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ABSTRACT
Enzymes of commercial importance, such as lipase, amylase, laccase, phytase, carbonic anhydrase, 
pectinase, maltase, glucose oxidase etc., show multifunctional features and have been extensively 
used in several fields including fine chemicals, environmental, pharmaceutical, cosmetics, energy, 
food industry, agriculture and nutraceutical etc. The deployment of biocatalyst in harsh industrial 
conditions has some limitations, such as poor stability. These drawbacks can be overcome by 
immobilizing the enzyme in order to boost the operational stability, catalytic activity along with 
facilitating the reuse of biocatalyst. Nowadays, functionalized polymers and composites have 
gained increasing attention as an innovative material for immobilizing the industrially important 
enzyme. The different types of polymeric materials and composites are pectin, agarose, cellulose, 
nanofibers, gelatin, and chitosan. The functionalization of these materials enhances the loading 
capacity of the enzyme by providing more functional groups to the polymeric material and hence 
enhancing the enzyme immobilization efficiency. However, appropriate coordination among the 
functionalized polymeric materials and enzymes of interest plays an important role in producing 
emerging biocatalysts with improved properties. The optimal coordination at a biological, physi-
cal, and chemical level is requisite to develop an industrial biocatalyst. Bio-catalysis has become 
vital aspect in pharmaceutical and chemical industries for synthesis of value-added chemicals. The 
present review describes the current advances in enzyme immobilization on functionalized 
polymers and composites. Furthermore, the applications of immobilized enzymes in various 
sectors including bioremediation, biosensor and biodiesel are also discussed.
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Introduction

Enzymatic transformations have appeared as 
a sustainable solution to create valuable products 
having plenty of applications in the industries 
including food, cosmetics, biomedicine, agrochem-
ical, biochemical, biosensors, biofuels, etc. [1–5]. 
Notably, enzymes are ‘natural bio-catalyst’ having 
high chemo-selectivity, regioselectivity, and stereo-
selectivity. However, the use of enzymes in their 
native form possesses obstacles like low catalytic 
efficacy in no physiological reactions, high cost, 
instability, and difficulty in reuse [6]. Enzyme immo-
bilization on solid materials can overcome the afore-
mentioned drawbacks. In biotechnology, ‘enzyme 
immobilization’ is one of the methods by which 
biocatalyst attaches to the insoluble material. 
Furthermore, the rationale of immobilizing the 
enzyme is not only to re-use it but also to improve 
the enzyme properties, including stability, activity 
and turnover number, etc [6–9]. Moreover, the 
immobilized enzyme has improved stability and 
activity under harsh conditions like extreme pH 
and temperature as well as in the presence of organic 
solvents or substrates with enzyme inactivating fea-
tures [10–12]. Furthermore, the application of 
immobilized enzymes in sustainable bioconversion 
of CO2, food waste and industrial by-products into 
value-added products may helpful to meet the objec-
tives of circular bio-economy [13,14]. Although sev-
eral enzyme immobilization methods do not employ 
any preexisting solid supports (crosslinked enzyme 
aggregates, crosslinked enzyme crystals, nano-
flowers, crystals coated of enzymes, copolymers, sol- 
gels, enzyme trapping, etc.) [15]. The use of preexist-
ing solids has some advantages so it is possible to 
select the mechanical properties of the biocatalyst 
independently of the enzyme modification, stabiliza-
tion via multipoint covalent attachment may be 
quite effective, etc. In these protocols, the enzyme 
and matrix are two components that interact with 
each other by various binding forces, such as cross- 
linking, entrapment, absorption, encapsulation, and 
covalent bonding (Figure 1) [10,16].

In general, the immobilization matrix can be 
classified into organic or inorganic types, and the 
organic matrices are further classified into syn-
thetic polymers (polystyrene, polyacrylamides, or 
polyamides) and biopolymers (dextran, chitosan, 

agarose, pectin, gelatin) (Figure 2) [17–20]. 
Previously, de Souza and his coworkers immobi-
lized lipase on modified cellulose for ester synth-
esis. The immobilized enzyme was used to esterify 
oleic acid and ethanol and it shows 97% conver-
sion at 60°C [21]. Likewise, Moreira et al., evalu-
ated the lipase immobilized on magnetic 
nanoparticles for production of ester and the 
immobilized lipase showed 81.7% conversion at 
40°C [22,23]. The lipase immobilized on polymeric 
matrix i.e., cellulose showed a higher conversion 
rate at higher temperature as compared to lipase 
immobilized on nanoparticles. Moreover, the 
important factors considered during the immobi-
lization of enzymes are purity, functional moieties 
on its surface, and molecular mass [24]. Also, the 
functional moiety on the biocatalyst surface gives 
an idea about which type of interaction takes place 
between the enzyme and matrix. Furthermore, the 
efficiency of polymeric matrices can be enhanced 
by surface functionalization [25]. The surface 
modification allows the addition of a particular 
functional group onto the surface of the polymeric 
matrix to attain the desired properties. Most of the 
matrices used for enzyme immobilization are 
hydrophilic and which could lead to weak interac-
tion with biocatalyst, thus the polymeric matrices 
need to be functionalized. The polymeric matrices 
can be functionalized with various functional 
groups including diethylaminoethyl, carboxy-
methyl, and quaternary ammonium derivatives 
[26,27]. Also, the surface modification can notably 
alter the catalytic performance of the immobilized 
biocatalyst by altering their dispersion capability 
and interaction with the biocatalyst. Mostly, sur-
face functionalization is used to impart stability 
and biocompatibility to the polymeric matrix for 
application purposes [28–31]. Hence, enzyme 
immobilization has become almost compulsory 
for designing an enzyme as an industrial biocata-
lyst. For industrial application, the cost of immo-
bilized enzyme depends on reaction kinetics, 
specificity and number of times the enzyme is 
reused. The guidelines that are provided to evalu-
ate the enzyme production cost for commodity 
products lies between 2000 and 10,000 kg pro-
duct/kg of immobilized enzyme, and for pharma 
products 50–100 kg product/ kg immobilized 
enzyme. Before scaling up the processes using 
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Figure 1. Schematic illustration of various types of immobilizations method. Reproduced with permission from rogriguez-abetxuko 
et al. 2020., frontier bioengineering biotechnology, 8, 830 [17].

