
a sucrose solution in male Wistar rats (103), indicating that ELS
reduces motivation for palatable rewards. Other studies assessing
sucrose preference in a free-choice model confirm that various
animal models of ELS reduce sucrose preference in male rats and
mice, interpreted as increased anhedonia (82, 94, 96). However,
other studies have found either a sex-specific effect of ELS on
sucrose preference in female rats (104), no effect in female mice
(95), or no effect at all (105, 106). When effects of ELS are found,
the general result is that it reduces motivation for food rewards.

ELS also alters other natural reward-directed behaviors in
rodent studies. Overall, ELS (maternal separation or LBN)
appears to reduce conditioned place preference for a palatable

food reward (107), although there may be a latent impact of ELS
where this effect only emerges across development and is stronger
in females (108, 109). However, another study reported opposite
findings in which female Sprague-Dawley rats exposed to LBN
show increased motivation for food reward in a one-h free access
task (106). To our knowledge, only one study has assessed the
effect of ELS on motivation for access to a social reward (110).
In this study, LBN increased sexual motivation in both male and
female Long-Evans rats (110). Whether ELS also increases other
forms of social motivation is not yet known. Taken together,
these findings suggest that the effects of ELS on motivation for
natural rewards are dependent on many factors including the
type of reward, sex, age, species/strain, and the type of adversity
experienced during early life (i.e., forced maternal separation vs.
disrupted maternal care due to limited resources). More studies
are needed in order to tease apart how these various factors are
differentially contributing to the effects of ELS on motivational
drive for food and social rewards.

The majority of work assessing the effects of ELS on
motivated behavior have focused on motivation for drug rewards
such as psychostimulants, ethanol, and opiates. A consistent
finding is that ELS increases self-administration of various
psychostimulants. For example, maternal separation increases
active lever responses as well as the number of infusions of
methamphetamine in male Long-Evans rats (111, 112). Studies
focused on cocaine largely find that ELS increases cocaine-
seeking behaviors. Maternal separation combined with early
weaning at P17 increases reward-seeking behavior and self-
administration for cocaine in male and female CD1 mice
(113). LBN results in higher acquisition of cocaine self-
administration in Sprague-Dawley rats without increasing daily
cocaine administration (107), suggesting that ELS is altering
novelty-seeking behavior for cocaine. ELS from P14-21 in CD1
mice alters cocaine conditioned place preference and relapse
behaviors (100). Additionally, LBN rats show a reduced hedonic
set point for cocaine, indicating that while they are motivated
to lever press for cocaine administration, they do not find
it as rewarding as control rats. These differences observed in
behavioral responses are likely related to these assays examining
different aspects of reward-seeking behavior (i.e., assessing
“liking” behavior versus assessing “wanting” behavior) (114, 115).

Many studies report that ELS increases reward-seeking
for ethanol. Maternal separation rearing increases both
lever pressing and consumption of ethanol in male Swiss
ICR mice (116) and male and female Sprague-Dawley rats
(117, 118). Additionally, maternal separation increases ethanol
consumption in free-choice tasks in both male C57BL/6 mice
(105) and male Wistar rats (119). Similarly, increases in ethanol
consumption have been reported in maternal deprivation
reared male and female Sprague-Dawley rats (120). These
reports indicate that ELS models increase both motivated
“wanting” and hedonic “liking” behaviors for ethanol. However,
inconsistent findings have also been reported. Maternal
deprivation reared male and female Wistar rats do not show
increased ethanol intake until after two-wk of withdrawal and
additional stress in adulthood (121), and LBN rearing decreases
ethanol consumption during acquisition in male but not female
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C57BL/6J mice (122). In this same study, ethanol consumption
levels eventually matched between groups, suggesting that ELS
reduced the rewarding properties of ethanol only during early
exposure and did not cause a long-lasting deficit in preference.

