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Background. Immunotherapy has been considered as a promising cancer treatment for hepatocellular carcinoma (HCC).
However, due to the particular immune environment of the liver, identifying patients who could benefit from immunotherapy
is critical in clinical practice. Methods. The pyroptosis gene expression database of 54 candidates from The Cancer Genome
Atlas (TCGA) were collected to discover the critical prognostic-related pyroptosis genes. A novel pyroptosis gene model was
established to calculate the risk score. Kaplan–Meier analysis and receiver operating characteristic curve (ROC) were used to
verify its predictive ability. The International Cancer Genome Consortium (ICGC) data was collected as external validation
data to verify the model’s accuracy. We employed multiple bioinformatics tools and algorithms to evaluate the tumor immune
microenvironment (TIME) and the response to immunotherapy. Results. Our study found that most pyroptosis genes were
expressed differently in normal and tumor tissues and that their expression was associated with the prognosis. Then, a precise
four-pyroptosis gene model was generated. The one-year area under the curves (AUCs) among the training, internal, and
external validation patients were 0.901, 0.727, and 0.671, respectively. An analysis of survival data revealed that individuals had
a worse prognosis than patients with low risk. The analysis of TIME revealed that the low-risk group had more antitumor
cells, fewer immunosuppressive cells, stronger immune function, less immune checkpoint gene expression, and better
immunotherapy response than the high-risk group. Immunophenoscore (IPS) analysis also demonstrated that the low-risk
score was related to superior immune checkpoint inhibitors therapy. Conclusion. A nomogram based on the four-pyroptosis
gene signature was a novel tool to predict the effectiveness of immunotherapy for HCC. Therefore, individualized treatment
targeting the pyroptosis genes may influence TIME and play an essential role in improving the prognosis in HCC patients.

1. Introduction

Hepatocellular carcinoma (HCC) is the sixth most com-
monly diagnosed malignancy and the third leading cause
of cancer mortality worldwide [1]. As a novel treatment,
immunotherapy has represented an encouraging break-
through for HCC patients [2]. Recently, various immune

checkpoint blockade (ICB) therapeutic approaches have
been employed successfully in treating HCC [3–5]. How-
ever, immunotherapy is not effective for all HCC patients
[6–8]. At present, the poor response of some patients to
immunotherapy is a thorny problem faced by clinicians.
Specific signal molecules and stimulation that induce cell
death can activate cells to produce different forms of
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immunogenic cell death (ICD). Dying tumor cells induce
activation of antigen-presenting cells (APCs) through vari-
ous immune signaling pathways, resulting in the antitumor
immune response of cytotoxic T cells and natural killer cells
(NK). Apoptosis resistance might be a key mechanism for
tumor immune evasion [9]. Therefore, the induction of
new forms of cell death may be a novel strategy to improve
the efficacy of immunotherapy for HCC.

Pyroptosis is a typical programmed cell death (PCD)
activated by caspase-1, characterized by the rupture of
plasma membrane and release of proinflammatory sub-
stances [10]. Pyroptosis can cause a strong inflammatory
reaction [11, 12]. A growing number of studies have indi-
cated that pyroptosis genes were strongly linked to the
occurrence and development of malignancies [13], including
breast cancer [14], lung cancer [15], pancreatic ductal ade-
nocarcinoma [16], and gastric cancer [17]. However,
researchers have come to opposing conclusions in exploring
the causal relationship among pyroptosis, prognosis, and
immune microenvironment of HCC. According to a study,
pyroptosis genes have been proved to be favorable for the
survival of HCC [18]. According to the findings by Chu
et al. [19], when pyroptosis is induced, inflammatory chemi-
cals are produced, which limit the proliferation and migra-
tion of HCC cells while also enhance antitumor immunity.
In contrast, another study found that pyroptosis aggravates
inflammation, thereby leading to liver damage and the
development of liver fibrosis and HCC [20]. Currently, the
correlation between pyroptosis and HCC prognosis and
tumor immune microenvironment (TIME) has not been
fully elucidated.