Figure 2. Immobilization of enzymes onto functionalized polymeric matrices and the advantages in terms of improving the 
physicochemical properties of immobilized enzymes.
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immobilized biocatalyst, the economic estimation 
of the process should be performed, considering 
the cost of each factors including native enzyme, 
reactors, matrix for enzyme immobilization, and 
downstream processing [32]. In this review article, 
we comprehensively discussed the use of poly-
meric matrices for enzyme immobilization. For 
better understanding, we first described the pros 
and cons of polymeric matrices and then illu-
strated the energetics kinetics of the polymer- 
bound enzymes. At last, their potential applica-
tions of polymer bound enzymes in biocatalysis 
and enzyme technology have been emphasized.

2. Pros and cons of matrices as 
immobilization platforms

The selection of suitable matrices for immobilizing 
the enzyme can affect the practicality of its industrial 
applications. For immobilization, matrices must ful-
fill the prerequisite of biocatalyst to be immobilized 
and able to withstand the enzymatic reaction condi-
tions [33,34]. In particular, biopolymeric matrices 
become the apparent choice of support due to their 
unique features such as biodegradable, nontoxic, 
economical, and outstanding binding with an 
enzyme [35,36]. The pros and cons of polymeric 
immobilization matrices are listed in Table 1. 
Various polymeric matrices having functional enti-
ties have been utilized for the immobilization of 
enzymes. For example, in previous studies lipase 
was immobilized on cellulosic polyurethane via 
hydroxyl group that enhanced its mechanical and 
surface properties [37,38]. Moreover, a synthetic 
polymer can be used as potent matrices because the 
presence of the polymer layer shields the active cen-
ter of the biocatalyst from adverse effects of reaction 
conditions. Recently, Ma and coworkers [39] co- 
immobilized the hemins and glucose oxidase in 
poly(vinyl alcohol) (PVA) aerogel and their findings 
suggest that immobilized enzyme resists the dena-
turation at a higher temperature. Previously, the 
lipase was immobilized on nonporous polystyrene 
and the results showed that immobilized lipase 
exhibited better thermal stability, as immobilized 
lipase was less sensitive to thermal deactivation due 
to conformational changes in its structure [40]. 
However, the use of synthetic polymer has limita-
tions such as high production cost, time-consuming, 

and complicated synthesis process. Previously, Kim 
and his coworker developed biocompatible cellulose 
nano-crystal prepared from bacterial cellulose and 
lingo-cellulose. And used these cellulose nano- 
crystals for lipase immobilization, the resulting bio-
catalytic system exhibited higher immobilization 
yield and improved thermal stability [41,42]. 
Traditionally, inorganic polymers such as mesopor-
ous silica have a large surface area (>700 m2/g) for 
enzyme immobilization [43]. Also, in recent studies, 
functionalized activated carbon with high surface 
area and porous structure was used for lipase immo-
bilization and the immobilized biocatalyst exhibited 
higher operational stability than free enzyme [44,45]. 
Furthermore, Mohammadi et al. [46] immobilized 
a laccase on to functionalized silica via covalent 
binding, and their study showed that immobilized 
laccase was highly stable and exhibited good removal 
efficiency for phenolic compounds. The aforemen-
tioned studies support that inorganic polymer are 
categorized by good sorption properties due to their 
porous nature and large surface area that offer the 
various binding sites for enzyme immobilization. 
These polymers are also well-known for excellent 
mechanical durability as well as higher chemical 

Table 1. Advantages/disadvantages of polymeric matrices.
S. 
No

Polymeric 
matrices Advantages Disadvantages

1. Synthetic 
polymer

Presence of several 
functional groups 
Strong binding of an 
enzyme 
Immobilization of 
greater amount of 
enzyme

Time-consuming 
Nonrenewable 
High production cost

2. Biopolymer Nontoxic 
Cheap 
High affinity for 
enzymes 
Biodegradable 
Presence of several 
functional groups 
Reuseable