Conflicting results have been reported regarding the impact
of ELS on motivation for opioids. In male Wistar rats, maternal
separation induced place preference at a lower dose of morphine
than in controls (123). A study with female Sprague-Dawley
rats reported that LBN did not affect opioid self-administration
itself, but rather it increased relapse-like behavior for heroin and
remifentanil, and increased motivation for remifentanil (106).
These data suggest an ability for LBN to increase vulnerability for
opioid misuse following LBN in females. Males were not tested,
so it is unclear whether they would also display this vulnerability.
Another study including both male and female Long-Evans rats,
similarly, found no effect of LBN on acquisition of morphine
self-administration in females (124). However, LBN males
administered less of a low dose of morphine than control reared
males, and administered less morphine on a progressive ratio
schedule, suggesting they were less motivated to takemorphine at
this dose. Consistent with a protective effect of LBN against this
addiction-related phenotype in males, LBN reduced impulsive
choice, a behavior associated with substance use disorders and
mediated, in part, by the NAc (124–126). In contrast, no effects
of LBN on motivation for morphine or impulsive choice were
observed in females (124). The inconsistent effect of LBN on
motivation for opioids in females may be due to the use of
different drugs, a focus on different outcome measures, or due
to differences in the implementation of the LBN model.

Reward Circuit Activity and Function
Collectively, these behavioral studies reveal that ELS can affect
motivated behavior that is mediated by reward circuitry, albeit
to varying degrees based on a variety of factors, and suggest that
ELS alters reward circuit function. Dopamine release from VTA
modulates NAc signal integration and activity and is necessary
for the rewarding properties of both natural rewards and drugs
of abuse (127, 128). Dopamine signaling has been associated
with incentive-salience of rewarding and addicting stimuli (129)
and reward prediction-error (130, 131), as well as signaling
aversive and stressful stimuli (21, 132, 133). ELS has been
found to alter VTA morphology, decrease GABAergic inhibition
onto dopamine neurons, increase excitability of dopaminergic
neurons in VTA, increase baseline dopamine levels released from
VTA into NAc, and alter dopaminergic response to stressors
(90, 134–142). However, a meta-analysis evaluated the effects
of ELS on biochemical indicators of dopamine signaling and
found that while ELS causes a consistent and robust increase
in the dopamine metabolites DOPAC and HVA, there may only
be a small increase in dopamine itself in the striatum (143).
Consistent with these findings, maternal separation increases
dopamine turnover (ratio DOPAC/DA) in the NAc of adolescent
CD1 mice, an effect increased by exposure to cocaine (144).
In addition to dopamine metabolism, dopamine clearance
regulates the amount of dopamine in the synapse. Maternal
separation decreased the rate of dopamine clearance in the
spontaneously hypertensive rat (SHR), a model of attention

deficit hyperactivity disorder (145). These studies could suggest
ELS impairs dopamine transporter (DAT) function, or this
result may be specific to the SHR model. Other studies suggest
maternal separation ELS increases cocaine-induced but not
baseline DAT levels in the NAc of adolescent CD1mice, although
other aspects of DAT function were not tested (144). Together,
these studies indicate that ELS alters tonic and/or stimulus-
induced dopamine from VTA to NAc, and that enduring
alterations in NAc processing may in part be due to altered
dopamine clearance.

Consistent with this idea, there is evidence that ELS
alters NAc physiology. LBN decreases presynaptic glutamate
transmission, as indexed by a reduction in the frequency
of spontaneous excitatory postsynaptic currents (sEPSCs),
although only in male rats (124). This effect is consistent
with a study that found maternal separation decreased GluA2
AMPA subunit expression in the NAc of males but not
female rats (146). The ratio between AMPA and NMDA
receptors is a key factor governing glutamatergic plasticity.
Morphine increases the AMPA/NMDA ratio in males (147)
and LBN prevents this effect (124). Thus, in conditions where
ELS reduces opioid self-administration, resilience is linked
to a blockade of opioid-induced glutamatergic plasticity in
the NAc.

An important question in neuroscience is the cellular
specificity of effects. MSNs are the primary neuronal cell type of
the striatum. MSNs are GABAergic and subclassified by whether
they express D1- (Drd1-expressing) or D2- (Drd2-expressing)
type dopamine receptors, which use distinct intracellular
signaling cascades and have opposing effects on activity. D1-
type receptors are coupled to Gas and Gaolf G-proteins and
binding of dopamine leads to increased adenylyl cyclase activity,
increased cyclic adenosine monophosphate (CAMP) production,
and activation of protein kinase A (PKA) (148, 149). D2-
type receptors have 100-fold higher affinity for dopamine and
are instead coupled to Gai and Gao proteins, and dopamine
binding leads to decreased CAMP and PKA activity. D1-
MSNs are thought to be preferentially activated by phasic
dopamine bursts, while D2-MSNs — which have greater baseline
cellular activity—are thought to have greater sensitivity to
tonic dopamine release (150). It is not yet known how ELS
alters activity of D1 and D2 MSNs, although differential
involvement of these cell types may well mirror their response
to adult stress. Chronic stress in adult male mice decreases
excitatory transmission onto D1-MSNs, causes D1-MSN long-
term depression, and increases the threshold to excite D1-
MSN activity (151, 152). Activating D1-MSNs after chronic
adult stress alleviates depression-like behavioral changes in
male mice. In contrast, chronic adult stress increases excitatory
transmission onto D2-MSNs without altering their excitability,
and activation of D2-MSNs increases susceptibility to later
chronic adult stress (151).