A precise prediction of the pyroptosis gene risk may
assist in regulating the immune microenvironment of
HCC, allowing patients to receive appropriate treatment
and improve their overall prognosis. Based on a four-
pyroptosis gene model, we have developed a nomogram to
distinguish cold and hot tumors and to predict the immuno-
therapy landscape in HCC. We will also explore the function
and mechanism of cell death in the immunological microen-
vironment of liver cancer, thereby discovering the targets for
new pharmacological therapy and immunotherapeutic tech-
niques for HCC.

2. Material and Methods

2.1. HCC Patients’ Data Acquisition, Collation, and
Pyroptosis Gene Selection. The RNA-seq data and corre-
sponding clinical information from 374 HCC patients and
50 healthy controls were downloaded from The Cancer
Genome Atlas (TCGA). The 260 HCC patients from the
International Cancer Genome Consortium (ICGC) cohort
were obtained to validate our findings further. Fragments
per kilobase million (FPKM) data were converted to tran-
scripts per kilobase million (TPM) and normalized by divid-
ing each value by the sum of all FPKM values for each tumor
sample, followed by multiplication by 1 × 106. In cases of
more than one probe per gene, average values were chosen.
This study has been approved by Tianjin Medical University
General Hospital Human Ethics Committee. By retrieving

the Gene Card database (https://www.genecards.org/) and
consulting existing studies, we chose 54 pyroptosis candidate
genes for analysis [20–23].

2.2. Differential Expression and Mutation Analysis of
Pyroptosis Genes. The R package “limma” was used to ana-
lyze the differential expression of the 54 candidate pyropto-
sis genes between HCC and normal samples with false
discovery rate (FDR) <0.05 and |log2 (fold change) |≥1.0.
Simple nucleotide variation (SNP) data were acquired from
the Genomic Data Commons Data Portal. The waterfall
plots were constructed by the R package “maftools.”

2.3. Consensus Cluster Analysis of Pyroptosis-Related
Subtypes. Using the R package “consensusClusterPlus,” we
clustered the samples to establish multiple subgroups based
on their candidate gene sets of pyroptosis genes with reps
= 50, pItem = 0:8, and pFeature = 1 [24].

2.4. Functional and Pathway Enrichment Analysis of the
Prognosis-Related Pyroptosis Genes. Gene Ontology (GO)
and Kyoto Encyclopedia of Genes and Genomes (KEGG)
were used to analyze the biological function and pathways
of differentially expressed genes (DEGs) [25, 26].

2.5. Identification of the Pyroptosis Genes with Patients’
Prognosis and Calculation of the Risk Score. In order to iden-
tify independent prognostic-related genes, least absolute
shrinkage and selection operator (LASSO) regression and
multivariate Cox regression analyses were conducted
sequentially. The risk score was calculated using the follow-
ing methodology:

Risk score = 〠
n

i=1
Gene expression ∗ Coefficientð Þ ð1Þ

Patients were divided into two groups using the median
risk score. The pyroptosis genes mode was tested using the
Kaplan-Meier curve and receiver operating characteristic
curve (ROC) drawn with R’s “survival” and “timeROC”
packages.

2.6. Construction of a Nomogram Based on the Four-
Pyroptosis Gene Model, Internal and External Validation. A
total of 165 patients were enrolled in the training cohort,
and a nomogram was created using random resolution.
The remaining 164 cases were utilized to verify the accuracy
of the nomogram. The external validation data was obtained
from the LIRI-JP dataset from the ICGC database. The 1-, 3-
, and 5-year receiver operating characteristic (ROC) curves
plotted with the R package “timeROC” were used to evaluate
the predictive ability of the prognostic genes model for over-
all survival (OS). A nomogram was constructed with the R
package “rms” and “regplot” to predict 1-, 3-, and 5-year
OS of HCC patients. The ROC and calibration analyses were
then performed to test the predictive capacity of the
nomogram.