The necessity of 
clearing and proper 
preparation

3. Inorganic 
polymers

High stability 
Mechanical resistance 
Good sorption 
capacity 
Easy surface 
functionalization 
Relatively cheap 
Inert

Possibility of unspecific 
interaction 
Limited 
biocompatibility 
Weak enzyme- 
matrices interaction 
without crosslinking 
agents

4. Composites Strong affinity for the 
enzyme 
Highly stable 
Limited enzyme 
leakage

Expensive 
Limited reusability
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and thermal stability. Nevertheless, there are limita-
tions of using inorganic polymeric matrices such as 
limited biocompatibility and cross-linking agents are 
required to form covalent bond weak matrices and 
enzymes [47,48]. Moreover, the protein structure of 
enzymes immobilized on some of polymeric matrix 
got distorted, when exposed to hydrophobic surface 
or organic solvents and gas bubble. To protect the 
enzyme from this negative effect, the coating of 
immobilized enzyme by hydrophilic polymers may 
be an alternative. Furthermore, enzyme immobiliza-
tion using multipoint covalent attachment on preex-
isting matrix is an effective method to produce more 
rigid enzyme polymer for industrial applications 
[49,50]. Nowadays, researchers are interested to 
blend organic and inorganic matrices as this type of 
composite possesses the advantageous features of 
both matrices. These composite supports material 
shows exceptional stability and protects the enzyme’s 
three-dimensional structure during immobilization. 
For example, blending biopolymer (having a high 
affinity to an enzyme) with a synthetic polymer 
(known for its mechanical stability or thermal resis-
tance) and using this composite as biocatalyst 
matrices resulted in reusable and stable enzymatic 
system [51]. Hence, the resultant biocatalytic system 
exhibits the features not detected in their counter-
parts and can be utilized in various applications, 
such as environmental remediation, pharmaceutical, 
and food industry.

3. Effects of functionalization of polymeric 
matrices with various organic and inorganic 
groups

The inert nature of polymeric material limits its appli-
cation in several industrial realms. Furthermore, the 
functionalization of the polymeric matrix involves the 
grafting of specific functional moieties onto its surface 
to obtain a polymeric matrix with desired properties. 
The functionalization results in tuning the surface 
properties including hydrophilicity, protection from 
chemicals, and modification of the surface reactivity 
[52,53]. Functionalization can affect their interaction 
with biocatalysts, thus it may result in changing the 
activity of immobilized catalysts [53]. There was an 
interesting study describing the immobilization of 
pectinase onto hydrogel composed of alginate and 
agar, then activated by glutaraldehyde to incorporate 

the aldehyde group. Another study revealed that 
immobilized pectinase had improved reusability and 
the optimum temperature was also shifted from 55 to 
60°C [54]. The covalent bond formation between the 
matrix and enzyme results in increasing the rigidity of 
the 3D structure of an enzyme, which in turn shifting 
its temperature optima too. Furthermore, amylase 
was immobilized onto magnetic chitosan modified 
with glyoxal, epichlorohydrin, and glutaraldehyde to 
avoid enzyme leakage and improve its mechanical 
stability. The excellent thermal, storage stability, 
immobilization efficiency, and reusability were 
observed for immobilized enzymes. This is because 
the aldehyde (-CHO) group in glyoxal/glutaraldehyde 
activated chitosan bound with functional moieties of 
amino acids (-NH2), whereas epoxy moieties in epi-
chlorohydrin activated chitosan bound with -OH, - 
NH functional moieties on the biocatalyst [55]. 
Previously, a lipase was covalently immobilized on 
glutaraldehyde-activated chitosan, and the resultant 
biocatalyst showed a high immobilization yield but 
a decrease in the catalytic activity. Glutaraldehyde 
may immobilize lipase using three different mechan-
isms including interfacial activation, covalent attach-
ment, and ion exchange, so a huge amount of 
biocatalyst binds to the support and leads to enhanced 
immobilization yield. The binding of chitosan to the 
lipase may distort its 3-D structure resulting in 
a decrease in enzyme activity [56]. Later there was 
research describing immobilization of cellulase onto 
APTES functionalized silica gel cross-linked using 
glutaraldehyde. The immobilized enzyme exhibited 
high reusability after modification with APTES, 
because the active amino moieties were formed that 
results in covalent binding of an enzyme with support, 
thus preventing the leaching of cellulase [57]. 
Moreover, in a previous study reported by Bedade 
et al. [58] for the removal of acrylamide from coffee 
acrylamidase was immobilized on to the chitosan- 
coated alginate beads activated by citric acid. The 
immobilized acrylamidase exhibited improved ther-
mal stability and retained 80% of activity after four 
cycles of reuse (Figure 3a). The improved thermal 
stability may be referred to as the covalent attachment 
of citric acid with acrylamidase, thus resulting in 
increased rigidity of the enzyme.