Overall, these findings suggest that reward circuit physiology
is particularly vulnerable to the effects of ELS, likely due to
the ongoing maturation of dopaminergic reward circuitry in
the postnatal period when these ELS manipulations are being
implemented (31–40).
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IMPACT OF EARLY LIFE STRESS ON
TRANSCRIPTION AND EPIGENETIC
REGULATION WITHIN NAC

Genome-Wide Transcriptional Alterations
The impact of early life stress on functional activity in NAc likely
arises from changes in the molecular development of VTA, NAc,
and broader reward circuitry. Genome-wide expression changes
in reward circuitry resulting from ELS have been surveyed by
RNA-sequencing. RNA-seq provides an opportunity not only to
look for gene expression changes in an unbiased manner, but also
to examine broad patterns of change that would be impossible
to observe when sampling only a few candidate genes. ELS
consistently induces changes in reward circuitry gene expression
that last into adulthood in male and female mice (94, 95, 100,
124, 153). Interestingly, two studies comparing male and female
transcriptomic responses to ELS (using different types of stress
and at different juvenile states) have found around twice as many
genes altered in female than male NAc (95, 124). Indeed, both
baseline and stress-induced sex differences in the transcriptome
have been described in NAc (95, 154–156). One interesting
question is how prior ELS alters gene expression response to
future salient experience such as additional stress or drugs of
abuse. The transcriptomic response to adult stress is highly
dependent upon whether or not a mouse experienced prior ELS:
expression of more genes in both male and female NAc were
altered after adult stress if mice had previously experienced early
life stress. Moreover, the transcriptional response to adult stress
showed opposite regulation in ELS vs. standard reared female
mice in VTA and NAc (95). Genome-wide analysis also revealed
that a subset of genes in male and female VTA and NAc did
not have altered expression in response to ELS alone, but instead
were primed by ELS such that latent expression changes were only
revealed by later adult stress (95). The impact of ELS on genome-
wide response to adult stress may be dependent on sex and the
timing of stress. The pattern of increased transcriptional changes
in response to adult stress given prior ELS from P10-17 was also
observed in female (but not male) VTA and PFC which both
send inputs to NAc (95). In male PFC, ELS alone predominately
down-regulated gene expression, which may blunt response to
future stimuli (153). Similarly in hippocampus, early postnatal
stress (from P2-12) and adolescent stress (from P38-49) blunted
transcriptomic response to acute adult stress in mice and rats
(157, 158). Transcriptomic analyses also revealed that one
potential mechanism for ELS-induced sensitivity to stress and
drugs of abuse in male mice may be through altered plasticity. In
VTA, ELS reduced transcriptional programs downstream of the
transcription factor OTX2 (94), which has been identified as a
key regulator of critical period plasticity (159–161). Transiently
reducing Otx2 in VTA in a late postnatal sensitive period
for stress exposure mimicked the effects of ELS on sensitivity
to future stress experience and depression-like behavior, while
restoringOtx2 levels in this sensitive period rescued the effects of
ELS (94). In contrast, ELSmay inappropriately preserve plasticity
in NAc, including changes in genes associated with critical
period plasticity and synaptic development (94, 95, 100). In

NAc, a second stress exposure reversed such plasticity signatures
which may in turn decrease physiological plasticity and lead to
behavioral inflexibility and maladaptive coping behavior (95).
Reduced plasticity in response to later salient exposures extends
beyond stress to response to drugs of abuse as well: cFos (a
marker of neuronal and gene expression activity) in NAc was
reduced after ELS and cocaine exposure plus reinstatement (100).

