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Abstract

Understanding how information about external stimuli is transformed into behavior is one of
the central goals of neuroscience. Here we characterize the information flow through a com-
plete sensorimotor circuit: from stimulus, to sensory neurons, to interneurons, to motor neu-
rons, to muscles, to motion. Specifically, we apply a recently developed framework for
quantifying information flow to a previously published ensemble of models of salt klinotaxis
in the nematode worm Caenorhabditis elegans. Despite large variations in the neural
parameters of individual circuits, we found that the overall information flow architecture cir-
cuit is remarkably consistent across the ensemble. This suggests structural connectivity is
not necessarily predictive of effective connectivity. It also suggests information flow analysis
captures general principles of operation for the klinotaxis circuit. In addition, information
flow analysis reveals several key principles underlying how the models operate: (1) Inter-
neuron class AlY is responsible for integrating information about positive and negative
changes in concentration, and exhibits a strong left/right information asymmetry. (2) Gap
junctions play a crucial role in the transfer of information responsible for the information
symmetry observed in interneuron class AlZ. (3) Neck motor neuron class SMB implements
an information gating mechanism that underlies the circuit’s state-dependent response. (4)
The neck carries more information about small changes in concentration than about large
ones, and more information about positive changes in concentration than about negative
ones. Thus, not all directions of movement are equally informative for the worm. Each of
these findings corresponds to hypotheses that could potentially be tested in the worm.
Knowing the results of these experiments would greatly refine our understanding of the neu-
ral circuit underlying klinotaxis.

Introduction

One of the grand challenges in neuroscience is to understand how an organism’s behavior
arises from the dynamical interaction between its brain, its body and its environment. An
important component of that challenge involves characterizing the flow and transformation of
information through a complete neural circuit, from environmental stimuli, through sensory
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cells, through multiple recurrent layers of interneurons and motor neurons, and finally through
muscles to produce behavior. Information theory [1, 2] has become an increasingly essential
tool in neuroscience, with applications ranging from studies of neural coding [3, 4] and the sta-
tistical structure of environmental stimuli [5, 6], to developing maps of functional connectivity
in nervous systems [7-11]. However, there has not yet been an attempt to analyze the informa-
tion flow through an entire sensorimotor circuit underlying a particular behavior. The obsta-
cles to such an endeavor are both theoretical and experimental.

On the theoretical side, the primary challenge is how to track the dynamic flow of informa-
tion. Our approach to information flow analysis incorporates several recent extensions to the
basic framework of information theory [12, 13]. First, motivated by the observation that stan-
dard information measures average across all measurement outcomes, we utilize a measure of
specific information that quantifies the information that components of the neural circuit pro-
vide about each specific value of the external stimulus [14-21]. Second, we apply measures of
dynamic information to track how information is gained and lost by individual components
and transferred between components of the neural circuit over time [22-25]. Third and finally,
we treat each component of the circuit as a random process, or time-indexed sequence of ran-
dom variables, and characterize how information is carried by individual components and
transferred between components over time. This extension is motivated by the observation
that standard information measures, and even dynamic information measures like transfer
entropy [26-28], are typically treated as atemporal; for example, transfer entropy is used to
quantify the information that one random process X at time ¢ transfers to a second random
process Y at time #+1 by averaging over all time indices. Instead, we consider the information
at each time step to perform a more fine-grained analysis of the temporal structure of informa-
tion flow (for a related approach see [22, 29, 30]).

Experimentally, there are two primary challenges. First, complete sensorimotor circuits
underlying particular behaviors are rarely known. In part, this challenge can be addressed by
focusing on simpler invertebrates. The nematode worm Caenorhabditis elegans, which has one
of the simplest, most consistent and well-studied nervous systems, is uniquely qualified in this
regard. The complete wiring diagram of its nervous system is known [31, 32], it is very well-
characterized genetically [33, 34], it exhibits a rich behavioral repertoire [35-37], and putative
circuits for several of these behaviors have been identified [38]. Second, although recent prog-
ress has been made on methods that allow simultaneous imaging of many neurons in C. elegans
[39], collecting the magnitude of data necessary to accurately estimate all of the time-varying
information measures is still difficult. We address this challenge by performing the analysis on
a previously published computational model of a putative circuit for one of the nematode’s
behaviors [40], since such models can be rerun any number of times under varying conditions
and all relevant variables can be simultaneously recorded.

To demonstrate the utility of this approach, we focus here on salt klinotaxis, a form of che-
motaxis in C. elegans. Klinotaxis involves gradual changes in orientation directed towards the
source [41], and provides a particularly interesting behavior to analyze for two main reasons.
First, although the nematode detects sensory increases and decreases in concentration primar-
ily in different cells [42], the circuit must combine information about the full spectrum of
changes in concentration in order to steer gradually towards the source. Second, klinotaxis
requires state-dependence: the circuit must respond to changes in concentration differently
depending on the direction of its head swing and body posture, thus combining information
from the environment with its own internal state to produce an appropriate response [43]. C.
elegans also exhibits klinotaxis using sensory stimuli other than taste, including temperature
[44], odors [45], and electric fields [46]. Other species, such as the larvae of Drosophila melano-
gaster, are also known to utilize klinotaxis for spatial orientation [47, 48]. A similar strategy has
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also been studied in humans following a scent trail while constrained to sample the environ-
ment through a single point using a nasal prism [49]. Thus, klinotaxis may be a representative
example of state-dependent spatial navigation.

The informational analysis is performed on a previously published model of the salt klino-
taxis circuit in C. elegans [40]. The model is grounded in the available neuroanatomical [31,
32], neurophysiological [42], and behavioral data [41]. The circuit involves four neuron classes:
ASE, ALY, AIZ, and SMB; and the chemical synapses and gap junctions between them (Fig 1).
The unknown electrophysiological parameters of the model, including the sign and strength of
the connections, were optimized by running a large set of evolutionary searches aiming to
reproduce the worm’s behavior. The result of the evolutionary searches was an ensemble of
computational models of klinotaxis, which were analyzed through a combination of parameter
studies and dynamical systems analysis in a previous paper [40].

An information flow analysis of a simple but complete model sensorimotor circuit allows us
to engage two important theoretical issues in neuroscience. The first issue is understanding the
relationship between the information flow and the underlying electrophysiology of the circuit.
Generating time series recordings from the activity of cells in intact organisms is becoming
increasingly common under a number of different conditions. Remarkably, in C. elegans this
includes whole-animal imaging [39] and imaging during freely-moving behavior [50, 51]. Such
time series data is exactly what is required for information theoretic analysis. And thus, such
analysis is likely to become increasingly common. However, despite progress in mapping the
C. elegans connectome [31], a characterization of the relevant biophysical properties, including
voltage-gated channels, synaptic properties, and neuromodulators, lags behind. Because we
have an ensemble of models of the klinotaxis circuit with known parameters, and from which
we can easily generate time-series recordings under any condition, we can explore the relation-
ship between information flow and our mechanistic understanding of the models derived from
knowledge of their neurophysiological parameters.

Even if complete biophysical knowledge about the nervous system were available, the prob-
lem of understanding the general principles by which it operates would remain unaddressed.
This is the second theoretical issue that an information flow analysis of a complete sensorimo-
tor model allows us to engage. In addition to the accelerated acquisition of time series data
from cellular recordings, there is also considerable effort being invested in characterizing the
biophysical properties of the nervous systems of a range of model organisms. What remains
unclear is how to combine these large and diverse data to arrive at principles for how an organ-
ism generates any one specific behavior from the dynamical interaction between its brain, its
body and its environment. This is particularly challenging in light of the individual variability
observed in circuit properties [52-54]. Because the focus of information flow analysis is on the
relationship between the activity of the circuit over time and certain behaviorally-relevant fea-
tures of the environment, information flow analysis has the potential to uncover higher-level
descriptions of the circuit’s operation. Furthermore, because we have access to an ensemble of
model circuits, we can explore the possibility that information flow analysis captures general
properties of the operation of many different klinotaxis circuits, despite substantial variations
in the physiological properties of those circuits.