Moreover, lignin peroxidase had been covalently 
immobilized on glutaraldehyde-activated alginate 
beads and then efficiently utilized for decolorization 
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of textile dye, which suggests its utility in bioreme-
diation purposes [59] (Figure 3b). Alatawi and cow-
orkers [60], immobilized urease on amino- 
functionalized cross-linked carboxymethylcellulose. 
The thermal stability was enhanced after immobili-
zation due to the formation of the covalent bond 
between urease and support, which can prevent the 
conformational changes upon the further rise in 
temperature. Glutaraldehyde is a mostly used cross- 
linking reagent, but it is toxic and harmful to living 
cells so that limit its application in the food and dairy 
industry [61]. To develop a safer bioprocess for the 
dairy industry, β-galactosidase was immobilized on 
chitosan functionalized using genipin, a natural 
cross-linker agent [62]. Remarkable outcomes of 
catalytic activity were attained at pH 4.0 and 60°C 
with enhanced stability and retaining 100% of activ-
ity after 25 repetitions cycles of lactose hydrolysis. 
Furthermore, a molecularly imprinted polymer 
(MIP) was synthesized by utilizing boric acid- 
modified iron nano-particles by silane emulsion self- 
assembly method for immobilization of horseradish 
peroxidase. The enzyme was covalently bound with 
boronic acid groups and successfully utilized to 
develop the visual sensors for sarcosine and glucose 
detection [63]. These studies suggested that functio-
nalized polymeric matrices provide more functional 
groups for enzyme molecules to bind, thus immobi-
lized enzymes showed higher activity and stability 

under harsh reaction conditions. During functiona-
lization of the matrix, the main challenge is to create 
a strong attachment of biocatalysts by retaining their 
functionality and catalytic activity.

4. Energetics and kinetic behavior of 
polymer immobilized enzymes

To uplift the laboratory scale research to the 
industrial-scale application with enhanced produc-
tivity, it is essential to study and consider the 
kinetic parameters of an enzyme. The enzyme 
kinetics provides information about enzyme reac-
tion rates, enzyme catalytic mechanism, and how 
an enzyme inhibits a drug [64]. For example, the 
Michaelis-Menten equation is regularly used to 
determine the effect of immobilization on enzyme 
activity. The kinetic parameters of immobilized 
biocatalyst including turnover number (Kcat), 
maximum velocity (Vmax), and Michaelis Menten 
constant (Km), can vary from that of the free 
biocatalyst [65,66]. However, the immobilization 
method may affect the kinetic behavior of bioca-
talyst due to various factors such as limited access 
to the active center, enzyme conformational 
changes, and deviation in the microenvironment 
around the immobilized enzyme etc [67]. The 
changes in kinetic parameters such as Km and 
Vmax helps to determine the success of the 

Figure 3. The overall scheme of A) immobilization of acrylamidase on chitosan. Reproduced with permission from Bedade et al. 
2019., food chemistry, 275, 95–104 .[58]. B) immobilization of lignin peroxidase on sodium alginate beads. Reproduced with 
permission from Bilal et al. 2019, biocatalysis and agricultural biotechnology, 20,101,205 [59].
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immobilization process. In a recent study, 
Alnadari et al. [68] found that the Vmax and Km 
value of free biocatalyst was 31.0 Umg−[1] and 
2.7 mM, but the Vmax value decreased to 26.6 
Umg−[1], and Km value increased to 2.7 mM 
after the immobilization of β-glucosidase on to 
chitin functionalized nanoparticles with p-NPG 
as substrate (Table 2)., The immobilization process 
ameliorates the hindrance of biocatalyst toward its 
substrate and thus moderately increases the Km 
value. Furthermore, pectin methylesterase, pectin 
lyase (PL), and polygalacturonase (PG) were 
immobilized on the chitosan cross-linked using 
dextran polyaldehyde. The results showed a slight 
difference between the Vmax and Km value of free 
and immobilized biocatalyst which might be due 
to immobilized enzyme protecting its 3D structure 
after immobilization [69]. Aslam et al. [70] 
obtained Vmax of 308 Uml−[1] and 597.0 Uml−[1] 
accompanied by Km values of 111.0 and 120.0 μM 
for free and chitosan immobilized laccase, respec-
tively. After immobilization, a slight increase in 
Vmax corroborated the increase in catalytic effi-
ciency of the immobilized enzyme. In a previous 
study, pectinase was covalently immobilized on 
alginate-montmorillonite beads and exhibited 

a decline in Km value, indicating that the enzyme 
affinity to the substrate has been enhanced 
(Figure 4) [71].

Polygalacturonase and pectin lyase (PL) were 
immobilized on the chitosan and results showed 
a very slight difference between Km and Vmax in 
immobilized as well as free form indicating that 
there was no conformational change in enzyme 
after immobilization [72]. Furthermore, Jaswal and 
his coworkers successfully entrapped pectinase in 
polyvinyl alcohol and found that Km and Vmax of 
immobilized enzyme were changed significantly 
[73]. Lactase was immobilized in carboxyl methyl 
cellulose-alginate gel exhibiting increased Km of 
107.24 mM, while the Kcat/Km and Kcat of immobi-
lized biocatalysts were similar to that of free enzyme 
[74]. The increased Km indicates the lower affinity 
of the immobilized biocatalyst for a substrate that 
may be because of low accessibility of substrate to 
the active center, loss of biocatalyst flexibility, and 
diffusion resistance to substrate transport.

