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Abstract: Natural microbial communities in soils are highly diverse, allowing for rich networks
of microbial interactions to unfold. Identifying key players in these networks is difficult as the
distribution of microbial diversity at the local scale is typically non-uniform, and is the outcome
of both abiotic environmental factors and microbial interactions. Here, using spatially resolved
microbial presence-absence data along an aquifer transect contaminated with hydrocarbons, we
combined co-occurrence analysis with association rule mining to identify potential keystone species
along the hydrocarbon degradation process. Derived co-occurrence networks were found to be of
a modular structure, with modules being associated with specific spatial locations and metabolic
activity along the contamination plume. Association rules identify species that never occur without
another, hence identifying potential one-sided cross-feeding relationships. We find that hub nodes
in the rule network appearing in many rules as targets qualify as potential keystone species that
catalyze critical transformation steps and are able to interact with varying partners. By contrasting
analysis based on data derived from bulk samples and individual soil particles, we highlight the
importance of spatial sample resolution. While individual inferred interactions are hypothetical in
nature, requiring experimental verification, the observed global network patterns provide a unique
first glimpse at the complex interaction networks at work in the microbial world.

Keywords: hydrocarbon degradation; microbial communities; spatial scales; sample resolution;
co-occurrence analysis; association rule mining; network analysis

1. Introduction

Natural soil teems with microbial life. Microbes are abundant and coexist as assemblages of
extreme phylogenetic diversity [1]. This allows for rich networks of microbial interactions to unfold,
ranging from antagonistic behavior, including prey–predator-type relationships [2], microbial warfare
based on antibiotics production [3], and resource competition [4], to cooperative behavior, including the
exchange of genetic material in horizontal gene transfer [5] and the exchange of metabolites required
for growth [4]. The physical heterogeneity of the soil environment and the typically non-uniform
distribution of organisms [6] add to the complexity of these systems. Microbial communities are
self-organizing entities [7], which drive a wide range of processes of crucial importance for humanity,
from global elemental cycles to the degradation of organic contaminants spilled locally, able to
respond and adapt swiftly to environmental perturbations. Such responses can be surprisingly
complex, for example, for petroleum hydrocarbon spillages reaching an aquifer, where transport
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and competition for terminal electron acceptors lead to the formation of spatial zones of alternating
degradation pathways being active [8]. The full mineralization of aromatic hydrocarbons is usually
achieved by teamwork, in which initial degraders do not mineralize hydrocarbons fully. Instead,
they make partially mineralized compounds available to follow-up degraders, forming degradation
cascades that can span several steps as in the reductive dechlorination of perchloroethylene (PCE) [9].
The phylogenetic diversity along such cascades needs to not be evenly distributed. While certain
steps might be catalyzed by many taxa, other steps might only be catalyzed by few. In such a case,
these few taxa qualify as keystone species whose presence is mandatory for the successful complete
mineralization of hydrocarbon compounds. The comprehensive analysis of degradation activity
in natural systems is hampered by the fact that only a small percentage of the natural diversity is
cultivable [10], invalidating traditional methods of studying microbial interactions. Nevertheless,
sequence-based fingerprinting methods targeting the 16S rRNA genes as a conserved phylogenetic
marker [11] allow for the detection of microbes’ identity and their spatial distribution [12,13]. Applied
to spatially resolved presence-absence data obtained at an aquifer contaminated with hydrocarbons,
here, we introduce a combination of statistical and data mining methods as a novel approach to infer
hypotheses on microbial interactions and dependencies [14]. The data analyzed here were not based
on 16S rRNA gene amplicon sequencing but on terminal restriction fragment length polymorphism
(T-RFLP) analysis, which does not provide the taxonomic resolution of the former but is a feasible
approach to differentiate between archaeal and bacterial taxa. As it is important to sample at the spatial
scale at which interactions occur [15], we contrasted samples derived from 1 g of soil with samples
derived from individual soil particles.