Alterations in Target Genes
Examining the effect of ELS on specific candidate genes and
proteins has identified a number of key mechanisms through
which ELS altersmotivated behaviors and stress response. Release
of BDNF from VTA and binding to TrkB receptors in NAc is
necessary for a depression-like response to adult stress (133)
and physiological and behavioral response to reward and drugs
of abuse (162–164). Blocking BDNF/TrkB signaling in NAc
during exposure to ELS in mice (maternal separation from P3-
14) simultaneously restored sucrose preference and sensitized
behavioral response to chronic unpredictable adult stress on the
open field test (165), indicating that the enduring and opposite
consequences of ELS on motivated and anxiety-related behavior
are regulated by transient developmental alterations in BDNF-
TrkB signaling. ELS also increased expression of cannabinoid
1 receptors (Cb1r) and FK506-binding protein (Fkbp5) in NAc,
which was further linked to alcohol consumption in rodents
(119, 166). ELS in the form of predator odor exposure from P1-3
decreased expression of mu and kappa opioid receptors (Orpm1
and Oprk1, respectively) in female but not male NAc acutely on
P3, although Orpm1 expression rebounded and was significantly
higher than control females by postnatal day 33 (167). Mu
opioid receptors contribute to euphoric and analgesic properties
of opioid use and development of drug tolerance, which could
explain a lack of motivation to lever-press for opioids in self-
administration tasks (106, 124). Finally, ELS (LBN in male mice)
downregulated the alpha-2 subunit of GABAA receptors and
reduced frequency of miniature inhibitory postsynaptic currents
in NAc, which was associated with both enhanced behavioral
response to acute cocaine and blunted sensitization to repeated
cocaine exposure (168).

ELS can also alter expression of dopamine D1-type (Drd1)
and D2-type (Drd2) receptors themselves, which alters striatal
response to stimuli. However, the direction of change is not
consistent across reports. In one study, maternal separation ELS
reduced NAc levels of DAT, Drd1, Drd2, and Drd3, which were
correlated with reduced spatial learning in these rats (169). Other
studies have confirmed reduced Drd1 (108) and Drd2 (170)
receptor expression in the NAc of female mice which can reduce
dopaminergic drive. In contrast, other studies in males found
Drd1 expression in the NAc to be unaffected by ELS (108, 170).
Maternal separation increasedNAcDrd2 inmales (119, 144, 171),
an effect which was accompanied by a stress-induced increase in
dendritic morphology in the NAc (171). Together these studies
suggest sex-specific impacts of ELS on dopamine receptors in
NAc, although additional research is needed to confirm sex-
specific effects directly and determine the contributions of type
and timing of ELS.
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Epigenetic Alterations
Gene expression is regulated by a complex interaction between
transcription factors and epigenetic regulatory mechanisms
which fine-tune when and to what extent genes are expressed
without altering the genetic sequence itself (172). DNA
methylation – the addition of a small methyl group typically
to the 5th carbon of cytosine residues (5mC) – is associated
with suppression of gene expression in gene promoters, with
mixed effects on transcription in other genomic regions (173).
De novo DNA methylation is accomplished by the enzyme
DNA methyltransferase 3A (DNMT3A) and DNMT3B, while
maintenance methylation (across cell division) is accomplished
by DNMT1. Maternal separation for three h daily from P2-
15 increased overall Dnmt1, Dnmt3a, and Dnmt3b expression
in the NAc, increased methylation at several target genes of
interest (protein phosphatase catalytic subunit 1c and adenosine
receptor 2A, vesicular glutamate transporter 3), and decreased
their expression (174, 175). These target genes are involved
in neuronal plasticity and response to cocaine, and may be a
mechanism for ELA-induced hypersensitized response to cocaine
(174). ELS also increased baseline levels of Methyl CpG binding
protein 2 (MeCP2) in NAc (112, 175), a protein that binds
or “reads” methylated DNA and is involved in gene silencing,
although the specific genes differentially bound by MeCP2 after
ELS are still unknown. Interestingly, MeCP2 is also elevated
in NAc after self-administration of methamphetamine and ELS
significantly blunts this effect, which is functionally related to
increased methamphetamine self-administration among ELS-
exposed rats (111, 112). Alterations in DNA methylation have
also been identified as potential mechanisms of ELS-induced
changes in gene expression of dopamine receptors and other
target genes in NAc, including hypermethylation of the Drd1a
promoter region in females (108).