Bindu et al. [55] studied thermodynamics and 
kinetic properties of amylase immobilized on mag-
netic chitosan and found that immobilized amylase 
had higher enthalpy and free energy as compared to 
free amylase. The thermodynamic studies can give 

Table 2. Kinetic parameters for the enzymatic reactions.

S.No Enzyme Polymeric matrices Km (mM)
Kcat 

(s−1)
Kcat/Km 

(mM−1s−[1]) Vmax Reference

1 Laccase Chitosan 0.33 55.8 169.2 0.14a [75]
2 Acid phosphatase Gelatin 0.3 - - 2.1 b [76]
3 β-glucosidase Chitin funcmethanoltionalized nanoparticles 3.31 25.8 7.8 - [68]
4 Formate dehyrogenase Polyethylenimine grafted graphene oxide 6.07 3.2 0.5 0.0123a [77]
5. Urease Carboxymethyl 

cellulose
14.0 - - 2.0b [60]

6 Laccase Chitosan 0.12 - - 597.0c [70]
7 Acid phosphatase Agarose 0.23 - - 2.3 b [78]
8 Carbonic anhydrase Polyurethane 12.2 2.0 166.4 - [79]
9 Lipase Polymer-grafted silica nanoparticles 2.04 296.0 145.0 15.1d [80]
10 Lipase Magnetic cellulose nanocrystal 12.4 - - 0.12 d [81]
11 Carbonic anhydrase Mesoporous aluminosilicates 0.15 1.9 - 2.3 e [82]
12 Invertase Chitosan 61.3 - - 177.7 b [83]
13 β-galactosidases Collagen 6.9 8456.0 1224.0 8670.0d [76]
14 Maltase Agarose 1.91 - - 6214.0f [84]
15 Lactase Agarose-carboxymethyl cellulose 107.24 36.6 - - [74]
16 Laccase Chitosan-clay composite 0.5 - - 96.0 f [85]
17 Tyrosinase Polyamide 1.56 - – - [86]
18 Lipase Agarose 261.7 1,806,241.8 6900.0 46.3g [87]

aµMmin−1 ml−1 

bµmol−1min−1mg 
cUmL−[1] 
dmMs−[1] 
emolmin−1ml−1 

fU ml−1 min−1 

gIUml−[1] 
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information about the heat of the inactivation of 
immobilized and free enzymes. Whereas noteworthy 
enhancement in the Km (0.65 mg/ml) was observed 
as compared to the native enzyme (0.45 mg/ml), 
indicating the efficacy of immobilization methods. 
Previously, Vmax and Km values were calculated for 
β-glucosidase entrapped in the alginate using the 
Lineweaver-Burk plot. For the immobilized enzyme, 
a decrease in Vmax (0.745 μmol min−1 ml−1) was 
observed as compared to the free counterpart (0.94  
μmol min−1 ml−1). This decline might be attributed 
to the interaction of biocatalyst with functional moi-
eties present on the surface of beads or limited access 
of substrate to the active center of the enzyme. 
However, the increase in Km value after immobiliza-
tion was observed and this may be caused by diffu-
sional resistance, steric hindrance, and loss of 
enzyme flexibility [88]. Catalase was immobilized 
onto chitosan beads and showed that Vmax of free 
catalase (33,000 μmol min −[1] mg−[1]) was higher 
than immobilized catalase (26,300 μmol min −[1]  
mg−[1]), due to conformational alterations in 
enzyme during immobilization [89]. To overcome 
the drawbacks of chitosan beads such as low density, 
Mardani et al. [90] utilized the chitosan- 
montmorrillonite beads for amylase immobilization. 
The results showed that the Km value of immobiliza-
tion was higher as compared to free enzyme. The 
research literature regarding the kinetic analysis 
showed that in most of the studies enzyme affinity 
toward substrate i.e., Km usually increases, whereas 
Vmax decreases after immobilization that might be 
due to conformational changes in a enzyme 
structure.

5. Polymeric matrices immobilized enzymes 
for industrial bio-catalysis

Recently, polymers attained from renewable 
resources such as agarose, alginate, chitosan, and 
cellulose from marine algae, brown algae, crusta-
cean skeleton, bacteria, and plants have engrossed 
much attention owing to their abundance and 
interesting properties such as biodegradability, non-
toxicity, flexibility, and availability of several active 
sites for incorporating new functionalities [91,92]. 
To date, renewable polymeric matrices, like gelatin, 
starch, alginate, pectin, cellulose, and chitosan are 
commonly used for enzyme immobilization [36,93– 
95]. Furthermore, a large number of biopolymers 
shows potential as an ideal matrix for various appli-
cations in the biofuel, environmental, food, biome-
dical, and pharmaceutical sectors.