2. Materials and Methods

2.1. Field Site and Data for Analysis

Data for analysis were obtained from the Leuna industrial site, Germany, which has been
contaminated with megatons of petroleum hydrocarbons since World War II. Details on the site,
sampling, and analytic procedures are given in [16]. Briefly, the capillary fringe and aquifer were
sampled in five push cores of a 5-cm diameter and 1.2-m length. Each core was cut into sections of a
4-cm length, such that up to 16 depth levels ranging from 0 to 100 cm below the surface were covered.
Four cores were located along the groundwater flow path (C1, C2, C3, and C5), spanning in total 510 m,
with the contamination source located at core C1. A fifth downstream core C8 was hydrologically
isolated from the plume from at least 1.5 years before sampling, and was sampled as a surrogate for
pristine conditions. Two separate data sets were analyzed, differing in the spatial scale they cover.
For the bulk data set, 1 g of soil was taken from 72 core sections of a 4-cm length distributed over all
cores [16]. For the single particle data set, eight individual soil particles were extracted from each
of 13 selected 4-cm core sections distributed over all cores, resulting in a total of 104 samples [17].
At least two core sections were chosen from each core, with one or two additional sections selected
for cores 3 and 5, respectively. For both sample sets, consisting of 72 samples for the bulk set and
104 samples for the single particle set, DNA was extracted for each individual sample and purified.
Bacterial and archaeal 16S rRNA gene fragments were subsequently amplified and digested either
by restriction enzyme HaeIII or RsaI, followed by terminal restriction fragment length polymorphism
(T-RFLP) analysis [16,17]. This procedure resulted in four presence-absence data sets, which were
subsequently analyzed separately. Results for both restriction enzymes showed generally similar
trends. Hence, only RsaI results are discussed in the text and deviations briefly discussed, while HaeIII
results are presented in the Supplementary Materials (Figures S1–S3 are analogous to Figures 1–3).
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Figure 1. Degree distribution of co-occurrence networks. Color indicates the fraction of bacterial
fragments at the respective degree levels, ranging from yellow indicating archaeal fragments only to
blue indicating bacterial fragments only. Networks are based on RsaI digestion. (a) Network derived
from bulk soil samples; (b) Network derived from single particle samples.

Figure 2. The co-occurrence network contains five modules whose presence varies along the flow
path. The network is based on bulk soil samples and RsaI digestion. (a) Bacterial fragments (light blue
nodes) and archaeal fragments (yellow nodes) are connected by green edges for positive (co-occurrence)
and thin red edges for negative correlations (mutual exclusion). Fragments belonging to modules as
discovered by network analysis are arranged on circles; (b) Modules’ presence along the flow path
(cores C1, C2, C3, and C5) and in the pristine environment (C8) is shown in radial plots detailing the
presence of individual module fragments (symbols) and module mean (red line), with values ranging
from 0 (fragment not present in any core sample) to 1 (fragment present in all core samples). According
to geochemical data, sulphate reduction was limited to core C1, while methanogenesis took place in
cores C2, C3, and C5.
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Figure 3. Hub nodes in association rule networks. Top 25 fragments exclusively participating in rules
as targets or origins in the bulk and single particle data sets. Color bands indicate the fragment type as
bacterial (light blue) or archaeal (yellow). Networks are based on RsaI digestion. (a) Hub fragments
acting as rule targets in the bulk data set; (b) Hub fragments acting as rule targets in the single particle data
set; (c) Hub fragments acting as rule origins in the bulk data set; (d) Hub fragments acting as rule origins
in the single particle data set. Unambiguously identified fragments are noted, and bars marked with
“*” had ambiguous identities: Arch_261: Methanoregula/SAGMG1/Marine Group 1 Archaea; Bact_52:
Smithella/Desulfobulbaceae; Bact_222: Smithella/Dehalobacter/Desulfobulbaceae/Clostridiales; Bact_53:
Smithella/Desulfobulbaceae; Bact_444: Proteiniphilum/Anaerolineaceae.

2.2. Co-Occurrence Analysis

To test for correlations between the occurrence patterns of fragments, the exact Fisher test was
applied to all fragment pairs. For this purpose, the distribution of two fragments was characterized
by a 2-by-2 matrix, with the first row containing the number of samples in which both fragments
were present and the number of samples containing only the first fragment, and the second row
contains the number of samples only containing the second fragment and the number of samples
without either fragment present. The Fisher test indicates the probability to obtain the observed, or a
more extreme distribution pattern by chance. To correct for false positives due to multiple testing
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on the same data set, the Benjamini and Hochberg FDR controlling procedure [18] was subsequently
applied to all p-values using the ’multtest’ library available for the statistical software package R
(http://www.r-project.org). We identified significantly correlated fragment pairs as having a p-value
below 0.05. To empirically estimate the number of false positives, we randomized the presence-absence
matrix 100 times while maintaining row and column sums, hence preserving the observed fragment
distributions, and applied the Fisher test to each randomization. To classify significantly correlated
fragment pairs into positive correlations (co-occurring fragments) and negative correlations (fragments
avoiding each other), we randomized the observed distribution patterns 1000 times maintaining the
total number of occurrences for each fragment and computed the expected number of co-occurrences.
Computing the probability that the observation is above or below this expectation with a p-value
> 0.95 allowed us to classify significantly correlated pairs into cases of co-occurrence and mutual
exclusion [19], using the ’vegan’ library in R.