2.7. Gene Set Variation Analysis (GSVA), Enrichment and
Visualization. For GSVA, we calculated the enrichment
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score for each sample in the gene set. Specifically, we first
used gene expression profiling, using the method of Hanzel-
mann et al. [27], and downloaded the enrichment scores
from the Molecular Signatures Database (MsigDB, http://
www.gsea-msigdb.org/gsea/downloads.jsp) to evaluate the
relevant pathways and molecular mechanisms. The final
enrichment score matrix was obtained GSVA was imple-
mented by the R package “h.all.v7.4.symbols”.

2.8. Correlation among the Immune Cell Infiltration, Tumor
Immune Score, Immunotherapy-Related Gene Expression,
Immunotherapy Responsiveness, and Risk Score. The tumor
infiltration immune cells were subjected to the ESTIMATE
[28], CIBERSORT [29], TIMER [30], CIBERSORT-ABS
[29], QUANTISEQ [31], MCPCOUNTER [32], and xCell
[33] analyses. The ESTIMATE algorithm calculated the
immune and stromal score by the R package “estimate.”
Analyses were conducted on the expression of
immunotherapy-related genes between high- and low-risk
groups. Furthermore, immunephenoscore (IPS) proved to
be an excellent predictor of response to anti-CTLA-4 and
anti-PD-1 treatments [34]. Accordingly, the Cancer Immu-
nome Atlas (TCIA, https://tcia.at/home) database was used
to predict the efficacy of immunotherapy.

Data collection and processing

Acquisition of pyroptosis genes

Pyroptosis genes analysis

Screen OS-related pyroptosis genes

Identify a 13-genes signature

Internal and external validation

Nomogram and assessment

MultiGSEA analysis

Tumor immune microenvironment analysis

Precision medicine through risk clusters

Differential expression analysis

Mutation profiles analysis

Prognostic analysis

Cluster analysis

Enrichment analysis of DEGs

Unicox regression analysis

Lasso cox model construction

Human pyroptosis genes database

RNA expression data from TCGA-LIHC
(N = 50, T = 306), ICGA-LIRI_JP (T = 231)

Figure 1: Diagram summarizing the workflow of this study from data collection and processing immune analysis.

Table 1: Clinical information of the patients included in this study.

Characteristic
TCGA-LIHC
(N = 306)

ICGC-LIRI-JP
(N = 231)

Age (years)

> 65 (%) 103 (33.66) 142 (61.47)

≤ 65 (%) 203 (66.34) 89 (38.53)

Sex

Female (%) 94 (30.72) 61 (26.41)

Male (%) 212 (69.28) 170 (73.59)

Historical grade

G1 (%) 41 (13.40) —

G2 (%) 148 (48.37) —

G3 (%) 105 (34.31) —

G4 (%) 12 (3.92) —

Stage

I (%) 154 (50.33) 36 (15.58)

II (%) 73 (23.86) 105 (45.45)

III (%) 76 (24.84) 71 (30.74)

IV (%) 3 (0.98) 19 (8.23)
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Figure 2: Continued.
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2.9. Analysis of NCI-60 Drug Database with CellMiner. Using
the CellMiner database, we examined the impact of pyroptosis
genes on drug sensitivity and tolerance. CellMiner (https://
discover.nci.nih.gov/cellminer/) was developed by the National
Cancer Institute (NCI) to integrate the molecular and pharma-
cological datasets for the NCI-60 cell line panel [35, 36]. In
addition, the relationship between gene expression and drug
sensitivity was analyzed by the Pearson correlation test.

2.10. Statistical Analysis. All the analyses were performed by
R software (version 4.1.0). The Kaplan-Meier survival analy-
sis was generated by the R package “survival” and compared
with the log-rank test. The chi-square test was used for cor-
relation analysis. The infiltration of immune cells was com-
pared by the Wilcox Test. All tests were bilateral, and
p < 0:05 was statistically significant.