5.1. Biodiesel and bio-energy generation

Biodiesel is considered a renewable transportation 
fuel due to its excellent properties such as biodegrad-
ability, nontoxicity, and bio-renewability. Biodiesel 
can be directly utilized in a compression ignition 
engine without modification [96,97]. Biodiesel pro-
duction using a chemical catalyst is an energy- 
intensive process and also generates wastewater. 
The use of lipolytic enzymes for biodiesel production 
is economically and environmentally more beneficial 
than using chemical catalysts [23,98,99]. 
Microorganisms-derived lipase is utilized for biodie-
sel production including Candida rugosa, Aspergillus 
Niger, Pseudomonas cepacian, Rhizopus oryzae, 

Figure 4. Schematic illustration for the immobilization of pectinase on alginate-montmorillonite (MMT) beads b) lineweaver burk 
plot of free and immobilized pectinase. Reproduced with permission from Mohammadi et al. 2019, international journal of biological 
macromolecules, 137, 253–260 [71].
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Burkholderia cepacia, Pseudomonas cepacia, 
Rhizopus miehei, and Thermomyces lanuginosus 
[100]. The major disadvantages of using free lipase 
for biodiesel production are high cost and low yield. 
Typically, biodiesel is synthesized in low water con-
tent, so immobilization avoids agglomeration of the 
enzyme. The Pseudomonas cepacian lipase was 
immobilized on bio-support beads (polyvinyl alco-
hol and alginate) and utilized for transesterification 
of castor and Karanja oil. The reusability assay of 
immobilized biocatalyst showed a 52% loss in the 
biodiesel yield after nine cycles of repeated use and 
this might be due to the leaching of lipase from 
alginate beads [101]. Furthermore, various research-
ers have reported the conversion of food waste into 
biodiesel using an immobilized enzyme. For e.g., 
Khan et al. [102] immobilized lipase on chitosan 
beads applied for biodiesel synthesis from waste 
cooking oil. Along with good catalytic efficiency, 
the resultant biocatalyst showed more than 90% 
biodiesel yield. The transformation of food waste 
into biodiesel not only offers economic benefits but 
also mitigates the food waste decomposition pro-
blems. Furthermore, lipase covalently immobilized 
on to poly-porous magnetic cellulose showed 85% of 
biodiesel yield up to the fourth cycle, and after that 
its yield declined. The possible reason for the decline 
in catalytic activity could be mass transfer limitation, 
structural changes in lipase active center, and non-
specific attachment [103]. Recently, Muanruksa and 
his coworkers [104] entrapped lipases onto pectin- 
alginate (PA) and gelatin alginate (GA) hydrogel to 
produce biodiesel from waste frying oil. Both the 
immobilized biocatalysts showed biodiesel yield 
between 75 and 78.3%, and the PA immobilized 
lipase had higher residual activity after seven cycles 
of reuse as compared to GA immobilized lipase, 
which may be due to gelatin-alginate network degra-
dation after reuse. And the entrapped lipase in PA 
might show more conformational flexibility and it 
was not degraded by physical and chemical forces. In 
a previous study, Romdhane et al. [105] used chit-
osan immobilized lipase for biodiesel synthesis from 
waste cooking oil. In a fixed bed reactor biodiesel 
yield reached 92% in 24 h batch reaction. The high 
biodiesel yield might be due to the polymeric back-
bone chain of chitosan providing structural support 
to covalently linked lipase. Moreover, in a covalent 
attachment, a strong chemical bond is formed that 

ensures negligible leakage of lipase from the support. 
Moreover, the main challenge for biodiesel enzy-
matic production is the cost of lipase, but immobili-
zation allows the reuse of the enzyme and makes 
continuous production feasible. Till now, the com-
mercial biodiesel production is in the preliminary 
stage, and more continuous reactors research is 
needed. Thus, enzymatic biodiesel production 
could be extended to more processing plants as an 
eco-friendly renewable energy source.

5.2. Food, dairy, and confectionery industry

Immobilized enzymes are widely utilized in food 
processes such as winemaking, production of fruc-
tose syrups, and lactose hydrolysis [106,107] 
(Table 3). In the food industry, biocatalysts are 
used to enhance the sensory properties including 
texture, flavor as well as to provide nutritional 
value to the products [107–110]. For example, 
pectinase is involved in the breakdown of pectin 
in fruit pulp, and it enhances the fruit juice yields 
and provides clarification of juice. Recently, Tasgin 
et al. [111] covalently immobilized pectinase in 
carboxymethyl cellulose and applied it for fruit 
juice clarification. Notably, the clarification per-
centage of immobilized pectinase reached 23% 
than that of free enzyme and exhibited good reu-
sability. Inulinase from Aspergillus tubingensis was 
immobilized on chitosan particles for hydrolyzing 
inulin to enhance the production of fructose syrup. 
The immobilized enzyme exhibited 95% of inulin 
hydrolysis yield even at high concentrations 
(17.5%) [112,113]. The utilization of immobilized 
inulinase for hydrolysis can be a cost-effective 
approach for the large-scale production of fruc-
tose. Moreover, Zhao and his coworkers synthe-
sized the nanoflower/alginate beads to immobilize 
acetolactate decarboxylase for preventing the dia-
cetyl formation in beer fermentation (Figure 5a). It 
was found that the diacetyl concentration declined 
to 0.1 ppm because the immobilized enzyme con-
verts acetolactate into flavorless acetoin [114].