Gene expression is also influenced by interactions between
DNA and the histone proteins around which it is wrapped
(176). Post-translational modifications to histone protein tails
– including acetylation, methylation, and other modifications
– can increase or decrease compaction, and repress or allow
gene expression, respectively. 24-h maternal deprivation at P9
ELS has been shown to alter histone acetylation in VTA, which
is directly linked to altered GABAergic function in VTA and
increased dopaminergic excitability, and which is restored by
histone deacetylase inhibitor treatment (90, 91, 141, 177). ELS
(combined maternal separation and limited nesting material
from P10-17) also broadly altered levels of post-translational
histone modifications in NAc across postnatal development in
a sex-specific manner (178). Most notably, ELS reduced mono-
and di- methylation of histone 3 lysine 79 (H3K79) in adult male
and female mice. The enzyme that “writes” H3K49 methylation,
Dot1l, was also upregulated by ELS in adult male and female
NAc, specifically within D2-MSNs (178), consistent with a role
for D2-MSN activation increasing susceptibility to subsequent
stress (151). H3K79 methylation is generally associated with
enhanced transcription and genomic stability, and indeed both
ELS and Dot1l overexpression predominately downregulated
gene expression in NAc. Moreover, D2-specific overexpression

in NAc recapitulated the impact of ELS, while knockdown or
small-molecule inhibition ofDot1l ameliorated the impact of ELS
on susceptibility to adult stress (178). Finally, ELS alters histone
turnover dynamics in NAc. ELS results in faster accumulation of
the replication-independent histone H3.3 variant in NAc across
development, which is associated with increased susceptibility
to adult stress, and reversing this phenomena can rescue
depression-like behavior in mice (179). These epigenetic changes
in reward circuitry following ELS underlie enduring changes in
gene expression, and can also help explain latent changes in gene
expression in response to future stressful or rewarding stimuli.
These molecular mechanisms ultimately impact physiological
functioning of reward circuitry, altered response to stressors and
rewards, and risk for psychiatric disease.

DISCUSSION

Looking holistically, there is growing evidence that ELS
influences behavior (Table 1) and neurobiology (Table 2)
involved with reward processing, with a focus here on NAc.
However, additional work is critically needed at multiple
“levels of analysis” (e.g., human systems neuroscience; non-
human physiology, etc.) to increase understanding regarding the
connections between ELS and later negative outcomes. Below, we
elaborate on future directions for those working with human and
preclinical samples, focused on different constructs connected to
the review.

Operationalization and Categorizing Life
Stress Across Early Development
In considering human and non-human research focused on
ELS, it will be critical to think about rich characterizations
of stressful life experiences. Here, we took a more broad and
inclusive definition of ELS, but there is a great deal of active
inquiry focused on the phenomenology of ELS. For example,
in humans, there is an interest in considering the interactions,
“lived experiences”, and subjective perceptions of different
forms of ELS. Such factors may be important to consider, but
difficult to capture in both human and non-human research.
Clear from numerous epidemiological studies is that 60% of
individuals reporting one form of ELS will experience two or
more forms of adversity before reaching adulthood (5–7, 183).
Interestingly, regardless of whether objective (court) records
suggested maltreatment or ELS, subjective reports of ELS more
robustly predicted psychopathology (184). Limited work, to our
knowledge, has attempted to richly probe these aspects of ELS,
but all of these elements will likely influence neurodevelopment
and may impact trajectories of mesocorticolimbic neurobiology.

There are multiple approaches to modeling ELS and
the field must strike a balance between more mechanistic
approaches and the common co-occurrence of different forms
of ELS. Researchers in epidemiology have been drawn to
cumulative exposure models that sum up the total number of
adversities suffered. This framework has nice connections to
allostatic load and other neurobiological frameworks, has high
explanatory power, and can deal with the common pattern
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TABLE 1 | Significance of evidence for the effects of ELS on motivated behaviors in human and rodent model studies.