3. Results

3.1. The Data for HCC Patients. After eliminating cases with
incomplete survival data, the mRNA expression and clinical
data of 329 individuals were obtained (Figure 1). 231 HCC

samples from the ICGC-LIRI-JP dataset were obtained to
further validate our findings. In addition, the detailed char-
acteristics of all patients were shown in Table 1.

3.2. Differential ExpressionAnalysis andMutationAnalysis of the
54 Candidate Pyroptosis Genes.On the basis of the TCGA data-
base, 42 out of 54 candidate pyroptosis genes were different
between tumor tissues (n = 374) and normal tissues (n = 50).
The maftools package indicated the differences in distributions
of somatic mutations of the pyroptosis genes (Figure 2(b)). A
comprehensive landscape correlation network based on the uni-
variate Cox regression analysis and the Kaplan–Meier survival
analysis was constructed to better understand the interaction
between pyroptosis genes and the prognosis of HCC (Figures 2
(c) and 2(d)). These results demonstrated that pyroptosis
genes were involved in the genesis and progression of tumors.

3.3. Consensus Cluster Analysis of Pyroptosis-Related
Subtypes. Based on the expression of prognosis-related
pyroptosis genes, we then created unsupervised consensus
clusters. It was determined that k = 2 (Figure 3(a)) had the
highest clustering stability from k = 2 to 9 (Supplementary
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Figure 2: Expressions and mutation of the pyroptosis genes and their relationship with prognosis. (a) Gene expression distributions of
pyroptosis genes in normal and tumor samples from TCGA databases; (b) somatic mutation waterfall plot of the pyroptosis genes; (c)
the correlation network of the pyroptosis-related genes; (d) identification of the OS-related pyroptosis genes in the TCGA cohort with
KM analysis. ns: not significant, ∗p < 0:05, ∗∗p < 0:01, and ∗∗∗ p < 0:001.
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Figure 1a-1k). However, in further analysis, we found that
pyroptosis-related subtypes were substantially connected
with the OS of HCC, not with clinicopathological
indicators (Figures 3(b) and 3(c)). This result suggests that
the HCC prognostic criteria should be classified more
precisely.

3.4. Functional and Pathway Enrichment Analysis of the
Prognosis-Related Pyroptosis Genes. KEGG analysis showed
that the DEGs mainly were abundant in immune regulation,
cell cycle, cellular senescence, and endocytosis (Figure 3(d)).
The functional annotation results revealed that these
prognosis-related pyroptosis genes were mainly associated
with biological processes such as immune response, immune
regulation, cell activation, and cell adhesion (Figure 3(e)).

3.5. Calculation of the Risk Score and the Correlation among
the Pyroptosis Genes, the Clinicopathological Characteristics,
and the Risk Score. The 54 candidate pyroptosis genes were
included in the Lasso-Cox multivariate analysis (Supple-
mentary Figures 2a and 2b). Finally, four prognosis-related
pyroptosis genes were identified as the independent risk
factors (Table 2). Accordingly, the risk score of each
patient was calculated based on the expression of each
independent prognosis-related pyroptosis gene and its
coefficient. The median risk score was employed to
separate all the patients into high-risk and low-risk groups.
The expression of pyroptosis genes showed a substantial
difference in the high- and low-risk groups (Figure 4(a), p
< 0:05). The pyroptosis-related subtypes, risk score groups,
and future states are summarized in a Sankey diagram
(Figure 4(b)). There were also significant differences in
disease stage and pathological grade in the high- and low-
risk groups (Figures 4(c) and 4(d), p = 0:001 and p = 0:001
). High-risk scores were strongly associated with higher
disease stage and pathological grade.