2.3. Association Rule Mining

Presence-absence data were mined for association rules [20]. In particular, association rules of
the form “fragment A→fragment B” were derived, which indicates that whenever fragment A was
present in a sample, then fragment B was also present. We only considered rules with a confidence of
1, meaning that the data set did not contain a single exception to the rule. Rule mining was performed
in R by iterating over all potential rules, requiring the inspection of all fragment pairs and two rules
per fragment pair. For each potential rule, the data set was screened for the presence of an exception,
in which case the rule was discarded. Only if no exception was found was the rule retained.

2.4. Network Analysis

Both co-occurrence relationships and association rules form networks with fragments as nodes
and significant correlations or association rules defining undirected, respectively directed edges.
Characteristics of the co-occurrence and rule networks, including the density, average number
of neighbors, characteristic path lengths, clustering coefficients, centralization, and heterogeneity,
were computed using NetworkAnalyzer [21] in Cytoscape [22], which was also used for the visualization
and creation of intersections of the co-occurrence and rule networks. To test the co-occurrence networks
for modularity, we computed the modularity index according to Newman [23] using the ’igraph’
package in R while only considering positive correlations. For a number of fragments, species could be
assigned [16] and these are indicated in node labels. If an unambiguous assignment was not possible,
all species names are given, separated by a slash.

3. Results

3.1. Co-Occurring Microbial Species Form Location and Function Specific Communities

Co-occurrence analysis identified between 250 and 26,984 significant correlations among fragments
in all analyzed data sets (Table 1), with a false discovery rate of at most 0.07. Across all data sets,
the majority of correlations were positive, indicating that the co-presence of species rather than their
mutual exclusion was more common. While in bulk data sets, correlations in all possible combinations
were present; between bacterial fragments, archaeal fragments, and between both types, in the single
particle data sets, the vast majority (at least 94.8%) were correlations between bacterial fragments
(Table 1). This difference was also evident when considering the hub nodes in the co-occurrence
networks. These are nodes featuring a high network degree, taking part in many correlations: While
hub nodes were typically archaeal fragments in the bulk data sets, bacterial fragments dominated the
hub nodes in the particle data sets (Figure 1). Particle networks were larger, encompassing almost all
detected fragments, and were better connected, featuring a higher density, a higher average number
of neighbors, and shorter characteristic path lengths than the bulk data networks (Table 2). Bulk
networks were of a modular structure with separated sub-networks, which were well-connected,

http://www.r-project.org
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referred to as modules from here on (Figure 2a). Closer analysis of these modules revealed a clear
association between modules and locations along the contaminant plume (Figure 2b). An earlier
study showed a clear functional separation of biogeochemical activity along the contaminant plume,
with sulphate reduction taking place at the location of core C1, and methanogenesis at the locations of
cores C2, C3, and C5, with only residual contaminant concentration levels being present at cores C3 and
C5 [16]. Module 1 was dominated by bacterial fragments (Tables S1 and S2) and its presence restricted
to sulphate-reducing conditions in core C1 and to a lesser extent to pristine conditions in core C8
(Figure 2b). It contained fragments identified as Anaerolineaceae and Comamonadaceae, which have both
previously been associated with hydrocarbon degradation under sulphate-reducing conditions [24,25].
Module 2, also dominated by bacterial fragments, showed the broadest distribution, with the highest
presence in cores C2, C3, and C5; a lesser presence in core C1; and a very low presence in the pristine
core C8. In the case of HaeIII digestion, modules 1 and 2 were not separated and the distribution pattern
of HaeIII’s module 1 (Figure S2) matched the combined pattern of RsaI’s modules 1 and 2. Modules 3
and 4 were strongly dominated by archaeal fragments and only present in cores C3 and C5 (module
3) or solely in core C5 (module 4). Acidovorax, the only bacterial fragment in module 3, has been
detected in methanogenic coal beds [26]. Finally, module 5 was mainly present in core C8, representing
a pristine community. This clear spatial separation suggests that modules were part of communities
that perform different functions. Initial sulphate reduction appears to be associated with module 1 and
to a lesser extent with module 2. As mentioned, this separation was, however, not evident in the case
of HaeIII digestion. Module 2 was present in all methanogenic cores. Archaeal-dominated modules 3
and 4 were only present in one (module 4) or two methanogenic cores (module 3), where contaminant
concentrations were already severely reduced.

Table 1. Significantly correlated fragments.