In addition to these two broader issues, information flow analysis also allows us to address a
number of specific questions about the neural basis of C. elegans klinotaxis. For example,
where does the circuit integrate information about positive and negative changes in concentra-
tion to produce a unified action? What role do the gap junctions play in the operation of the
circuit? How does the circuit combine information from the environment with its own internal
state to steer in the correct direction? As information flows through the circuit, information
about certain changes in concentration are preserved better than others. What specific
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ASE ‘ ASER

Neck

Fig 1. Putative minimal C. elegans klinotaxis circuit (adapted from [40]). Chemosensory class, ASE (white). Interneuron classes: AlY (blue) and AlZ
(red). Neck motor neuron class: SMB (yellow). Neck angle (black). All classes have left and right cells. Motor neurons have additional dorsal and ventral pairs
of cells. Chemical synapses shown as black arrows. Gap junctions shown as red undirected connections. Motor neurons receive an oscillatory input from a
pattern generator (gray). The pattern could be generated either through proprioceptive feedback or from a central pattern generator (see Methods). The
oscillatory input is antiphase for ventral (solid) and dorsal (dashed) motor neurons.

doi:10.1371/journal.pone.0140397.g001
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information does the worm use to steer? We proceed in three phases. We first examine the
overall flow of information about changes in salt concentration through the best model klino-
taxis circuit in our ensemble. We then analyze in detail each layer of the circuit, considering
the specific information carried by each cell and the pathways along which information is
transferred between cells. Finally, we look broadly at the similarities and differences between
the best klinotaxis circuit and the rest of the model ensemble.

Methods
Model

In order to characterize information flow in a simple but complete sensorimotor circuit, the
information analysis in this study was performed on a previously published model of salt klino-
taxis in C. elegans [40]. The model consists of the putative minimal klinotaxis circuit (Fig 1)
connecting the main salt chemosensory neuron class ASE [42] to the neck motor class involved
in modulating the amplitude of the sinusoidal locomotion, SMB [55]. The circuit was identified
by mining the C. elegans connectome [31, 56] and constraining it using existing experimental
and theoretical considerations [40]. Chemosensory neurons were modeled as idealized ON (Eq
1) and OFF (Eq 2) cells using an instantaneous function of a derivative operator applied to the
recent history of attractant concentration (Eq 3) [57]. Interneurons were modeled as passive,
isopotential nodes (Eqs 4 and 5). The model includes chemical synapses and electrical gap
junctions. Chemical synapses were modeled as a sigmoidal function of presynaptic voltage, o
(x) = 1/(1+e ™) [58]. Gap junctions were modeled as a nonrectifying conductance between two
cells [59]. Neck motor neurons were modeled as passive, isopotential nodes with self-connec-
tions representing the voltage dependence of inward currents (Eq 6) [60], and an additional
input from an oscillatory component (Eq 7). The model worm moves forward in undulatory
fashion (Eq 8), driven by the dorsal and ventral motor neurons. The worm is represented as a
single point (x, y) with instantaneous velocity, v (Eq 9). Altogether, the model is specified by
the following set of equations:

d(t), if d(¢) > 0.
VON(t) = {

0, otherwise.

(1)

0, if d(t) > 0.
VOFF(t) = { (2)

—d(t), otherwise.

d(t) — Zi—N C(t) _ Z::(N+M) C(t) (3)

N M
Wown _ _y Von + Vorr + €ay (Vag = Vi) (4)
dr Ayl T Weon, arve) Yon T Wiork, arvr) Vorr T 8ary\ Y aryr AIYL
Wam, _ + (Vi + 0uyr) + g (V. Vi) (5)
| lam W, arzn)9 (Y ammL arvr) T 8arz\ Varzr — VL
av.
T % = _VSMBDL +W(AIZL. SMBDL)O-(VAIZL + QAIZL)

+W(SMBDL, SMBDL) O-( VSMBDL + HSMBDL) + WPG VPG
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Vo = sin(2nt/T) (7)

du
¢ = ar = WNMJ((J (Vaumor + Osuispr) + 0 (Vaumpr + Osvppr)) —

(8)

(O-(VSMBVL + GSMBVL) + O-(‘/SMBVR + QSMBVR)))

(1) = (%%) — (veos(u(t)), vsin(u(1))) )

where c(¢) is the concentration at time t; N and M are the durations of the two intervals over
which the concentration is averaged, referred to as the “rise time” and “decay time” of the sen-
sory neurons, respectively; V; represents the membrane potential for neuron i; 7 is a time con-
stant; o(x) is the synaptic transfer function or output of the neuron; 0; is a bias term for neuron
i, which shifts the range of sensitivity of the output function; wy;, ;) represents the strength of
the chemical synapse from neuron j to neuron i; g, represents the conductance between neu-
rons in class k (gx > 0); wpg represents the strength of the connection from the pattern genera-
tor; T represents the duration of a one cycle of locomotion on agar (T = 4.2sec) [61]; wamy is
the strength of the connection from motor neurons to muscles; and v is a constant speed of
0.022 cm/s [61]. Interneuron classes AIY and AIZ have a left and a right neuron each. Moto-
neuron class SMB has four neurons. Only the equation for one of the neurons in each layer is
shown. The unknown parameters of the circuit were evolved using a genetic algorithm to per-
form klinotaxis behavior when embodied and situated. The parameters of the model were con-
strained to dorsal/ventral, but not left/right, symmetry. The complete procedure for developing
the model, evolving the unknown parameters, and selecting the successful individuals in the
population are described in [40]. The analysis in this paper focuses on that ensemble of suc-
cessful circuits, including the best circuit.

Information Theoretic Analysis

In our previous work [40], we analyzed the evolved solutions using dynamical systems theory.
In this paper, we are interested in measuring the amount of information each of the compo-
nents in the model has about the behaviorally relevant variable: change in concentration.

Information theoretic measurements are often applied to systems with noise, where the
probability distribution is derived from repeated recordings. In a deterministic system, a proba-
bility distribution over the variables of the system can be induced by applying a distribution
over the input of the system. For our analysis, we generated probability distributions by evalu-
ating the circuit’s behavior for a sample of changes in concentration, recording the trajectories
of all neural and bodily state variables for each stimulus presentation. From the values taken on
by each state variable at each moment in time and the corresponding stimuli that produced
them, we estimated a time-varying joint probability distribution p,(s, ) over values of the stim-
ulus feature (s) and the response of each state variable (r).

The informational analysis of the circuit was performed in an open-loop configuration: we
isolated the model organism from the environment, applied stimuli and measured the circuit’s
response over time. We studied the system using two different assays. The first assay, called the
concentration step assay, involved giving the circuit a step in concentration, A, at a specific
time, a method that is common experimentally [42, 60, 62, 63]. The second assay, called the
information clamp assay, involved giving the circuit a constant change in concentration, ¢, for
the entire stimulus duration. Unlike sensory neurons and interneurons, SMB motor neurons
receive a sinusoidal input that represents the pattern generator driving the undulatory wave of
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locomotion. Therefore, the information response profiles for the motor neurons are time-
dependent. As ASE responds to changes in concentration, a constant change in concentration
means that ASE produces a constant output. The information clamp assay, thus, allows us to
explore the specific role played by the sinusoidal input in regulating the flow of information in
the SMB neck motor neurons.

For the main informational analysis, the sample used to generate the probability distribu-
tion for each variable was chosen from a uniform distribution, calibrated to the ranges experi-
enced by the model worm during simulated klinotaxis (between +0.01). We chose a uniform
distribution because it is the distribution that has been applied experimentally to the study of
the chemosensory neurons in the klinotaxis circuit [42]. We also analyzed the flow of informa-
tion in the circuit using the empirical distribution of stimulus that the model receives during
klinotaxis behavior. The empirical distribution was generated from repeated simulations.