Allulose is a ‘sweetener having zero-calorie’ and has 
a sweetness level is similar to dextrose. In 2014, Tate & 
Lyle developed the industrial process for the synthesis 
of the allulose using improved epimerase immobilized 
on ion exchange resin [115]. The economic benefits of 
using ion exchange resin for immobilizing the enzyme 
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in food applications is the possibility of resins to 
regenerate using cost-effective reagents such as 
NaOH and HCl. In 2017, allulose was launched in 
the market named as DolciaPrima using a similar 
manufacturing process [116]. In the dairy industry, 
galactosidase catalyzes the hydrolysis of lactose and 
plays an important role in the manufacturing of lac-
tose-free products [117]. For example, Klein et al. 
[118] immobilized a galactosidase in chitosan micro-
particles, and in the packed bed reactor the resultant 
biocatalyst hydrolyzed ~90% of lactose at 37°C. 
Galactosidase covalently immobilized on 
a functionalized agarose gel was applied for hydrolyz-
ing the lactose. Notably, the immobilized biocatalyst 
showed higher lactose hydrolysis efficacy of 83%[119]. 
As the immobilized galactosidase exhibited acidic pH 
optima (4.5–5.0) that are suitable for whey processing, 
whereas the enzyme having neutral pH optima is good 
for milk processing. Furthermore, Snow Brand Milk 
Products in Japan reported the method for hydrolysis 
of lactose using S. lactis galactosidase entrapped in 
cellulose triacetate fibers. This plant was able to con-
vert ten tons of milk/per day and cellulose immobi-
lized galactosidase that showed less than 9% of activity 
even after 50 cycles of reuse [120,121]. Indeed, amylase 
entrapped in calcium alginate beads was applied for 
starch hydrolysis. The hydrolysis ability of entrapped 
amylase was found to be 10–20% less as compared to 
free amylase and this may be due to the gel matrix of 
calcium alginate beads interfering with the diffusion of 
a starch molecule to the active center of biocatalyst 
[122]. For instance, Bilal et al. [123] have proposed 
a cost-effective approach to immobilize manganese 
peroxidase on glutaraldehyde-activated gelatin for 
fruit juice clarification. Glutaraldehyde reacts with an 
amino group of protein and forms a spacer arm 
between matrix and biocatalyst by Michael type addi-
tion or by Schiff base formation. Experimental data 
analysis in previous reports showed that immobilized 
enzymes had improved thermal stability and catalytic 
activity (Figure 5b). Moreover, Gangadharan et al. 
[124] immobilized maltase in agar-agar for degrada-
tion of maltose, they found that entrapped maltase 
retained 50% of original activity up to 5 cycles of 
reuse and after that, it started decreasing due to the 
leaching of an enzyme. Previously, Niu and his cow-
orkers immobilized lysozyme on N-succinyl chitosan, 
to obtain nontoxic and green strawberry preservative 
(Figure 6). The lysozyme breaks the β-1-4-glycosidic 

bond in the bacterial cell wall and has an antibacterial 
effect on gram-positive bacteria. They found that the 
storage life of strawberries was prolonged up to three 
days when treated with immobilized lysozyme. [125]. 
In the food industry, polymeric matrices are preferred 
as they are nontoxic and easily accessible. The poly-
meric immobilized enzyme offers advantages over free 
enzyme in terms of operational stability, large-scale 
applicability, and catalytic efficiency. The main draw-
back of using immobilized enzymes in the food indus-
try is the microbial contamination of enzymes, so 
there is a need to propose a specific method to control 
this.

5.3. Environmental remediation

The release of environmentally worrisome com-
pounds such as heavy metals, dyes, nitrates, car-
bon dioxide, antibiotics, heavy metals and 
naphthol can pose a hazard to the environment 
and human health. Many of these compounds are 
carcinogenic, mutagenic, and harmful that may 
cause problems for marine and human live [136]. 
For the remediation of effluents released from 
various industries usually requires a method i.e., 
cost-effective, efficient, and eco-friendly.

5.3.1 Environmental waste treatment using 
polymeric matrics immobilized enzyme
Heavy metals, hazardous and pharmaceutical 
pollutants are released from industries into 
water bodies causing serious problems to 
human beings and the marine ecosystem 
[137,138]. The attention of environmental scien-
tists has been attracted toward immobilized 
enzymes for removing anilines, dyes, heavy 
metals, and pharmaceutical pollutant [139–141]. 
In recent years, laccase, lignin peroxidase, lipase, 
and horseradish peroxidase are most commonly 
utilized for chemical pollutants degradation and 
usually catalyze the oxidation of various com-
pounds as compared to the oxidative enzymes 
[110,142–144]. The enzyme, such as lignin per-
oxidase, has been covalently immobilized on 
glutaraldehyde-activated alginate beads and 
then efficiently utilized for the decolorization of 
textile dye. Notably, the dye decolorization effi-
ciency of immobilized laccase was 80% even 
after the 5th cycle [59]. After the 5th cycle of 

BIOENGINEERED 10527



Ta
bl

e 
3.