Behavior

Rodent Increased Motivation for Alcohol STRONG EVIDENCE

[7 Supporting Studies: Refs. (105, 116–121)/1 Against: Ref. (122)]

Increased Motivation for Psychostimulants STRONG EVIDENCE

[5 Supporting Studies: Refs. (100, 107, 111–113)]

Increased Motivation for Social Rewards MODERATE EVIDENCE

[1 Supporting Study: Ref. (110)**]

Reduced Motivation for Food Rewards INCONCLUSIVE EVIDENCE

[7 Supporting Studies: Refs. (82, 94, 96, 103, 107–109)/4 Against:

Refs. (95, 104–106)]*

Increased Motivation for Opioids INCONCLUSIVE EVIDENCE

[2 supporting studies: Refs. (106, 123)/1 Against: Ref. (124)]

Human Lower Approach Motivation (Self-Report & Behavioral) STRONG EVIDENCE

[6 Supporting Studies: Refs. (42, 47, 49, 50, 63, 78)]

Lower Reward Learning Over Time STRONG EVIDENCE

[7 Supporting Studies: Refs. (41, 43–45, 48, 52, 55)]

Impulsivity and Excessive Risk-Taking MODERATE EVIDENCE

[3 Supporting Studies: Refs. (48, 51, 53)]

*Sex differences present in results of studies; **To our knowledge, the only study to assess the impact of ELS on a social reward.

TABLE 2 | Significance of evidence for the effects of ELS on reward circuit neurobiology in human and rodent model studies.

Neurobiology

Rodent Increased Variability in NAc-VTA Connectivity and

Dopamine Clearance

STRONG EVIDENCE

[12 Supporting Studies: Refs. (90, 134–142, 144, 145)/1 Against: Ref.

(143)*]

Long-lasting Changes in Transcriptome Expression STRONG EVIDENCE

[6 Supporting Studies: Refs. (94, 95, 100, 124, 153, 156)]

Alterations in DNA Methylation STRONG EVIDENCE

[5 Supporting Studies: Refs. (108, 111, 112, 174, 175)]

Decreased Glutamatergic Transmission and Receptor

Expression

MODERATE EVIDENCE

[2 Supporting Studies: Refs. (124, 146)]

Altered D1 and D2 Receptor Expression MODERATE EVIDENCE

[6 Supporting Studies: Refs. (108, 119, 144, 169–171)/2 Against: Refs.

(108, 170)]

Altered Histone Acetylation and Histone Turnover

Dynamics

MODERATE EVIDENCE

[2 Supporting Studies: Refs. (178, 179)]

Human Lower Functional Activity in Ventral Striatum (or other

portions Basal Ganglia)

STRONG EVIDENCE**

[10 Supporting Studies: Refs. (56–62, 64, 65, 79, 80)/1 Greater Activity:

Ref. (65)]

Heightened Resting Functional Connectivity (from

Striatum to mPFC)

MODERATE EVIDENCE

[2 Supporting Studies: Refs. (66, 68)]

Reduced White Matter Connectivity (from Striatum

to mPFC)

MODERATE EVIDENCE

[3 Supporting Studies: Refs. (46, 72, 73)]

Smaller Volumes in Ventral Striatum (or other portions

Basal Ganglia)

MODERATE EVIDENCE

[1 Supporting Study, but large N: Ref. (71)]

Smaller Volumes in Broader Corticostriatal Circuit (OFC) MODERATE EVIDENCE

[3 Supporting Studies, Refs. (180–182)]

*Results of a meta-analysis ** Unclear if brain activity is lower to positive feedback or greater to punishment, or insensitivity to change in valence.

of co-occurrence between many forms of adversity (185–187).
However, these models provide less clarity about potential
mediating mechanisms. More recently, starting frameworks
(10, 188) argue for the examination of differences between
dimensions of adversity (i.e., harshness vs. unpredictability;

deprivation vs. threat) to advance mechanistic understanding
of the impact of ELS. Further complicating our understanding,
while the negative impacts of early life adversity are well-
known and well-documented, many people exposed to early life
adversity do not develop illnesses, and are, instead, protected
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from later stressful experiences (189, 190). A burgeoning body
of research suggests that adversity, in modest amounts, can
lead to the subsequent development of resilience (191–193). For
example, non-human primates exposed to challenging, but not
overwhelming, stressful events early in life show less anxiety and
lower hypothalamic–pituitary–adrenal axis responsivity later in
life (194). Similarly, moderate but not extreme levels of early
adversity are related to larger volumes and greater activity in
the prefrontal cortices of non-human primates (195, 196). Some
implementations of LBN in rats leads to resilience after facing
adolescent stress (197), adult stress (193) and reduced morphine
self-administration (124), consistent with a “stress inoculation”
model. However, it is clear that even with controlled rodent
models of ELS such as LBN there is wide range in whether
studies find evidence of inoculation or sensitivity to additional
stress, drugs, or other stimuli. Identifying factors that contribute
to vulnerability vs. sensitivity is crucial and will aid in targeted
implementation of treatments for stress-related diseases.