As the model is continuous, in order to use discrete information theory we discretized the
measurements. The time-varying probability distributions were estimated over a fine grid of
possible stimulus values and synaptic output values. For the analysis, we used 2200 stimulus
presentations, and a grid of 50 bins for the synaptic output values. We also used a kernel den-
sity estimation technique known as average shifted histograms [64], with 12 shifts along each
dimension. The resulting quantities of information depend on bin size, which is typically deter-
mined using the noise floor from the recordings of the system. For the purposes of our analysis,
we were only interested in the qualitative properties of the information analysis. Therefore, we
verified that the results of our analysis were qualitatively robust (i.e., the overall pattern of the
flow was preserved, including the relative orderings of magnitudes and the locations of the
minima and maxima) over a wide range of grid resolutions (from 20 to 200 bins).

Typically information is measured in bits. Since we are concerned here with comparing how
much information different components in the system have about the same random variable
(i.e., the stimulus), all informational quantities were normalized by the entropy of the change
in concentration sampled, H(S) = -¥; p(s;) log p(s;). Therefore, we obtained measures that run
from 0 to 1. A measure of 0 indicates that the stimulus is completely indistinguishable from
other stimuli based on knowledge of the observed component, while a measure of 1 indicates
that the stimulus can be uniquely determined from knowledge of the observed component.

In order to evaluate how much information various components of the sensorimotor system
have about changes in concentration, we first calculated their mutual information. Mutual
information is a measure of the dependence between two random variables, S and R; it quanti-
fies the amount by which a measurement on one of the variables reduces our uncertainty about
the other, defined as

I(S;R) = p(s;,r))log m (10)

where p(s, r) gives the joint probability distribution of S and R; S corresponds to the stimulus
feature, in this case the change in concentration (¢, Ac); and R corresponds to the response of
the various components in the system: the membrane potential of the chemosensory cells
(Von» Vorr), the synaptic output of each of the neural cells (o(V, + 0,) for e € {AIYL, AIYR,
AIZL, AIZR, SMBDL, SMBDR, SMBVL, SMBVR}) and the worm’s neck angle (¢).

Shannon’s mutual information averages across all measurement outcomes. But we are also
interested in characterizing how much information the response of a component in the system
has about the different specific stimuli. In order to perform a more fine-grained analysis of
informational relationships, we use a measure of specific information [14, 15]. Unfortunately,
there is no general consensus in the literature about the best way to do this. Indeed, an infinite
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number of measures exist that satisfy the basic requirement of measure of specific information
while differing in their details. For our analysis, we adopted the most commonly used measure
of specific information in the literature [16-18],

1

1
I(S=s;R) = rls;) | log — — log ——
(S=s:R) = p(r]s)|log 8 05

]. ) ()
where p(s|r) gives the conditional probability of s given r. This measure of specific information
quantifies the expected reduction in surprise about s given knowledge of R.

We are also interested in characterizing how information travels through the circuit. In
order to do this, we needed to measure the amount of information transferred from one com-
ponent of the system to another. Transfer entropy provides a general measure of the influence
that one process has on another [26], defined by:

T = I(Xt; Yt—l‘Xt—l) (12)

Y—X

where Y, represents the state of Y at time £, and likewise for X. Transfer entropy quantifies the
information that the previous state of Y provides about the next state of X when conditioned
on X’s own history. Since our model is deterministic, we consider information transfer only
from the previous state of Y while conditioning on only the previous state of X.

Finally, we are interested in characterizing how information is carried by individual compo-
nents and transferred between components over time. Standard information measures, and
even dynamic information measures like transfer entropy [26-28], are typically treated as
atemporal. As we generated time-varying joint probability distributions, we can easily consider
these measurements over time to perform a more fine-grained analysis of the temporal struc-
ture of information flow [12].

Results
Overall Flow of Mutual Information

As a foundation for the more detailed analysis to follow, we begin with a brief overview of the
overall flow of information about changes in concentration. We focus on the best performing
klinotaxis circuit generated in previous work [40]. We start with the overall flow of information
about the magnitude of a step change in concentration, Ac (Fig 2). Specifically, we calculate the
time-varying mutual information I(Ac;e(t)) for each element e of the system assuming a uni-
form distribution over Ac. We proceed by layers (Fig 1), from the chemosensory neurons
(ASE), through the two layers of interneurons (AIY and AIZ), to the motor neurons (SMB),
and ultimately to the neck.

The ASE class of chemosensory neurons detect Ac directly. Although ASEL is only sensitive
to positive values of Ac and ASER is only sensitive to negative values of Ac, their responses are
otherwise identical: The rise in mutual information is sharp, and the information remains rela-
tively stable for over half the locomotion cycle, after which there is a slow decay (ASE, red trace
overlaps the blue trace Fig 2). Thus, despite their functional specialization, the ASE responses,
viewed at the coarse level of overall mutual information, are indistinguishable.

The information response profiles for the interneurons are more interesting. Unlike for the
ASE sensory neurons, the AIY interneurons exhibit a left/right asymmetry in the information
that they carry about Ac (AIY, Fig 2). This is somewhat surprising since both AIY neurons
receive chemical synapses from both ASE neurons. Although the asymmetry in information is
possible because the parameters of the model were not constrained to be left/right symmetric,
asymmetry in the parameters does not limit the informational profile to be asymmetric. Even
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Fig 2. Overall flow of mutual information for concentration step assay. The top row illustrates the input to the circuit, salt concentration [c] over time.
Normalized mutual information is shown for each element of the system as a function of time. For each neuron class (ASE, AlY, AlZ, SMB), the blue and red
traces represent the mutual information in the left and right cells, respectively. The purple trace represents the information in the neck. The gray traces
represent the oscillatory input from the pattern generator (PG) to the ventral (solid) and dorsal (dashed) motor neurons. The dashed brown lines illustrate:
onset of stimulus (a), onset of neck response (b), end of sensor response to stimulus (c), and end of neck response (d). Mutual information is shown for two
full locomotion cycles (8.2 secs). Example neuron output traces can be seen in Fig 6 of our previous work [40].

doi:10.1371/journal.pone.0140397.9002

N

more surprising, given the information asymmetry in AIY, information is symmetric in the
next layer, with AIZL and AIZR exhibiting similar information profiles (AIZ, Fig 2). Both of
these informational features—asymmetry in AIY and symmetry in AIZ—turn out to be quite
common across the ensemble of high-performing klinotaxis circuits. An important goal for our
detailed analysis in the next section will be to examine the distinct informational pathways
underlying these features.

Two additional factors complicate the informational analysis of the motor neurons (SMB,
Fig 2). First, unlike the sensory neurons and interneurons, the SMB class receives a sinusoidal
input representing the pattern generator that drives the undulatory wave of locomotion (PG,
Fig 2). Second, there are four SMB cells arranged symmetrically about the worm’s body: dor-
sal-left (SMBDL), dorsal-right (SMBDR), ventral-left (SMBVL), and ventral-right (SMBVR)
cells. Since the worm locomotes on its side, dorsal and ventral pairs receive anti-phase oscil-
latory input. For these reasons, the information response profiles for the motor neurons are
complex and phase-dependent, and will be examined in detail in the next section.

Ultimately, information from all four SMB motor neurons is integrated by the body to pro-
duce a change in neck angle. Since these motor neurons are driven by the oscillatory pattern
generator, we might expect the information that the neck angle carries about Ac to exhibit oscil-
lations as well. However, the information in the neck actually holds relatively constant at a
high value throughout the response (Neck, Fig 2), with one exception: the information drops to
essentially zero briefly around the midpoint of the locomotion cycle. This dip in information is
the result of assumptions built into our model, which are discussed within the context of the
detailed analysis of the neck.
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How long does it take for information to travel through the system? The overview in Fig 2
highlights the various timescales of information flow within the circuit. As an approximation
of the propagation time through the entire circuit, the delay from the change in concentration
to the initial response of the neck is 0.16 secs (a to b, vertical dashed lines, Fig 2). Information
about Ac is available in the sensors for 1.9 secs (a to ¢), but persists in the model worm for an
additional 0.65 secs after the sensory response ends (c to d), giving the approximate duration of
state-dependence in the circuit. The total duration of the neck response is 3.4 secs (b to d),
which corresponds to about 3/4 of a locomotion cycle. These informational timescales play an
important role in understanding how this embodied circuit achieves reliable orientation when
situated in a chemical environment.