3.6. Identification of the Prognosis Model, Internal and
External Verification of the Four Pyroptosis Genes Model,
and Construction of a Nomogram. The distribution of risk
scores and survival status showed patients with higher risk
scores in the training cohort (Figures 5(a) and 5(b)) and
the internal validation cohort (Figures 5(d) and 5(e)), and
all patients (Figures 5(g) and 5(h)) showed a higher proba-
bility of death. In addition, the relationships between the
four independent prognosis-related pyroptosis genes and
the risk score were shown in heat maps (Figures 5(c), 5(f),
and 5(i)). Among the training cohort (Figure 6(a)) and the
internal validation cohort (Figure 6(b)), as well as the entire
patient group (Figure 6(c)), we found that high-risk patients

have a worse prognosis than patients with a low risk
(p < 0:001, p = 0:014, and p < 0:001). The area under the
curve (AUC) of the training cohort, the internal validation
cohort, and the entire patient group at 1, 3, and 5 years were
0.901, 0.727, and 0.809; 0.720, 0.728, and 0.715; and 0.738,
0.585, and 0.647, respectively (Figures 6(a)–6(c)). Using the
same coefficient, the risk score of the LIRI-JP dataset was
calculated and grouped by the median score. OS was better
for low-risk patients than high-risk patients in the verifica-
tion group based on the survival curve (Figure 6(d), p =
0:011). The AUC at 1, 3, and 5 years were 0.671, 0.633,
and 0.356 (Figure 6(e)). The ROC curve showed a better area
AUC achieved with the risk score than the other clinico-
pathological characteristics (Figure 6(f)). Then, we con-
structed a nomogram based on the risk score, gender,
age, grade, and stage to predict the prognosis of HCC patients
(Figure 6(g)). The calibration plot showed that patients’ 1, 3,
and 5 years of survival were consistent between the predicted
and observed values (Figure 6(h)). To make the clinic appli-
cation of the model more convenient, we developed a web-
based nomogram (Supplementary Figure 3).

3.7. Gene Set Variation Analysis (GSVA), Enrichment and
Visualization. Furthermore, we have found that the GSEA
analysis significantly enriched the immune-related signaling
pathways, fatty acid metabolism, and genetic regulation
(Figures 7(a) and 7(b)).

3.8. Correlation among the Immune Cell Infiltration, Tumor
Immune Score, Immunotherapy-Related Genes Expression,
Immunotherapy Responsiveness, and Risk Score. Our subse-
quent discussion explored the possible relationship between
risk score and immunotherapy efficacy by examining the
correlation among immune cell infiltration,
immunotherapy-related genes expression, tumor immune
score, and risk score. First, we performed derivations using
multiple bioinformatics tools and algorithms, which showed
that immune cells were significantly associated with risk
scores (Figure 8(a)). A higher number of immunosuppres-
sive cells such as M2 and M0 macrophages were found in
the high-risk group (Figure 8(b), p < 0:01), while a higher
number of antitumor immune cells such as CD8+T cells
were found in the low-risk group (Figure 8(b), p < 0:001).
Moreover, we found that the risk score was significantly
and negatively correlated with the CD8+T cells and the pre-
dominant antitumor cells within the TIME (Figure 8(c), p
= 0:00054 and r = −0:49). On the other hand, M2 macro-
phages were significantly and positively correlated with the
risk score (Figure 8(d), p = 0:0025 and r = 0:43). Tumor-

Table 2: The risk regression coefficients of four pyroptosis genes for establishing the risk score.

Ensembl ID Symbol ID Gene name Coef

ENSG00000064012 CASP8 Caspase-8 0.861677

ENSG00000030110 BAK1 BCL2 antagonist/killer 1 0.354883

ENSG00000139626 ITGB7 Integrin subunit beta 7 -0.753754

ENSG00000196611 MMP1 Matrix metallopeptidase 1 0.353144
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Figure 4: Continued.
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infiltrating immune cells were closely related to the four
prognosis-related pyroptosis genes (Figure 8(e)).