Bulk Single Particle

Samples 72 104

Restriction
Enzyme RsaI HaeIII RsaI HaeIII

Fragments Total 274 351 627 612
(Bacteria/Archaea) (201/73) (230/121) (329/298) (326/286)

Potential Pairs 37,401 61,425 196,251 186,966

Correlated Pairs 1 250 (0.7%) 1906 (3.1%) 26,984 (13.7%) 24,150 (12.9%)

On Randomized
Data 2 0.02 (0.0%) 0.07 (0.0%) 1811.2 (0.9%) 1674.3 (0.9%)

FDR (estimated) < 1 × 10−4 < 1 × 10−4 0.07 0.07

Positive
Correlations 3 212 (84.8%) 1781 (93.4%) 25,739 (95.4%) 23,476 (97.2%)

Negative
Correlations 3 38 (15.2%) 125 (6.6%) 311 (1.2%) 265 (1.1%)

Bacterial Pairs 91 (36.4%) 427 (22.4%) 25,577 (94.8%) 22,910 (94.9%)
(Pos./Neg.

Correlations) (73/18) (372/55) (24,577/69) (22,450/56)

Archaeal Pairs 106 (42.4%) 1326 (69.6%) 723 (2.7%) 460 (1.9%)
(Pos./Neg.

Correlations) (102/4) (1323/3) (695/28) (447/13)

Mixed Pairs 53 (21.2%) 153 (8.0%) 684 (2.5%) 780 (3.2%)
(Pos./Neg.

Correlations) (37/16) (86/67) (467/214) (579/196)

1 Significant correlations between two fragments according to the exact Fisher test (p < 0.05) with correction for
multiple testing; 2 mean over 100 permutations maintaining row and column sums; 3 Pairs occurring more often
(positive) or less often (negative) together compared to random expectation given by the observed distributions of
both fragments (with p > 0.95).
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Table 2. Topological parameters of co-occurrence networks.

Bulk Single Particle

Restriction
Enzyme RsaI HaeIII RsaI HaeIII

Network
Coverage 1 43% 75% 98% 95%

Number of
Nodes/Edges 118/250 264/1906 615/26,984 579/24,150

Density 0.036 0.055 0.14 0.14

Avg. Number of
Neighbors 4.24 14.44 87.75 83.42

Characteristic
Path Length 4.27 3.29 2.65 2.85

on random
network 2 3.41 2.37 1.86 1.86

Clustering
Coefficient 0.36 0.37 0.48 0.47

on random
network 2 0.03 0.06 0.14 0.14

Centralization 0.094 0.19 0.30 0.30

Heterogeneity 0.90 1.15 1.11 1.13

Modularity 3 0.77 0.39 0.044 0.044

Number of
Modules 3 17 9 (6) (11)

with more than 3
fragments 5 4 (4) (7)

1 Percentage of total fragments present in co-occurrence network; 2 average over 100 Erdös–Rényi random networks
with prescribed number of nodes and edges; 3 Computed only considering positive interactions.

3.2. Association Rule Networks Are Similar Across Spatial Sample Resolution but Differ in the Dominating
Rule Type

An association rule of the form A→B indicates that whenever fragment A was present in a sample
(the rule origin), then so was B (the rule target). Combining all detected association rules of this type
results in an association rule network, whose properties were similar for bulk and single particle
data sets (Table 3). Almost all fragments took part in at least one association rule. Networks were
less dense as compared to the co-occurrence networks, and a clustering coefficient of zero indicated
that two fragments taking part in association rules with the same fragment tended not to be directly
linked in a separate association rule. Association rule networks were more hierarchic, with a greater
tendency to be star-shaped and to contain hub nodes, as evidenced by higher values for centralization,
heterogeneity, and shorter characteristic path lengths as compared to co-occurrence networks [27].
Between 1199 and 4560 association rules were derived from the data sets. In at most as 17.1% of these
rules, the involved fragments were also found to be significantly correlated, indicating that association
rules provide substantial additional information compared to co-occurrence analysis. When comparing
the most common fragment type acting as the rule origin and target, the bulk and single particle data
sets differed considerably (Table 4). While in bulk soil samples, both bacterial and archaeal fragments
appeared as both the rule origin and rule target, the single particle rule network mainly consisted of
rules of the type “archaeum→ bacterium”, with at least 89.2%. This rule type was also common in the
bulk data sets, albeit slightly trailing behind the rule type “bacterium→ bacterium”.
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Table 3. Topological parameters of the association rule networks.

Bulk Single Particle

Restriction Enzyme RsaI HaeIII RsaI HaeIII

Network Coverage 1 92% 95% 92% 100%
Number of Nodes/Edges 253/1199 335/2214 576/2834 612/4560

Density 2 0.032 0.027 0.017 0.022
Avg. Number of Neighbors 8.12 9.06 9.52 13.66
Characteristic Path Length 1.15 1.35 1.03 1.08

Clustering Coefficient 0.0 0.0 0.0 0.0
Centralization 2 0.34 0.28 0.22 0.49
Heterogeneity 2 1.22 1.18 1.68 1.75

1 Percentage of total fragments present in rule network; 2 Computed ignoring edge directionality.

Table 4. Association rule networks.