Finally, by viewing the entire network as an information channel, we can examine how well
information is preserved through each layer of processing. This is best done using the informa-
tion clamp assay, in which we consider a constant change in concentration ¢ and compute I
(& I(r)) for the set of elements in layer / assuming a uniform distribution over ¢. Of course, the
ASE layer has perfect information about ¢ (gray, Fig 3). The largest loss of information occurs
in the first interneuron layer, with AIY still preserving 80.2% of the available information in
ASE (blue). Most of the information in AIY is preserved by the AIZ layer, which contains
76.3% of the original information (red). Due to the oscillating pattern generator input, infor-
mation in the SMB layer fluctuates between 58.2% and 76.2% of the original information
(orange), while the information preserved in the neck angle fluctuates between 0.08% and

Mutual information

7T/2 7T 371/2 27T

Phase

Fig 3. Information preservation during information clamp assay. Mutual information is shown for each of the classes in the network: ASE (gray), AlY
(blue), AlZ (red), SMB (orange), and neck angle (black). Traces are shown for one cycle of locomotion.

doi:10.1371/journal.pone.0140397.9003
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58.6% (black). Averaged over a locomotion cycle, the neck angle contains about 48.4% of the
original information. Functionally, the information in the neck guides behavior. Therefore, we
can say that the system as a whole preserves about half of the information about ¢ that was orig-
inally available from the sensors.

Analysis by Neuron Class

Overall mutual information provides a broad foundation for understanding information flow
in the network. In this section we analyze in more detail the information flow through each
layer of the circuit. In particular, we study (a) the specific information that each neuron pro-
vides about particular changes in concentration; and (b) the pathways along which information
is transferred from one neuron to another.

Information is Specialized in ASE. We begin with the ASE chemosensory neurons. Since
ASE responses are directly driven by changes in concentration, their informational analysis is
straightforward. We use specific information to calculate the mutual information in ASE cells
across different values for the change in concentration. Specifically, we compute the specific
information that ASEL and ASER provide about Ac as a function of the concentration step size
k: I(Ac = k; ASEL) and I(Ac = k; ASER), respectively. Since ASEL and ASER detect only positive
and negative concentration steps, respectively, it is not surprising that their specific informa-
tion profiles reflect this pattern (Fig 4). Somewhat counterintuitively, each sensory neuron also
provides a small amount of information about the stimulus range that it does not detect
(smaller ridges in Fig 4). This is due to a kind of negative logic: for example, knowing that
ASEL is off tell us that Ac < 0, which rules out half of the possible stimulus values and thus pro-
vides one bit of information about the stimulus. We call neurons such as these informationally
specialized since they provide information about largely non-overlapping ranges of stimulus
values.

Information is Asymmetric in AIY. Unlike the ASE sensory neurons, the AIY cells
exhibit a strong asymmetry in the amount of information that each cell carries about changes
in concentration. This asymmetry can be seen quite clearly in plots of specific information for
AIY (Fig 5A). Although AIYL has more information about positive than negative steps, it
maintains high information across the full range of Ac. In contrast, AIYR contains information

ASEL ASER

LT7
77557
% "t"‘;”"'
2752757
1.0 1.0 54885802
Specific Specific "' ""
information 0.5 information 0.5 i
7
0.0 4 Time . 27 /4 Time
-0.01 -0.0
0.010 0.010

Fig 4. Information analysis for ASE during concentration step assay. Specific mutual information for left, /(Ac = k;ASEL), and right, /(Ac = k;ASER), cells
over time.

doi:10.1371/journal.pone.0140397.9004
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Fig 5. Information analysis for AlY during concentration step assay. (A) Specific mutual information for left, /(Ac = k;AlYL), and right, /(Ac = k;AIYR),
cells over time. (B) Transfer entropy. Black and gray traces represent the transfer entropy to AlY through the chemical synapses from ASER and ASEL,
respectively. Red traces represent the transfer entropy from the contralateral AlY cell through the gap junction.

doi:10.1371/journal.pone.0140397.9005

only about the largest positive steps (Fig 5A). We call neurons such as these informationally
asymmetric since the information carried by one dominates the information carried by the
other across the full range of stimulus values.

What is the origin of the informational asymmetry in the AIY layer? There are two possible
pathways of information flow into the AIY cells: a direct route from ASE through the chemical
synapses, and an indirect route from the other AIY cell through the gap junction between them
(Fig 1). Using transfer entropy, we can quantify the contributions of these different pathways
(Fig 5B). Overall, there is more information transferred into AIYL (left panel) than into AIYR
(right panel). The AIYL neuron receives information from both ASE chemosensory neurons
about positive and negative changes in concentration through the chemical synapses. The
ATYR neuron, however, receives information from only one of the chemosensory neurons,
ASER. And although there is information transferred from AIYL to AIYR via the electrical
connection, the transfer is not sufficient to close the informational gap between the two cells.
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To confirm this, we measured the mutual information when blocking the AIY gap junction
and observed no change in the informational asymmetry (S1 Fig).

What explains the observed informational asymmetry in AIY? The saturating nonlinearity
of the synaptic transfer function (see Methods) constrains the cell to respond to changes in
concentration within a certain range. This range is a function of each cell’s bias parameter in
relation to the strength and sign of the incoming chemical synapses from the chemosensory
neurons. Therefore, to understand the observed asymmetry between the two AIY cells, we have
to analyze the parameters of the cells that determine their dynamical behavior (S2 Fig).
Although the pair of incoming chemical synapses from ASEL and ASER are of similar strength
and polarity for both AIY cells, the bias of the AIYR cell is far more negative than that of the
ATYL cell, whose response range is nearly centered in the range of possible net input. It is this
difference in the intrinsic properties of the AIY cells that creates the informational asymmetry.

Information is Symmetric in AIZ. Despite the strong information asymmetry in the AIY
layer, the information profiles become symmetric in the AIZ cells (Fig 6A). We call neurons

AlZL AlZR
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Fig 6. Information analysis for AlIZ during concentration step assay. (A) Specific mutual information for left, /(Ac = k;AlZL), and right, /(Ac = k;AIZR), cells
over time. (B) Transfer entropy. Black trace represents the transfer of information from AlY to AlZ through the chemical synapse. Red trace represents the
transfer of information from the contralateral AlZ cell through the gap junction.

doi:10.1371/journal.pone.0140397.9006
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such as these informationally symmetric since they each carry approximately the same amount
of information across the full range of stimulus values.

What is the origin of this informational symmetry in the AIZ layer? There are again two
pathways: a direct route through the chemical synapse and an indirect route through the gap
junction (Fig 1). Using transfer entropy, we can quantify the contributions of these different
pathways (Fig 6B). Immediately after the step occurs, AIZL receives the majority of information
directly through the chemical synapse (black trace, left panel). In contrast, AIZR receives its
information not through the chemical synapse (black trace, right panel), but rather through the
gap junction (red trace, right panel). Thus, unlike in the AIY cells, the AIZ gap junction plays a
major role in establishing the information profile in the AIZ layer. To confirm this, we measured
the mutual information when blocking the AIZ gap junction and observed a substantial change
in the information in AIZR that left the two cells informationally asymmetric (S1 Fig).