Relatedly, one major translational challenge in most
preclinical studies is that nearly all of our ELS models do not
adequately capture the full “transactional nature” of stress [e.g.,
(198)]. Put another way– ELS is related to cognitive, affective,
physiological, and neurobiological changes, and these alterations
may affect how individuals respond to subsequent life stressors
(199). In humans, there is rich support for so-called “stress
sensitization” or “two-hit models”. For example, women with
exposure to one or more childhood adversities (e.g., family
violence, parental psychopathology) were more likely to become
depressed by a lower “dose” of total stress than women without
such adversity (200). This is true for depression, anxiety, and
PTSD, and found during childhood, adolescence, and adulthood
(7, 200–206). Connected to this, Hanson, Knodt, Brigidi &
Hariri (2018) found reward-related functional connectivity
between the ventral striatum and the medial prefrontal cortex
was heightened after the occurrence of both early and then more
contemporaneous life stress (67). These functional changes then
linked stress exposure to depressive symptoms. Non-human
animal work has likewise found evidence of stress-sensitization
behaviorally, within reward circuitry, and in other brain systems
(82, 94, 95, 207–210). Moving forward, there is a true need
to construct complementary experiments in human and non-
human samples, focused on similar neurobiological circuits,
with interactive discussion between teams leading work in each
species. This could aid in understanding these transactional
elements, as well as modeling of ELS.

A number of connected open questions remain on “how”
ELS shapes neurobiology, with interest in direct vs. indirect
impacts. Direct impacts may be thought of as emerging due
specifically to the elements of ELS, vs. indirect influences being
related more to cascading influences of ELS. For example, while
unlikely to be purely Hebbian in nature, mesocorticolimbic
changes in physiology, transcription, or epigenetic expression
could be due to the absence or inconsistency of (“direct”)
environmental inputs. In contrast, environmental inputs could
activate the HPA axis, causing the release of cortisol and related
neuroendocrine messengers. Cortisol is known to be neurotoxic
in high and chronic conditions (reviewed in reference (211) and

this could (“indirectly”) lead to changes in multiple aspects of
mesocorticolimbic neurobiology. Similarly, ELS can alter gonadal
hormone levels, such as estradiol, which are potent modulators
of reward circuitry (212). In line with recommendations from
Callaghan et al. (2019), it is and will be critical to consider
the developmental ecology and “goals” of an organism (e.g.,
attachment; independence) and how ELS may impinge upon
these elements to create risk for negative life outcomes (213).

Considering Underexplored Moderators:
Sex and Developmental Timing
As we continue to focus on the impact of ELS, it will be important
to think about underexploredmoderators and factors that may be
driving inconsistencies in findings to date. Two clear factors are
the developmental timing of specific stressors and potential sex
differences in stress effects.

Developmentally, expression and activity of neurotransmitter
systems centrally involved with the mesocorticolimbic circuit
(i.e., dopamine) exhibit major changes during early life. The exact
developmental sequencing is still of debate (214), but a number of
reports suggest dopamine receptor expression peaks during the
peripubertal period (215–218). As such, there may be differential
behavioral and neurobiological consequences depending on the
timing of ELS exposure. A powerful example of this comes
from non-human research on amygdala neurobiology. Multiple
studies have focused on this brain region in stress-exposed, young
adult rodents (219); however, many paradigms were not sensitive
to the differential developmental impacts of stress (cf. work by
Regina Sullivan et al.; (220, 221). Interestingly, Rosenkranz et
al. completed many commonly-used stress manipulations (e.g.,
repeated restraint stress) in animals of different ages and found
many critical differences (e.g., number of spontaneously firing
neurons vs. firing rates) depending on when in development the
stress occurred (222–224).