As compared with the low-risk group, the expression
levels of immune checkpoint genes were significantly higher
in the high-risk group (Figure 9(a)). Further analysis of infil-
trating immune cells revealed that the functional score was
significantly higher in the low-risk group than in high-risk
groups (Figure 9(b)). Furthermore, the immune and ESTI-
MATE scores were significantly lower in the high-risk group
than in the low-risk group (Figure 9(c)). In the low-risk
group, treatment with anti-CTLA4 and anti-PD-1, either in
monotherapy or combination therapy, was also more likely
to affect HCC patients (Figures 9(d)–9(f), p = 0:02, p =
0:0013, and p = 0:0019). The pyroptosis genes risk score
allowed us to divide HCC patients into two groups with dis-
tinct immune profiles. The low-risk group had more antitu-
mor cells, fewer immunosuppressive cells, stronger immune
function, less immune checkpoint gene expression, and bet-
ter immunotherapy response than the high-risk group.

3.9. Analysis of NCI-60 Drug Database with CellMiner. To
identify the top 16 drugs with the greatest significant differ-
ences, we conducted a separate drug sensitivity analysis
based on the pyroptosis-related signature in the prognostic
model (Figure 10). The results showed that the expression
of MMP1 was negatively correlated with the sensitivity of
Mithramycin (r = −0:491 and p < 0:001), Actinomycin D
(r = −0:429 and p < 0:001), Depsipeptide (r = −0:383 and p
= 0:003), Doxorubicin (r = −0:382 and p = 0:003), Homo-
harringtonine (r = −0:370 and p = 0:004), and Sulfatinib
(r = −0:308 and p = 0:016). The expression of CASP8 was
positively correlated with the sensitivity of Nelarabine
(r = 0:384 and p = 0:002), Dexamethasone Decadron
(r = 0:358 and p = 0:005), Cobimetinib (isomer 1)
(r = 0:314 and p = 0:014), Fludarabine (r = 0:314 and p =

0:015), and Allopurinol (r = 0:308 and p = 0:017), but it
was negatively correlated with the sensitivity of Tyrothricin
(r = −0:310 and p = 0:016). The expression of BAK1 was
positively correlated with the sensitivity of Rapamycin
(r = 0:361 and p = 0:005) and Fludarabine (r = 0:323 and p
= 0:012). The expression of ITGB7 was positively correlated
with the sensitivity of Imiquimod (r = 0:429 and p < 0:001).

4. Discussion

The immune system plays a vital role in tumorigenesis. The
liver is the largest immune-related organ, and liver cancer is
subjected to a complicated immune microenvironment [37,
38]. In HCC, not all patients obtain the desired objective
response rate after immunotherapy due to the heterogeneity
of HCC [39]. As a result, reliable ways for identifying per-
sons who could benefit from immunotherapy are urgently
needed. Our findings preliminarily prove the potential role
of cell death in the occurrence and development of HCC
and the feasibility of using pyroptosis genes to construct a
prognostic model.

Pyroptosis plays a vital role in biological development,
dynamic balance, and cancer pathogenesis [40]. The major-
ity of pyroptosis genes were shown to be differently
expressed in normal and malignant tissues and substantially
linked with the prognosis of HCC patients in this investiga-
tion. Then, using a four-pyroptosis gene model, we created a
nomogram that can predict the immunotherapy landscape
in HCC. This prediction model delivered excellent results
in both the internal and external validation cohorts and
was successfully verified.

Pyroptosis is a double-edged sword. A complex interac-
tion between pyroptosis and cancer might have a function
in tumor immunity in a different way. On the one hand,
pyroptosis can stimulate tumor development by altering
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Figure 4: Clinical verification of pyroptosis scores. (a) Pyroptosis genes expression distributions in the high- and low-risk groups; (b) the
Sankey diagram shows the flow diagram of our investigation; (c, d) the relationship between grade and tumor stage of this novel signature
clinical characteristics. ns: not significant, ∗p < 0:05, ∗∗p < 0:01, and ∗∗∗ p < 0:001.
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the tumor microenvironment. [22]. A growing number of
investigations have shown that pyroptosis can promote the
immune evasion of tumor cells by interfering with the