What explains the difference in information transfer between the AIY and the AIZ gap junc-
tions? The gap junction connects two cells electrically so that current flows from the cell with
more charge to the cell with less charge. As a result, the membrane potential of the two cells
tend to equalize. Once equalized, any change in potential in one of the cells will cause a change
in the potential of the other cell. Due to the nonlinearity of the synaptic transfer function, how-
ever, whether a change in potential will have an impact in the synaptic output (and thus down-
stream of the circuit) depends on where the potential is with respect to the sensitive region of
the transfer function. This is determined by the cell’s bias parameter. Therefore, similarity of
the bias parameter facilitates information exchange via a gap junction. In the case of AIY (S2
Fig), the difference in the bias of the left and right cells is such that any changes in potential in
AIYR as a result from changes in potential in AIYL transmitted via the gap junction are lost
due to the nonlinearity of AIYR’s synaptic transfer function. On the other hand, in the case of
AIZ (S3 Fig), the similarity in the bias of the left and right cells is such that changes in the
potential of AIZR as a result from changes in potential in AIZL transmitted via the gap junc-
tion results in effective changes to AIZR’s synaptic output.

Information Gating in SMB. Since the SMB neurons receive input from an oscillatory
pattern generator in addition to the chemical synapses from the AIZ layer (Fig 1), their
response to a concentration step Ac depends on the phase ¢ of the oscillation when the step
occurs. One way to visualize this phase dependence is to plot I(Ac;;SMB;) for each SMB neuron
as a function of ¢ (Fig 7A). In order to simplify the plot, we show I(Ac;;SMB;) only at a fixed
delay of 50 msec after a step occurs, which corresponds to the time it takes the information in
the AIZ neurons to stabilize after a step (AIZ, Fig 2). Here we see that each SMB neuron acts as
a kind of gate, allowing Ac information from the AIZ layer to pass through at some phases, but
blocking or strongly attenuating it at others. Of course, examining this effect at a single delay
gives a very limited window into what is in fact a temporally-extended response. In order to
visualize the cumulative effect of this response, we can average plots like Fig 7A over all possi-
ble delays for a full locomotion cycle (Fig 7B). Although the gating is seen less sharply in this
case, the phase dependence of information transmission from the SMB layer is still quite clear.

Antiphase information gating in the dorsal and ventral motor neurons is responsible for the
state-dependent response that allows the model worm to steer. A change in concentration
received at different phases of locomotion produces identical chemosensory signals that are
sent simultaneously to both the dorsal and ventral motor neurons, yet these signals have asym-
metrical effects that allow the model worm to undergo either a dorsal or ventral turning bias,
as appropriate for orienting correctly to the gradient. For example, if an increase in concentra-
tion received during a dorsal-to-ventral sweep attenuates dorsal turning, then the same
increase in concentration received during a ventral-to-dorsal sweep should instead attenuate
ventral turning. By opening and closing the flow of information through the dorsal and ventral
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Fig 7. Information gating in SMB motor neurons during concentration step assay. (A) Mutual information for each SMB neuron as a function of the
onset of the concentration step relative to the phase of locomotion. The mutual information is measured at a fixed delay of 50 msec after the step occurs. Left
cells shown in blue. Right cells shown in red. Ventral (solid) and dorsal (dashed) traces. (B) Mutual information averaged over time as a function of the onset
of the concentration step relative to the phase of locomotion.

doi:10.1371/journal.pone.0140397.9007
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Fig 8. Information analysis in left and right pairs of SMB cells during information clamp assay. Specific mutual information for left, /(¢ = k;SMBL), and
right, /(¢ = k;SMBR), pairs over time. Surfaces shown for one cycle of locomotion.

doi:10.1371/journal.pone.0140397.9008

motor neurons in antiphase, the worm generates different responses to the same stimuli
depending on its phase of locomotion.

In order to understand how information gating is implemented at the neuronal level, we
need to consider the synaptic transfer functions for the motor neurons (54 Fig). From previous
work [40, 43], we know that the sensitive region of the synaptic transfer functions of the motor
neurons are shifted relative to the range of the oscillatory input. Consequently, when the dorsal
motor neurons are in their sensitive region, the ventral motor neurons are not, and vice versa. It
is this alternating pattern of saturating nonlinearity in the SMB cells that explains the informa-
tion gating: while motor neurons on one side transfer information to the neck openly, motor
neurons on the opposite side of the worm block the flow of information by saturating its output.

Finally, we examine how information about changes in concentration is distributed across the
individual SMB cells. In order to more easily visualize the corresponding specific information, we
make two simplifications. First, we switch to the information clamp assay in order to remove the
phase dependence of the cell’s response to the concentration step assay. Second, we consider the
dorsal/ventral pairs jointly on each side. This simplification is motivated by the fact that, because
the network parameters are dorsal/ventral symmetric (see Methods), the dorsal/ventral informa-
tion profiles on each side are identical except for a phase shift, whereas the left/right profiles are
quite different (Fig 7B). The resulting plots of I(¢ = k;SMBL) and I(¢ = k;SMBR) are shown in Fig
8. Note that the ¢ information in the right SMB motor neurons is strongly biased toward
increases in concentration, whereas information in the left SMB motor neurons is strongly biased
toward small decreases in concentration. However, despite this apparent specialization, SMBR
carries more information than SMBL across the range of stimulus values. In the case of positive
changes in concentration, SMBL carries no information, whereas SMBR carries some. In the case
of negative changes in concentration, SMBR carries a similar amount of information as SMBL, so
that a lot of the information about negative changes in SMBL is shared by SMBR. Thus, most of
the information carried by the SMB layer resides in the SMBR pair, with the SMBL pair making
only small contributions at very specific points in time.

Functional Information in the Neck

The neck integrates information from the SMB motor neurons, converting it to a neck angle
that steers physical movement. Like the motor neurons, the information profile of the neck
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Fig 9. Information analysis in the neck during information clamp assay. (A) Specific information over time, /(¢ = k;6). Surface shown for one cycle of
locomotion. (B) Specific information averaged over time as a function of the change in concentration, calculated using a sample of the stimulus feature
chosen from a uniform distribution (blue) and from the model-generated empirical distribution shown in panel D (yellow). (C) Specific information averaged
over time as a function of the worm’s instantaneous orientation with respect to the implied peak of the gradient (red disk, O degrees). Data shown only from 0
to 180 degrees due to symmetry. (D) Empirical distribution of changes in concentration perceived by the simulated worm during a typical klinotaxis run.

doi:10.1371/journal.pone.0140397.9009

also varies across the locomotion cycle due to the oscillation of the pattern generator. Using the
information clamp assay, we examine how information about concentration changes in the
neck angle varies with both time and stimulus, with particular interest in the behavioral signifi-
cance of these variations.

What information does the neck carry about the stimulus in the environment? To answer
this question we turn to the specific information in the neck, I(¢ = k;0), as shown in Fig 9A.
The first thing to note is that, despite the oscillatory information from SMB cells, the informa-
tion in the neck angle remains remarkably consistent over time. This suggests the neck inte-
grates successfully information from all motor neurons. The brief drop in information is due to
the dorsal/ventral symmetry of the SMB cells. When the pattern generator crosses zero halfway
through the locomotion cycle, the activity of dorsal and ventral SMB cells is the same, and
therefore the neck has no information about which way to turn. Functionally this corresponds
to the transition between ventral and dorsal bending in the neck. The second notable feature of
specific information in the neck is its variation with ¢. Given the consistency of this informa-
tion over time, the variation is best visualized by averaging over a locomotion cycle (blue trace,
Fig 9B). Two properties immediately become clear from this plot. First, the neck has more
information about small changes in concentration than about larger changes. Second, the neck
carries more information about positive changes in concentration than about negative changes.
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In order to make sense of these results, we must place them within the context of the worm’s
behavior.

In a freely moving worm, concentration changes result from the instantaneous movement
of the worm’s head relative to the peak of the gradient. Fig 9C shows the time-averaged specific
information in the neck as a function of the orientation of the head with respect to the direction
towards the gradient peak (red disk). Note that the circuit receives the most information when
the head is moving perpendicular to the direction of the gradient peak (90 degrees). Note also
that the circuit has more information about concentration changes when the head is moving in
the direction of the peak (0 degrees), than when moving away from it (180 degrees). This indi-
cates that not all directions of movement are equally informative for the worm; movements
perpendicular to the peak of the gradient, which generate only small changes in concentration,
turn out to be the most informative.