Related to sex differences, there is now a growing emphasis
on sex as a biological variable. Impacts of ELS for males and
females may not be uniform and there may be evolutionary and
developmental mechanisms of altered development in response
to adversity (97). Stress during the prenatal and early postnatal
period increases risk in males for neurodevelopmental disorders,
such as autism spectrum disorder and ADHD (225). In females,
the effect of ELS can be precipitated later in life by changes in
fluctuating hormones, as occurring during puberty, pregnancy,
and perimenopause, and is more likely to manifest as anxiety
and depression (225). In addition, different forms of ELS are
not equally distributed for males vs. females. For example,
females are approximately 3–4 times more likely than males
to suffer forms of sexual abuse (226, 227). Sadly, especially in
human samples, few investigations have examined if ELS exerts
differential impacts on mesocorticolimbic neurobiology for
males vs. females. This pattern is surprising given that Andersen
and colleagues have reported significant developmental sex
differences in the striatum; specifically, males, but not females,
over-produce D1 and D2 receptors in the striatum during
development. These excessive receptors are then pruned prior to
adulthood, only in males (228, 229). Thoughtful examination of
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both sex and developmental timing, across preclinical and human
studies, could significantly advance our understanding of the
neurobiological sequelae of ELA and the mediating connections
between ELA and later negative outcomes.

Expanding Behavioral and Neurobiology
Foci to Further Advance Understanding of
ELS
As research continues in this space, increased behavioral and
neurobiological precision will aid in understanding the sequelae
of ELS, and links with poor mental health. Behaviorally,
it will be critical to think about richly decomposing and
parsing apart different motivational components connected to
the mesocorticolimbic circuit. Basic research indicates that the
mesocorticolimbic circuit encodes multiple aspects of reward-
learning and decision-making processes such as prediction error,
estimation of value, and amount and effort discounting (for
review, see (230). However, few studies have examined these
types of processes in samples exposed to ELS (77). A richer
understanding of how the mesocorticolimbic circuit, and specific
connected behavioral processes, may be influenced by ELS
– in both human and non-human studies - will be crucial
moving forward.

Neurobiologically, the preponderance of work reviewed here
is centered on the NAc / ventral striatum (noting that these
regions are not defined identically) and VTA, but, this brain
region is nested in a larger circuit of motor, cognitive, and
limbic brain regions, including portions of the medial prefrontal
cortex (mPFC), sub-regions of the anterior cingulate cortex,
the thalamus, brain stem, and motor cortex (231–233). As
we continue to think about links between stress exposure,
neurobiology, and mental health, it will be critical to think about
this larger network and how variations in multiple portions of
themesocorticolimbic circuit may give rise to complex behavioral
alterations (some of which is reviewed elsewhere (22, 23).
For example, several portions of the mPFC support reward
responsivity, as well as the processing of self-referential and
social information (231, 234). In addition, smaller volumes (180–
182) and greater activity in portions of the mPFC were seen
for individuals exposed to stress, including child maltreatment
or extreme family poverty (235, 236). Interestingly, non-human
animal data also supports this idea, as helplessness and stress-
vulnerability in rodents was associated with enhanced activity in
the mPFC (237, 238). In addition to the mPFC, a few groups
have been investigating the VTA and how ELS might impact
connectivity of this key node in the mesocorticolimbic circuit

in humans. Examined collectively, it is likely that there may be
unique neural profiles underlying distinctive deleterious effects
of adversity. Individuals exposed to early adversity may show
differences in task-based activity in the NAc/ventral straitum,
mPFC, or VTA, resting-state connectivity between these areas,
or other combinations of these neural phenotypes. A great deal
of work is needed to interrogate how individuals with each of
these neural patterns may differ in forms of psychopathology, as
well as psychosocial risk factors connected to psychopathology
(e.g., detrimental emotion processing and regulation strategies).
Future research should consider the complex relationships
between stress exposure and reward-related brain function in
establishing novel strategies to predict, prevent, and treat stress-
related psychopathology.

Concluding Remarks
Here, we review multiple connected literatures on the impacts
of ELS on mesocorticolimbic neurobiology — spanning human
and non-human, and molecular to brain circuits. These bodies
of research suggest that ELS may impact critical behavioral
and neurobiological processes central to motivation and reward
processing. Multiple projects focused on adversity exposure in
human and non-human samples suggest decreased responding
or inability to use feedback and reward-related cues. Changes
in these motivation-related behaviors appear to be mediated by
a host of neurobiological changes, including lower functional
activity in the ventral striatum, altered glutamatergic signaling,
changes in dopaminergic modulation and clearance, and altered
molecular signatures of altered brain plasticity that may be
regulated by epigenetic mechanisms. While exciting progress is
occurring in this space, there are often more open questions
about the development and function of mesocorticolimbic
neurobiology in relation to ELS. A richer ability to dissect
heterogeneity, while integrating stress- and developmental-
neurobiology, will be critical to reduce the impacts of ELS and
related long-term mental health challenges.
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