Bulk Single Particle

Restriction Enzyme RsaI HaeIII RsaI HaeIII

Association rules 1199 2214 2834 4560
also sign. correlated 49 (4.1%) 379 (17.1%) 112 (4.0%) 186 (4.1%)

Bacterium→Bacterium 468 (39%) 768 (34.7%) 11 (0.4%) 371 (8.1%)
Bacterium→Archaeum 126 (10.5%) 107 (4.8%) 0 (0%) 0 (0%)
Archaeum→Archaeum 145 (12.1%) 698 (31.5%) 49 (1.7%) 123 (2.7%)
Archaeum→Bacterium 460 (38.4%) 641 (29%) 2774 (97.9%) 4066 (89.2%)

3.3. Association Rule Network Hub Nodes Are of a Specific Type with a Characteristic Neighborhood

Association networks featured hub nodes with high node degrees, hence taking part in many
association rules. When inspecting these fragments, a clear separation becomes apparent. Hub nodes
either only appeared as rule targets or as rule origins. The former group, only appearing as rule targets,
predominantly consisted of bacterial fragments, while archaeal fragments dominated hub nodes only
appearing as rule origins. This separation was almost perfect for the single particle data sets and valid,
with few exceptions for the bulk data sets (Figure 3 and Figure S3). To better characterize the interaction
patterns of hub nodes appearing as rule targets, we analyzed the immediate association rule network
neighborhood of hub node fragments and combined this with the co-occurrence network. Fragment
types predicting the presence of the hub nodes differed between the bulk and the single particle data
sets (Figure 4 and Figures S4 and S5). While both bacterial and archaeal fragments predicted hub
nodes in the bulk data set, it was mainly archaeal fragments in the single particle data set. Some of
the archaeal fragments were not co-occurring with other fragments in the network neighborhood,
but others formed co-occurring sub-networks in both data sets.
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Figure 4. Selected representative hub nodes of the association rule networks only participating as
rule targets. Showing all rule associations involving the central hub node fragment and directly
neighboring fragments (arrows), and overlaying the co-occurrence network with green edges indicating
co-occurrence relationships. Bacterial fragments are shown in light blue and archaeal fragments in
yellow. Networks are based on RsaI digestion. (a) The top fourth hub node of the bulk data set; (b) The
top fourth hub node of the single particle data set (B).

4. Discussion

4.1. Limitations of Analyzed Data

Similar to OMICS data, T-RFLP data do not provide information on absolute quantities. Correlation
analysis for relative data, however, requires advanced techniques [28,29]. By restricting our analysis to
presence-absence data, we circumnavigated this problem at the cost of introducing a presence threshold.
This can lead low abundant species to be mislabeled as absent in certain samples. Another limitation
of T-RFLP data is the presence of unidentifiable fragments, fragments with ambiguous assignments,
and multiple fragments potentially being assigned to the same species, which makes the biological
interpretation of identified potential interactions difficult. While the problem of low taxonomic
resolution can be solved by applying the introduced analysis technique to next-generation-sequencing
data, such as 16S rRNA gene amplicon sequencing, for which the method is equally suited, the observed
general network patterns are expected to be independent of the chosen data type.

4.2. Co-Occurrence Analysis and Association Rule Mining Address Different Types of Microbial Interactions

Co-occurrence indicates that two species have similar distribution patterns. This can be the result
of a similar niche preference of both species. Competing for this niche, either competition is strong
enough to only let one species survive at a location, or mild enough to allow for the coexistence of both
species. Co-occurrence analysis detects both cases as mutual exclusion or co-occurrence. However,
this case cannot be separated from the case in which both species directly interact, for example,
by exchanging metabolic compounds. Regarding such direct interactions, co-occurrence analysis is
only able to detect mutual interactions, leading to similar distribution patterns of both species as one
species depends on the other and vice versa. A likely more prevalent interaction is the exchange of
compounds in one direction in which the products of one species can be utilized by another. If this
interaction is not exclusive, co-occurrence analysis cannot detect it. This is where association rule
mining comes in handy, as it detects such one-sided dependencies. An association rule indicates that
one species only occurs when another is present too. That is, the distribution of the first species is a
subset of the distribution of the other. This might be a stronger indication for an actual interaction than
the pure co-occurrence.
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4.3. Interpreting Association Rules