Interestingly, the distribution of concentration changes encountered by a freely-moving
worm engaging in klinotaxis behavior (Fig 9D) has a remarkably similar structure to the aver-
age specific information carried by the circuit (Fig 9B), with both having peaks at ¢ ~ 0 and a
bias toward positive changes in concentration. In other words, the freely moving worm spends
the majority of each run moving perpendicular or towards the gradient peak, and the informa-
tion extracted by the klinotaxis circuit (Fig 9B) is well-tuned to the corresponding distribution
of concentration changes encountered during klinotaxis behavior (Fig 9C).

In the absence of any experimental characterization of the actual distribution of concentra-
tion changes encountered by a worm performing klinotaxis, analyzing information flow under
the assumption of a uniform distribution of sensory inputs is the best that one can do. How-
ever, we can use the distribution of concentration changes encountered by our model (Fig 9D)
as an estimate of the corresponding distribution for the worm and then re-analyze the informa-
tion flow using this predicted empirical distribution. When this is done, we observed that the
specific information in the neck is more uniform across all stimulus values (yellow, Fig 9B), in
contrast with the more highly skewed information with the uniform distribution (blue, Fig 9B).
This seems consistent with the idea that the network has been optimized for the statistical
structure of its environment. The specific information takes into account both how well a given
stimulus is encoded and how “surprising” (i.e., improbable) it is, or equivalently, how much
information we stand to gain by learning its value. Therefore, a more uniform distribution of
specific information values with the empirical distribution suggests the neck carries more
information about less surprising stimuli and less information about more surprising stimuli.

Information architecture

Our detailed examination of the best circuit allows us to characterize its general pattern of
information flow, which we will refer to as its information architecture (Fig 10B). The informa-
tion architecture provides a static summary of the flow of information through the circuit. Sev-
eral of the previously identified features are apparent from this diagram. First, we see that
information is specialized in the two ASE cells. It is then transferred through the chemical syn-
apses and combined in ATYL. AIYR receives little to no information through either of the
chemical synapses or the gap junction. The information in AIYL is transferred through the
chemical synapse to AIZL, and is then transferred through the gap junction to AIZR. Both AIZ
cells transfer their information to the SMB cells downstream, although more is transferred
from AIZR to SMBR. Finally, the SMB cells transfer information to the neck.

Interestingly, we can contrast the information architecture with the underlying parameters
of the circuit (Fig 10A). For example, from the strengths of the incoming connections to ATY
alone, we would expect information to be symmetrical in the AIY layer, rather than the
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Fig 10. Structure and function in the best evolved circuit. (A) Structural architecture. The strength of the chemical and electrical connections in the circuit
are represented by the thickness of the lines connecting the nodes. Excitatory chemical synapses are shown in blue. Inhibitory chemical connections are
shown in magenta. Gap junctions are shown in red. Unlike chemical synapses, gap junctions are undirected. The bias of the cells are represented by the
shade of gray of the node. The bias tunes the relationship between the cell’'s membrane potential and it's synaptic output, and is only shown for cells AlY,

AlZ, and SMB (see Methods). (B) Information architecture. The average amount of information in each cell is represented by the opacity of the node. The type
of specific information in each cell is represented by the color of the node, and was calculated using the time-averaged specific information. The proportion of
blue/red indicates the amount of information the cell carries about positive/negative changes in concentration, respectively. The amount of information
transferred between two cells is represented by the thickness of the arrows, and is calculated using the time-averaged transfer entropy. For ASE, AlY, and
AlZ cells, we used the concentration step assay. For SMB cells and the neck, we used the information clamp assay.

doi:10.1371/journal.pone.0140397.g010

observed asymmetry discussed previously within the context of the detailed analysis of AIY.
Also, from the strengths of the gap junction, we would expect transfer to be stronger between
the ATY cells than between the AIZ cells, rather than the other way around as discussed previ-
ously within the context of the detailed analysis of AIZ. Therefore, the information architecture
of a circuit does not follow intuitively from the circuit’s structure. And in some cases, the infor-
mation architecture can be rather different than the structural circuit. Ultimately, knowledge of
the structural and information flow architectures of a circuit provide complementary insight
into the operation of the circuit.

Similar Information Architecture from Disparate Parameters

Up to this point, we have examined in some detail the information flow of the best circuit only.
However, the complete ensemble of successful klinotaxis circuits contains many others with
comparable performance [40]. Interestingly, the individual neuronal parameter values in the
ensemble vary widely from circuit to circuit (Fig 11). In this section, we examine the extent to
which the information architecture of the best circuit is representative of this neurophysiologi-
cally diverse set of successful circuits. We focus on the ensemble of highest-performers
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Fig 11. Cellular and synaptic properties of the ensemble of successful klinotaxis networks. (A) Principal component projection. The first three principal
components capture 52.1% of the variance in the ensemble. There is no clear clustering of networks in this space. (B) Distribution of the chemical synapses
(CS) and gap junctions (GJ) in the ensemble. Most connection strengths vary over the allowable ranges.

doi:10.1371/journal.pone.0140397.g011

generated in previous work [40]. Specifically, we compare the information response profiles of
the best circuit to the mean + standard deviation response profiles of the ensemble.

The information profiles of the ASE, AIY and AIZ cells are shown in Fig 12 for the concen-
tration step assay. The most important thing to notice about these plots is the strong similarity
between the profiles of the ensemble mean (solid trace) and those of the best circuit (dotted
trace). First, the rise in Ac information in ASE is sharp and persists for a little over half a loco-
motion cycle (Fig 12A). Second, only one of the AIY cells integrates Ac information, consis-
tently creating a strong left/right information asymmetry in this layer of the circuit (Fig 12B).
Finally, Ac information is consistently symmetric across the AIZ cells (Fig 12C).

The striking similarities between the best circuit and the ensemble average continue when
we examine the pattern of information transfer between layers (Fig 13). In the AIY layer, the
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Fig 12. Mutual information during concentration step assay in the population of successful circuits.
(A) Chemosensory neuron ASE: left (blue) and right (red) cell. (B) Interneuron AlY: cell with highest mutual
information in blue, the other cell in red. (C) Interneuron AlZ: cell downstream from the AlY cell with highest
mutual information in blue, the other cell in red. Mean (solid trace) and standard deviation (shaded area) for
the ensemble of successful networks. Mutual information for the best circuit shown as a dotted trace.

doi:10.1371/journal.pone.0140397.g012
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Fig 13. Transfer entropy in the population of successful circuits. (A) Through chemical synapses from ASE to: AlY cell with most information (blue), and
to the AlY cell with lowest information (red). The traces show the mean (solid trace) and standard deviation (shaded area) for the chemical synapses from
both ASE cells. (B) Through chemical synapse from the AlY cell with most information to the AlZ cell downstream (blue), and from the AlY cell with lowest
information to the AlZ cell downstream (red). (C) Through the AlY gap junction: from the cell with most information to the cell with lowest information (blue),
vice versa (red). (D) Through the AlZ gap junction: from the cell downstream of the AlY cell most information to the cell downstream of the AlY cell with lowest
information (blue), vice versa (red). Mean (solid trace) and standard deviation (shaded area) for the ensemble of successful networks. Transfer entropy for

the best circuit shown as a dotted trace.

doi:10.1371/journal.pone.0140397.9013

Ac information is consistently transferred into the primary AIY cell via the chemical synapses
from ASE (Fig 13A), with the gap junction playing a secondary roll (Fig 13B). In addition, in
the AIZ layer, the Ac information is first transferred from the primary AIY cell to the down-
stream AIZ cell via the chemical synapse (Fig 13C), and only then transferred via the gap junc-
tion to the other AIZ cell (Fig 13D). Thus, as in our analysis of the best circuit, we see that the
gap junctions consistently play a major role in balancing information in the AIZ layer.