immune microenvironment. Luan and Ju discovered that
activated caspase-1 could stimulate hepatoma cells to pyrop-
tosis, release proinflammatory cytokines, and further
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Figure 6: Construction of pyroptosis risk signature. (a) ROC curve and Kaplan-Meier survival curve of the model based on data from the
training cohort; (b) ROC curve and Kaplan-Meier survival curve of the model based on data from the internal validation cohort; (c) ROC
curve and Kaplan-Meier survival curve of the model based on all TAGA-LIHC patients’ data; (d, e) further verification of the risk
classification of HCC patients using external ICGC-LIRI-JP data; (f) ROC curves for predicting survival rates of HCC patients with the
pyroptosis risk score, age, gender, grade, and tumor stage; (g) developed nomogram based on the pyroptosis risk score and
clinicopathological parameters; (h) calibration curve of the 1-year, 3-year, and 5-year survival rates of the model.
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promote the growth of HCC [41]. In addition, NLRP3 can
inhibit the antitumor immune response of gastric cancer
by activating cell death [42]. Interestingly, the study discov-
ered that cell death-induced inflammation can trigger anti-
tumor immunity and has a synergistic effect with anti-PD1
treatment [43]. Previous reports indicate that pyroptosis is
closely related to the efficacy of immunotherapy [44]. When
tumor cells undergo pyroptosis, they could recruit tumor-
suppressed immune cells and boost antitumor immunity.
A study has shown that CD8+T cells can induce pyroptosis
by releasing GzmA (GSDMB-cleaving enzyme) and GzmB
(GSDME-cleaving enzyme) and further activating IL-1β
from macrophages to play an antitumor effect [45]. Our

immune analysis found that the four-pyroptosis gene model
can reasonably predict the immunotherapy landscape in
HCC. Patients were split into high- and low-risk groups
based on pyroptosis genes risk score. In comparison to
high-risk group, the low-risk group had more antitumor
cells, fewer immunosuppressive cells, stronger immune
function, and less immune checkpoint gene expression.
These findings showed that a suppressed state of antitumor
immunity may contribute to the poor outcome of high-risk
individuals. In addition, the high-risk group exhibited a
lower response to immunotherapy due to immunological
dysfunction and the absence of infiltrating immune cells.
These results suggest that scorched death genes influence
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Figure 8: Pyroptosis risk scores in the prediction of immunotherapy. (a) The correlation analysis of the immune infiltration and the risk
scores; (b) radar plot showing cell infiltration from the CIBERSORT procedure; (c) the correlation analysis of the CD8+ T cells and the
risk scores; (d) the correlation analysis of the M2 macrophages and the risk scores; (e) the correlation analysis of the immune infiltration
and the 13 independent prognostic pyroptosis genes. ns: not significant, ∗p < 0:05, ∗∗p < 0:01, and ∗∗∗ p < 0:001.

20 BioMed Research International



8

6

4

G
en

e e
xp

re
ss

io
n

2

0

LAIR
1

VTCN1
CD27

6
CD24

4
NRP1

TNFSF
4

TNFSF
9

TNFRSF
4

TNFRSF
18

TNFSF
15

LGALS9
ID

O2

BTNL2

HAVCR2

HHLA2
CD80

CTLA4

KIR
3D

L1
CD40

CD20
0

TNFSF
18

TNFRSF
14

CD20
0R

1

PDCD1L
G2

Risk
Low
High

⁎ ⁎ ⁎ ⁎ ⁎ ⁎ ⁎ ⁎ ⁎ ⁎ ⁎ ⁎ ⁎ ⁎⁎⁎⁎⁎⁎⁎⁎⁎ ⁎⁎⁎ ⁎⁎⁎ ⁎⁎⁎ ⁎⁎⁎ ⁎⁎⁎ ⁎⁎⁎ ⁎⁎⁎

(a)