Consider a case where each species contained in the set of producer species is able to degrade
an initial substrate to a unique intermediary compound, which can further be metabolized by each
species contained in a set of consumer species. If both sets include more than one species, and any
species combination including at least one producer and one consumer species occurs in samples,
then no association rule can be formulated. Only if there is an exclusive consumer or producer species
will this species appear as a rule target and be associated with all species of the other set. Note that
this same network motif of a hub species with incoming rules emerges in both cases. This indicates
that the direction of a rule is not indicative of the direction of the dependency or the direction of
the compound exchange: In the first case, the hub species is consuming compounds provided by
several producer species, while in the second case, the hub species is providing a compound that is
metabolized by several consumer species. To identify the directionality of a hypothesized metabolite
exchange process, knowledge on the metabolic capacity of both species is helpful [30,31]. The presence
of hub nodes with many incoming rules can be predicted by the presence of any of the species to which
it is connected by a rule. Together with the exclusiveness, this makes hub nodes likely candidates for
keystone species, which catalyze central steps along the degradation cascade. As fragments predicting
the presence of a hub node were mostly not co-occurring, this indicates that the hub node interacted
with alternative partners. Bacterial fragments are likely initial degraders while individual archaeal
fragments are likely follow-up degraders in methanogenic and syntrophic relationships. Among the
identifiable hub node fragments, Sedimentibacter and Smithella species were identified as keystone
species candidates. This is consistent with Smithella already having been discussed as having a crucial
role in hydrocarbon-contaminated ecosystems and playing a central role in syntrophic associations
with methanogens [16,32,33].

4.4. Sampled Spatial Resolution Matters

For sampling the local scale, individual soil particles were subjected to analysis, using eight
particles per location. It has been shown for marine sediments that four to eight single grains were
sufficient to cover 50% of the OTU richness on the bulk level [34]. This indicates that our particle data
were likely representative of the actual diversity present at the locations at the local scale. For the single
particle data sets, co-occurrence relationships and association rules were dominated by a single type,
namely bacterial fragments co-occuring with bacterial fragments, and rules pointing from archaeal
fragments to bacterial fragments. On the local scale, bacterial competition hence did not seem to play a
major role. This seems more to be the case for archaeal fragments. Although they did not feature many
exclusion relationships (Table 1), the absence of co-occurrence relationships between them indicates
that each sampled soil particle featured different archaeal fragments rather than a similar archaeal
assemblage. In bulk soil samples, many single particles are mixed and analyzed together. Hence, even
if single particles are populated by different archaea, in the bulk soil sample, they would appear to
co-occur, explaining the many archaeal co-occurrence relationships detected for the bulk data set. Hub
nodes only acting as rule targets were mainly bacterial fragments in all data sets, while hub nodes
only acting as rule origins were dominated by archaeal fragments. This indicates that bacteria are
more likely to be keystone species and able to interact with a wider variety of alternative interaction
partners, as their presence can be predicted by many fragments. Archaeal fragments were more likely
to predict the presence of a diverse sub-community containing many species, and hence likely be
more dependent on the presence of other species. Potential interaction partners for keystone species
candidates as indicated by appearing in an association rule with the keystone species were of both
bacterial and archaeal origin in the bulk data set but predominantly of archaeal origin in the particle
data set. This might be caused by the typical spatial distance of the interaction, which can be longer
for compounds, such as acetate, to be passed from an initial degrader to a follow-up degrader, while,
for example, syntrophic H2 exchange with an archaeal methanogen requires close spatial proximity.
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While the bulk data sets capture both interaction types, the particle data set only captures the latter
interaction type.

4.5. Inferred Degradation Cascade Architecture

It has been suggested that habitat filtering is the major factor determining community composition
in the natural environment and the human microbiome [35,36]. We found this not to be true for our
hydrocarbon-contaminated aquifer. For less than half of all fragments, the environmental data was
good enough to predict the presence of the fragment (Figure S6), indicating that factors beyond habitat
filtering, such as species interactions, played an essential role. This might have been triggered by the
hydrocarbon input, which provokes a degradation cascade requiring multiple microbial interactions.
Although statistical and data mining methods only indicate potential interactions between microbial
species, the global patterns formed by them and evidenced in the resulting network structures provide
profound insights regarding community assembly and the interaction of metabolically specialized
species [37]. Co-occurrence networks derived from the bulk data set uncovered a modular structure
of microbial degradation activity of distinct, spatially separated sub-communities. Interestingly, this
structure was not visible when analyzing the single particle data, indicating a higher variability
of community composition at the local scale, where heterogeneities might be a more influential
factor. While topological parameters of co-occurrence networks have been used to identify keystone
species [38], here, we used association rule networks, which have the benefit of being able to uncover
one-sided dependencies. Association rule networks were more robust than co-occurrence networks
with respect to the spatial scale. Topological indices were more similar for them when comparing bulk
and single particle data sets. Likewise, rule hub nodes had similar characteristics. Keystone species
candidates as hub nodes only acting as rule targets were predominantly of bacterial origin. Ubiquitous
species, present in all samples, would appear as trivial and ultimate hub nodes, with incoming rules
from all detected fragments. This was not the case in our data, in which most connected hub nodes
had at most incoming links from half of all detected fragments. However, the higher occupancy of
bacteria than archaea contributes to the dominance of bacteria as rule targets (Figure S7). If keystone
species catalyze a critical step that is sandwiched between steps that are performed by many taxa,
a bow tie structure emerges: Many initial degraders provide compounds for the keystone species,
which provides compounds for a variety of downstream degraders. Such a bow tie concept has been
proposed for intracellular metabolic transformation networks and might be a general principle of
biological systems [39,40]. Within cells, a broad variety of substrate compounds are converted to
a handful of key metabolites, which are then assembled to create the full diversity of compounds
necessary for cellular growth and maintenance.