Despite greater variability in the information profiles for the SMB layer, there are still strong
similarities between the best circuit and the ensemble average. For example, the concentration
step assay reveals clear evidence of Ac information gating in the SMB layer across the ensemble
(Fig 14A and 14B). In addition, as with the best circuit, an analysis of mutual information for
the information clamp assay demonstrates a left/right asymmetry in SMB across the ensemble,
with one side consistently providing more information about ¢ than the other (Fig 14C). How-
ever, we also see evidence that the best circuit is a bit of an outlier in the SMB layer: the ensem-
ble has more balanced information in the left/right pairs than does the best circuit.

Finally, we consider information about ¢ in the neck using the information clamp assay (Fig
15). Despite the outlier status of the best circuit in the SMB layer, at the neck the ensemble
mean information profiles are very close to those of the best circuit, with relatively small
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Fig 14. Information gating in the population of successful circuits. (A, B) Mutual information for each
SMB neuron as a function of the phase of locomotion when the step in concentration is given, at a fixed delay
of 50 msec after the step occurs. The four motor neurons are organized in two ways. The dorsal pair and
ventral pair are categorized by their phase: Dorsal/ventral pairs with highest mutual information around  of
the locomotion phase (A), pairs with highest mutual information around 0/21 (B). The left and right motor
neurons are categorized by the cumulative information they carry: The cell with highest information is shown
in blue, the other cell is shown in red. Mean (solid trace) and standard deviation (shaded area) for the
ensemble of successful networks. (C) Mutual information for the joint left and right pairs during information
clamp assay. Pair with highest mutual information shown in red, other pair shown in blue.

doi:10.1371/journal.pone.0140397.g014
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Fig 15. Functional information in the neck during information clamp assay in the population of successful circuits. (A) Mutual information over time
shown for one cycle of locomotion. (B) Specific information averaged over time as a function of the change in concentration. Mean (solid trace) and standard
deviation (shaded area) for the ensemble of successful networks. Best circuit (dotted trace).

doi:10.1371/journal.pone.0140397.9015
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dispersion. Specifically, as in the best circuit, the mean amount of information about ¢ across
the ensemble remains relatively constant throughout the locomotion cycle, preserving about
half of the original information available from the chemosensors (Fig 15A). In addition, the
mean amount of specific information about particular values of ¢ across the ensemble, averag-
ing over one locomotion cycle, is peaked at ¢ = 0 and higher for increases in concentration
than for decreases, as in the best circuit (Fig 15B).

We conclude from this analysis that the results obtained from the best klinotaxis circuit are
in fact fairly representative of the entire ensemble of successful circuits (see Fig 10B). This is a
somewhat surprising conclusion, given the large variations in synaptic strengths, intrinsic neu-
ronal properties (Fig 11), and circuit dynamics across the ensemble [43]. The consistency of
the information flow architecture across the ensemble suggests that information flow analysis
may be particularly well-suited for capturing general principles of operation that cut across the
substantial variability and complex idiosyncrasies of individual klinotaxis circuits.

Discussion

In this paper, we set out to analyze how information about changes in salt concentration flows
through a putative minimal circuit for C. elegans klinotaxis [40, 65]. Our goal was to demon-
strate how the tools of information theory can be used to characterize the flow of information
throughout a complete sensorimotor circuit: from stimulus, to sensory neurons, to interneu-
rons, to motor neurons, to muscles, to motion. We proceeded in three stages. First, we exam-
ined the overall flow of information by calculating mutual information across time for each
component of the best circuit. Second, we analyzed in detail each layer of this circuit. We con-
sidered information across stimulus values for each cell, and we quantified information transfer
between individual circuit elements. Finally, we considered the similarities and differences
between the best klinotaxis circuit and the rest of the model ensemble.

Information flow analysis gave insight into specific questions about the neural basis of salt
Kklinotaxis in C. elegans, centered around two issues that make this behavior particularly inter-
esting. First, given the functional asymmetry of the ASE chemosensory cells [42], the klinotaxis
circuit has to integrate information about positive and negative changes in concentration. How
is this integration achieved? Second, unlike klinokinesis [66], the other chemotaxis strategy
that the worm employs, klinotaxis requires state-dependence: the network has to combine
information from the environment with its own internal state to produce an adequate response
[43]. How does this integration occur?

Given that information about positive and negative changes in concentration is segregated
in the chemosensory neurons (ASEL detects upsteps in salt concentration and ASER primarily
detects downsteps in salt concentration [42]), the klinotaxis circuit must ultimately integrate
this information in order to steer. In principle, integration could occur in any layer of the mini-
mal circuit. However, given that each AIY cell receives connections from both ASE chemosen-
sors [31], the AIY layer is in the most favorable position. There are several different ways that
integration could be achieved in the AIY layer: (1) Both AIY cells could integrate concentration
information via the chemical synapses from ASE; (2) One AIY cell could integrate the informa-
tion via its chemical synapses and then pass it to the other via the gap junction between them;
(3) Only one AIY cell could integrate the concentration information. Of these three possibili-
ties, option (3) requires the fewest parameters to be tuned and it is this option that we consis-
tently found in our model ensemble. Thus, our analysis makes a specific prediction about the
information profile in AIY. Given the ubiquity of this profile in the ensemble, a failure of this
prediction would suggest that the assumptions behind the minimal model need to be revisited.
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Strictly speaking, the integration of ASE information is only necessary if we assume that
access to high amounts of information about the entire range of concentration changes is
required for successful klinotaxis. Our analysis showed that, although each sensory neuron
provides perfect information about only half of the range of concentration changes, each sen-
sory neuron also provides a small amount of information (1 bit) about the other half of the
range. This suggests that either chemosensory neuron alone could in principle drive at least a
rudimentary form of the behavior if only a small amount of information about the entire range
of concentration changes is required. For example, an ASEL-only circuit could only make
graded adjustments when it was moving toward the peak, but it could still detect when it was
moving away from the peak via the lack of activity in ASEL. Indeed, ablation studies have
shown that an ASER-only circuit can successfully chemotax, but the results have been mixed
for ASEL-only circuits [41, 65]. Simulated ablation studies in a previous model have also dem-
onstrated successful chemotaxis behavior for ASEL-only and ASER-only conditions [43].
However, in both experiments and simulations, the single-ASE behavior is quite different from
normal klinotaxis and the success rate varies significantly with environmental circumstances.

Our analysis also provides insight into the mechanism by which the klinotaxis circuit com-
bines information about concentration changes with information about the phase of its locomo-
tion to steer in the right direction at the right time. We know from previous studies that the
klinotaxis circuit must be state-dependent: the correct response to a given stimulus depends on
the phase of the head swing when it is received [43]. For example, an upstep received during a
dorsal-to-ventral swing should produce an increase in the ensuing dorsal turn, whereas an
upstep received during a ventral-to-dorsal swing should produce a decrease in the same turn.
Our previous analysis suggested how saturating nonlinearity in the SMB cells might account for
this state-dependence [40]. Here we place this mechanism in a broader context as a kind of infor-
mation gate, with the circuit using the oscillatory signal to alternately open and close the flow of
concentration information through the motor neurons. Since this oscillatory signal is antiphase
for dorsal and ventral pairs of motor neurons, the timing of the gates is also antiphase. This leads
to different responses to the same upstep or downstep stimuli at any specific time, depending on
which of the gates are open and which are closed. Although the information gating mechanism
is crucial for the state-dependence in klinotaxis, the proposal that it occurs in the SMB neck
motor neurons is a result of the model’s assumption that the neck motor neurons receive anti-
phase oscillatory input from the worm’s locomotion. In principle, the gating can occur in any
component of the network that receives the anti phase oscillatory input generated during loco-
motion, including in the interneurons or even in the head and neck muscles themselves.