1.00

0.75

0.50

Sc
or

e

0.25

0.00

APC_co_inhibitio
n

APC_co_stim
ulat

ion
CCR

Check
-point

Cyto
lyt

ic_
act

ivi
ty

HLA

Inflam
mati

on promotin
g

MHC_cla
ss_

I

Para
inflam

mati
on

T_cel
l_co_inhibitio

n

T_cel
l_co_stim

ulat
ion

Typ
e_I_IFN_Rep

onse

Typ
e_II_

IFN_Rep
onse

Risk
Low

High

⁎⁎ ⁎⁎⁎ ⁎⁎⁎⁎⁎⁎⁎⁎⁎⁎ ⁎⁎⁎ns ns ns ns ns

(b)

4000

2000

0

Stromal score Immune score ESTIMATE score

TM
E 

sc
or

e

–2000

Risk

Low

High

⁎⁎⁎⁎⁎ ⁎⁎⁎

(c)

10
0.02

8

6

4

IP
S 

an
ti-

CT
LA

-4
 (+

) a
nt

i-P
D

L 
1(

–)

Risk score

Low High

Risk score
Low

High

(d)

10.0
0.013

7.5

5.0

2.5

IP
S 

an
ti-

CT
LA

-4
 (–

) a
nt

i-P
D

L 
1(

+)

Risk score

Low High

Risk score
Low

High

(e)

10
0.0019

8

6

IP
S 

an
ti-

CT
LA

-4
 (+

) a
nt

i-P
D

L 
1(

+)

Risk score

Low High

2

4

Risk score
Low

High

(f)

Figure 9: Immune-related functions and immunotherapy responsiveness of the high- and low-risk groups based on TCGA-LIHC cohort
data. (a) Immune checkpoint gene expression of high- and low-risk groups; (b) the comparison of ssGSEA scores derived from 16
different immune cells and 13 immune signal pathways of high and low-risk groups; (c) the comparison of immune scores, stromal
scores, and ESTAMETE scores of high- and low-risk groups. The potential effect of anti-CTLA4 (d), anti-PD-1 (e) and combination of
two drugs (f) of the high- and low-risk groups based on the Cancer Immunome Atlas database (TCIA, https://tcia.at/home). ns: not
significant, ∗p < 0:05, ∗∗p < 0:01, and ∗∗∗ p < 0:001.
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the malignancy of tumors by altering the TIME. Low-risk
patients may be more amenable to immunotherapy.

Pyroptosis is considered to be a promising direction
in tumor therapy. Intervention against pyroptosis may
be a novel and effective option for treating cancer. It
has been found that small molecular drugs such as ber-
berine, euxanthone, and miltirone may induce hepatoma
cell death by activating cell pyroptosis [19, 46, 47]. Jiang et al.
have found that metformin triggers the NF-κB signal path-
way, which leads to caspase-3/GSDME-mediated cancer
cell death [48]. Many recent attempts to increase effective-
ness by combining TACE and targeted treatment with
immunotherapy have been documented [49–52]. As a
local chemotherapy modality, TACE can promote better
immunotherapy by modulating the TIME [50]. Several sensi-
tive drugs were proven to target the four genes associated
with pyroptosis. The results may also provide guidance for
future chemotherapy, targeted therapy, and induced pyrop-
tosis therapy combined with immunotherapy regimens for
HCC.

To provide tailored therapy and enhance patients’ long-
term prognosis, precision medicine necessitates reliable
prognosis evaluation. Our study may inform the future clin-
ical treatment of HCC. However, there are certain shortcom-
ings in this study. In order to better assess the accuracy and
effectiveness of this model, it must be compared to a real-
world dataset. Currently, the molecular mechanism between

the genes identified by this signature and tumor immunity in
HCC is still not clear, and further in-depth studies are
warranted.

5. Conclusion

A nomogram based on the four-pyroptosis gene signature
was a novel tool to predict the effectiveness of immunother-
apy for HCC. Therefore, individualized treatment targeting
the pyroptosis genes may influence TIME and play an essen-
tial role in improving the prognosis of the HCC patients.
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