5. Conclusions

Co-occurrence analysis and data mining were used in this study to uncover the organization
of the degradation activity of natural microbial communities in response to hydrocarbon input in
an aquifer. Both approaches address different types of interactions. While correlation analysis is
the more commonly applied method, we highlighted its limitations and demonstrated the benefit of
association rule mining, which is able to identify one-sided dependencies, non-exclusive interactions,
as well as likely keystone species candidates. We furthermore showed that the spatial resolution
of samples is important and should be adjusted to the typical length of the interaction one wishes
to investigate. To corroborate or dismiss identified potential interactions, additional information
on the metabolic potential of involved species is necessary and should be included in the analysis,
for example, that derived from accompanying metagenomic, metatranscriptomic, or metaproteomic
data. Cultivation-independent methods are currently amassing tremendous data sets of microbial
communities inhabiting natural environments and the microbiomes of higher organisms. The use of
statistical and data mining methods is an easily applied first step to untangle the tremendous network
of diverse microbial interactions at play in microbial communities.



Microorganisms 2020, 8, 190 12 of 13

Supplementary Materials: The following are available online at http://www.mdpi.com/2076-2607/8/2/190/s1,
Figures S1–S3: analogue to Figures 1–3 but for HaeIII digestion, Figures S4 and S5: top ten hub nodes with
overlayed co-occurrence network for bulk and single particle data sets, Figure S6: niche occupancy of fragments,
Figure S7: fragment occupancy distribution, Tables S1 and S2: characterization of network modules for RsaI and
HaeIII digestion.

Author Contributions: Conceptualization, F.C.; methodology, F.C., S.G., I.F. and A.W.; software, F.C.; formal
analysis, F.C.; writing—original draft preparation, F.C.; writing—review and editing, F.C., I.F. and A.W. All authors
have read and agreed to the published version of the manuscript.

Funding: This research was funded by the German Federal Ministry of Education and Research (BMBF), grant
number FKZ 031A317.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Fierer, N.; Jackson, R.B. The diversity and biogeography of soil bacterial communities. Proc. Natl. Acad. Sci.
USA 2006, 103, 626–631. [CrossRef]

2. Johnke, J.; Cohen, Y.; de Leeuw, M.; Kushmaro, A.; Jurkevitch, E.; Chatzinotas, A. Multiple micro-predators
controlling bacterial communities in the environment. Curr. Opin. Biotechnol. 2014, 27C, 185–190. [CrossRef]

3. Joseph, I.O.F.; Wall, T.E.; Tanner, J.R.; Tawaha, K.; Alali, F.Q.; Li, C.; Oberlies, N.H. Proliferation of
antibiotic-producing bacteria and concomitant antibiotic production as the basis for the antibiotic activity of
Jordan’s red soils. Appl. Environ. Microbiol. 2009, 75, 2735–2741. [CrossRef]

4. Hibbing, M.E.; Fuqua, C.; Parsek, M.R.; Peterson, S.B. Bacterial competition: Surviving and thriving in the
microbial jungle. Nat. Rev. Microbiol. 2010, 8, 15–25. [CrossRef] [PubMed]

5. Heuer, H.; Smalla, K. Plasmids foster diversification and adaptation of bacterial populations in soil.
FEMS Microbiol. Rev. 2012, 36, 1083–1104. [CrossRef] [PubMed]

6. Ranjard, L.; Richaume, A. Quantitative and qualitative microscale distribution of bacteria in soil. Res. Microbiol.
2001, 152, 707–716. [CrossRef]

7. Young, I.M.; Crawford, J.W. Interactions and self-organization in the soil-microbe complex. Science 2004, 304,
1634–1637. [CrossRef]