In addition to specific questions relating to the neural basis of C. elegans salt klinotaxis,
access to an ensemble of models whose parameters are fully known, and from which we can
easily generate time-series recordings under any condition, allowed us to explore the relation-
ship between the information flow of a circuit and the mechanistic understanding that we can
derive from knowledge of its parameters. Information flow analysis provided insight into cru-
cial aspects of the operation of the circuit, albeit at a relatively high level of abstraction: ATY
cells were informationally asymmetric, AIZ cells were informationally symmetric, and SMB
cells acted as information gates in phase with the worm’s locomotion. In order to answer ques-
tions about the mechanistic underpinnings of these features, we had to consider the specific
parameters and the dynamics of the model. The suggestion is that the higher level of abstrac-
tion involved in information flow analysis can be useful to focus more detailed analysis of the
underlying parameters and dynamics of the model on only the most functionally relevant
parts. This is a particularly relevant point given that technology for generating time-series
recordings from intact biological systems during behavior is growing faster than the characteri-
zation of the underlying biophysical properties of their relevant circuits.
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Even if we had all of the details about the nervous system of a biological organism, under-
standing the principles underlying the neural basis of its behavior remains one of the main
challenges in neuroscience. How do we combine the diverse and large amount of data needed
to arrive at a set of principles for how the organism generates behavior from the dynamical
interaction between its brain, its body and its environment? By focusing on a higher level of
abstraction, information flow analysis captures unique insights into the operation of the circuit
in two interesting ways. First, it allows the analysis to focus on the functionally relevant aspects
of the circuit. Second, it allows for a more manageable comparison between circuits that per-
form the same behavior, even if their biophysical properties are entirely different. This was par-
ticularly useful in the ensemble of klinotaxis circuits, where despite large variations in
individual neurophysiological parameters, the analysis revealed a single information flow
architecture that was unique among all high-performing circuits in the ensemble. Indeed, the
uniqueness of the klinotaxis information architecture suggests an interesting general lesson for
neuroscience: Perhaps the truly universal principles are to be found not among the neurophysi-
ological details, which can vary substantially [52-54], but instead at the more abstract level of
patterns of information flow within a nervous system.

Despite being underdetermined by the available biological data, the uniqueness of the infor-
mation flow architecture among the ensemble of circuits suggests that the constraints on which
the model are based are reasonably strong. It would be very satisfying if the information flow
architecture that we have identified turns out to be the one utilized by the worm. However, this
architecture is only as good as the assumptions that went into the model. It is conceivable that,
as the model assumptions are revised in light of new experimental data, key features of the
information architecture will change. We mention briefly a few different directions for expand-
ing the model. First, there are several candidate neurons that would be particularly useful to
include in next iterations of the model, including chemosensory neurons ADF and ASH [62,
65] and interneuron classes AIA and AIB [63], all of which have direct connections with one or
more neurons in the minimal circuit [31]. Second, the specific location of the postulated infor-
mation gating depends on which components of the circuit receive the oscillatory input. Third,
as we learn more about the neurophysiology of the underlying circuit, it may also become nec-
essary to complicate the neural model that we currently employ. Recent advances in optoge-
netics in the freely-moving worm [67], as well as new experimental designs to study head
swings in microfluidic devices [68] will accelerate the characterization of the neurophysiology
in the proposed circuit. Finally, we have recently demonstrated that the minimal klinotaxis cir-
cuit is sufficient to steer a more realistic neuromechanical model of the nematode’s full body
[69]. Understanding the flow of information in such a model will allow us to make predictions
that are more easily testable in the worm.

The information analysis used to understand the klinotaxis circuit in this work is general
enough to be applied to any brain-body-environment system. Therefore, an important direc-
tion for future work is to continue to develop the tools of information dynamics. We mention
briefly three directions. First, when analyzing the information in a system, it is necessary to
consider not only the information carried by individual variables, but also the information that
may be encoded redundantly or synergistically by multiple variables. Although the concepts of
synergy and redundancy have been of great recent interest in several areas in neuroscience [70,
71], the standard measures confound synergistic and redundant interactions and have prob-
lematic interpretations when more than three variables are involved [72-75]. We, along with
several other groups, are currently working to develop measures of synergy and redundancy
that would overcome these problems [25, 70, 71, 76, 77]. Second, in this paper we studied infor-
mation flow only under open-loop conditions, meaning that the worm’s movement did not
influence the concentration changes that it experienced, which were assumed to be uniformly
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distributed throughout. However, the worm’s movements obviously influence the statistical
properties of its perceived concentration changes, which can be thought of as a specific instance
of a general phenomenon known as “information self-structuring,” where an organism actively
selects and shapes the sensory inputs that it receives through its actions [78]. An important
direction for future work is to analyze the information flow of a sensorimotor circuit when it is
in closed-loop interaction with its environment. Finally, to perform our analysis we had access
to unlimited, noiseless data. Applying a similar analysis to cell recordings presents a number of
challenges with respect to the limits of resolution and noise (for recent work applying informa-
tion measures to experimental data, see [28, 79-82]).

Supporting Information

S1 Fig. Effect of blocking the gap junction on the information profiles of interneurons AIY
and AIZ. The solid traces depict the mutual information of left (blue) and right (red) cells over
time in the circuit. The dashed traces depict the mutual information when the gap junction has
been blocked. (A) Blocking the AIY gap junction does not affect the informational asymmetry

in AIY. (B) Blocking the AIZ gap junction affects the amount of information in AIZR, disrupt-
ing the overall information symmetry in AIZ.

(TIF)

S2 Fig. Mechanism of information asymmetry in AIY. Synaptic transfer functions for the left
(A) and right (B) AIY cells (solid black). Resting potential of the cells shown with dashed black
line. ASER connects to both AIY cells through an inhibitory chemical synapse. ASEL connects
to both AIY cells through an excitatory chemical synapse. Activity in ASER/ASEL drives the
inputs to both AIY cells into the red/blue region, respectively. The relative strength of the con-
nections is shown by the size of the region. The responsiveness of AIYL is the result of the
alignment between the sensitive area of the synaptic transfer function and the range of possible
net input. The bias in AIYR shifts the synaptic transfer function, leaving the cell sensitive only
to the largest positive changes in concentration. Changes in the membrane potential in AIYL
transmitted through the gap junction are equally ineffective to AIYR due to the shifted sensitive
region.

(TTF)

S3 Fig. Mechanism of information symmetry in AIZ. Synaptic transfer functions for the left
(A) and right (B) AIZ cells (solid black). Resting potential of the cells before effects from the
gap junction shown with dashed black line. Resting potential of the cells after equalization
from the gap junction exchange shown with red dashed line. AIZ cells have incoming excit-
atory chemical synapses from AIY cells, left and right respectively. Therefore, activity in ATYR/
AIYL drives the inputs to AIZR/AIZL into the gray region, respectively. The relative strength
of the connections are shown by the size of the region. However, because AIYR shows very lit-
tle activity, changes in membrane potential in AIZR are not due to the chemical synapse;
instead they are due to changes in the membrane potential of AIZL through the gap junction.
Unlike in ATY, the balance of the resting potential and the sensitive region of the synaptic
transfer function in both AIZ cells results in a response to changes in concentration to negative
and positive changes in concentration.

(TIF)

$4 Fig. Mechanism of information gating in SMB. Synaptic transfer functions for the left (A)
and right (B) pair of dorsal and ventral motor neurons, SMBL and SMBR, respectively (black
trace). Instantaneous synaptic output as a function of net input when the head sweep oscilla-
tion is present (brown trace). Shaded areas show the range of oscillation due to the incoming
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connections from the pattern generator. For each of the SMB pairs, the input to the dorsal and
ventral cells moves out of phase over the brown trajectory. As a result, when the dorsal motor
neuron is at point a in the curve, the ventral motor neuron is at point b, and vice versa. Red
and blue arrows show the effects of negative and positive changes in concentration on the
input to the motor neurons, respectively. Due to the shift in the biases for the synaptic transfer
functions, a change in concentration sometimes results in a change in the dorsal but not the
ventral synaptic output, and viceversa. For the SMBL pair (A), a change in concentration
results in a change in the synaptic output of the neuron in b, but not of the neuron in a. For the
dorsal/ventral SMBR pair (B), a and b represent the opposite regions: the neuron at a is more
sensitive to changes in input than the other neuron at d. To different degrees, the same is the
case for other points along the curve. In both pairs of SMB neurons, the result is an antiphase
dorsal/ventral gating mechanism.

(TIF)
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