8. Meckenstock, R.U.; Elsner, M.; Griebler, C.; Lueders, T.; Stumpp, C.; Aamand, J.; Agathos, S.N.;
Albrechtsen, H.J.; Bastiaens, L.; Bjerg, P.L.; et al. Biodegradation: Updating the concepts of control
for microbial cleanup in contaminated aquifers. Environ. Sci. Technol. 2015, 49, 7073–7081. [CrossRef]

9. Maymó-Gatell, X.; Chien, Y.; Gossett, J.M.; Zinder, S.H. Isolation of a bacterium that reductively dechlorinates
tetrachloroethene to ethene. Science 1997, 276, 1568–1571. [CrossRef]

10. Bardgett, R.; Usher, M.; Hopkins, D. (Eds.) Biological Diversity and Function in Soils; Cambridge University
Press: Cambridge, UK, 2005.

11. Pace, N.R. A molecular view of microbial diversity and the biosphere. Science 1997, 276, 734–740. [CrossRef]
12. Mikkonen, A.; Santalahti, M.; Lappi, K.; Pulkkinen, A.-M.; Montonen, L.; Suominen, L. Bacterial and archaeal

communities in long-term contaminated surface and subsurface soil evaluated through co-extracted RNA
and DNA. FEMS Microbiol. Ecol. 2014. [CrossRef] [PubMed]

13. Volant, A.; Bruneel, O.; Desoeuvre, A.; Héry, M.; Casiot, C.; Bru, N.; Delpoux, S.; Fahy, A.; Javerliat, F.;
Bouchez, O.; et al. Diversity and spatiotemporal dynamics of bacterial communities: Physicochemical and
other drivers along an acid mine drainage. FEMS Microbiol. Ecol. 2014, 90, 247–263. [CrossRef] [PubMed]

14. Faust, K.; Raes, J. Microbial interactions: From networks to models. Nat. Rev. Microbiol. 2012, 10, 538–550.
[CrossRef] [PubMed]

15. Armitage, D.W.; Jones, S.E. How sample heterogeneity can obscure the signal of microbial interactions.
ISME J. 2019, 13, 2639–2646. [CrossRef]

16. Tischer, K.; Kleinsteuber, S.; Schleinitz, K.M.; Fetzer, I.; Spott, O.; Stange, F.; Lohse, U.; Franz, J.; Neumann, F.;
Gerling, S.; et al. Microbial communities along biogeochemical gradients in a hydrocarbon-contaminated
aquifer. Environ. Microbiol. 2013, 15, 2603–2615. [CrossRef]

17. Günnigmann née Gerling, S. Spatial Distribution of Microbial Communities in a Hydrocarbon Contaminated
Aquifer. Bachelor Thesis, University of Koblenz, Landau, Germany, 2011.

18. Benjamini, Y.; Hochberg, Y. Controlling the false discovery rate: A practical and powerful approach to
multiple testing. J. R. Stat. Soc. Ser. B 1995, 57, 289–300. [CrossRef]

http://www.mdpi.com/2076-2607/8/2/190/s1
http://dx.doi.org/10.1073/pnas.0507535103
http://dx.doi.org/10.1016/j.copbio.2014.02.003
http://dx.doi.org/10.1128/AEM.00104-09
http://dx.doi.org/10.1038/nrmicro2259
http://www.ncbi.nlm.nih.gov/pubmed/19946288
http://dx.doi.org/10.1111/j.1574-6976.2012.00337.x
http://www.ncbi.nlm.nih.gov/pubmed/22393901
http://dx.doi.org/10.1016/S0923-2508(01)01251-7
http://dx.doi.org/10.1126/science.1097394
http://dx.doi.org/10.1021/acs.est.5b00715
http://dx.doi.org/10.1126/science.276.5318.1568
http://dx.doi.org/10.1126/science.276.5313.734
http://dx.doi.org/10.1111/1574-6941.12376
http://www.ncbi.nlm.nih.gov/pubmed/24986450
http://dx.doi.org/10.1111/1574-6941.12394
http://www.ncbi.nlm.nih.gov/pubmed/25070063
http://dx.doi.org/10.1038/nrmicro2832
http://www.ncbi.nlm.nih.gov/pubmed/22796884
http://dx.doi.org/10.1038/s41396-019-0463-3
http://dx.doi.org/10.1111/1462-2920.12168
http://dx.doi.org/10.1111/j.2517-6161.1995.tb02031.x


Microorganisms 2020, 8, 190 13 of 13

19. Raup, D.M.; Crick, R.E. Measurement of faunal similarity in paleontology. J. Paleontol. 1979, 53, 1213–1227.
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