 P
ol

ym
er

ic
 m

at
ric

es
 im

m
ob

ili
ze

d 
en

zy
m

e 
an

d 
bi

ot
ec

hn
ol

og
ic

al
 a

pp
lic

at
io

ns
.

S N
o

En
zy

m
e

So
ur

ce
Re

ne
w

ab
le

 m
at

rix

M
od

e 
of

 
im

m
ob

ili
- 

-z
at

io
n

Kc
at

 F
re

e 
en

zy
m

e

Kc
at

 
Im

m
ob

ili
ze

d 
en

zy
m

e
En

zy
m

at
ic

 p
er

fo
rm

an
ce

Ap
pl

ic
at

io
n

Re
fe

re
nc

es

1.
β-

ga
la

ct
os

id
as

e
Ci

ce
r 

ar
ie

tin
um

Ag
ar

os
e

Ad
so

rp
tio

n
3.

13
 ×

 1
0−

[4]
4.

15
 

×
10

−
[4]

H
ig

h 
to

le
ra

nc
e 

in
 a

ci
di

c 
an

d 
al

ka
lin

e 
pH

 a
nd

 
im

pr
ov

ed
 r

eu
sa

bi
lit

y
La

ct
os

e 
hy

dr
ol

ys
is

[1
26

]

2.
Pe

ct
in

as
e

Ba
ci

llu
s 

lic
he

ni
fo

rm
is

Ag
ar

-a
ga

r
En

tr
ap

m
en

t
N

A
N

A
Re

ta
in

ed
 8

0%
 a

ct
iv

ity
 a

t 
40

°C
 a

nd
 e

xh
ib

ite
d 

hi
gh

 
re

us
ab

ili
ty

 f
or

 p
ec

tin
 h

yd
ro

ly
si

s
Fr

ui
t 

ju
ic

e 
in

du
st

ry
[1

27
]

3.
Al

co
ho

l 
de

hy
dr

og
en

as
e

Sa
cc

ha
ro

m
yc

es
 

ce
re

vi
sia

e
G

el
at

in
En

ca
ps

ul
at

io
n

N
A

N
A

Im
pr

ov
ed

 p
H

 t
ol

er
an

ce
, r

ec
yc

lin
g,

 a
nd

 s
to

ra
ge

 
st

ab
ili

ty
Br

ew
in

g 
in

du
st

rie
s

[1
28

]

4.
Ph

yt
as

e
La

ct
ar

iu
s 

vo
lu

m
es

M
od

ifi
ed

 c
hi

to
sa

n
Co

va
le

nt
 

bi
nd

in
g

N
A

N
A

En
ha

nc
ed

 c
at

al
yt

ic
 a

ct
iv

ity
 a

nd
 r

es
is

ta
nc

e 
to

 m
et

al
 

io
ns

H
yd

ro
ly

si
s 

of
 p

hy
tic

 a
ci

d 
in

 c
er

ea
ls

[1
29

]

5.
Li

pa
se

Ca
nd

id
a 

ru
go

sa
Ag

ar
os

e
Co

va
le

nt
 

bi
nd

in
g

N
A

N
A

Im
pr

ov
ed

 s
ta

bi
lit

y 
an

d 
re

ta
in

ed
 r

ec
yc

lin
g 

ac
tiv

ity
 

up
 t

o 
fo

ur
 c

yc
le

s 
of

 t
he

 r
eu

se
H

yd
ro

ly
si

s 
of

 f
at

[1
30

]

6.
Pe

ct
in

as
e

Ac
in

et
ob

ac
te

r 
ca

lc
oa

ce
tic

us
Ce

llu
lo

se
Co

va
le

nt
 

bi
nd

in
g

N
A

N
A

En
ha

nc
ed

 e
ffi

ci
en

cy
 a

nd
 r

eu
sa

bi
lit

y
Fr

ui
t 

ju
ic

e 
cl

ar
ifi

ca
tio

n
[1

11
]

7.
β-

gl
uc

os
id

as
e

Ba
ci

llu
s 

su
bt

ili
s

Al
gi

na
te

En
tr

ap
m

en
t

Im
pr

ov
ed

 r
eu

sa
bi

lit
y 

an
d 

st
or

ag
e 

st
ab

ili
ty

Su
ga

rc
an

e 
ju

ic
e

[8
8]

8.
In

ul
in

as
e

As
pe

rg
ill

us
 

tu
bi

ng
en

sis
Ch

ito
sa

n
Co

va
le

nt
 

bi
nd

in
g

N
A

N
A

En
ha

nc
ed

 s
ta

bi
lit

y 
an

d 
m

or
e 

th
an

 7
0%

 c
hi

co
ry

 
in

ul
in

 w
er

e 
hy

dr
ol

yz
ed

 t
o 

fr
uc

to
se

 a
t 

60
°C

Pr
od

uc
tio

n 
of

 f
ru

ct
os

e 
sy

ru
p

[1
12

]

9.
Ac

ry
la

m
id

as
e

Cu
pr

ia
vi

du
so

xa
la

tic
us

Ch
ito

sa
n 

co
at

ed
 

ca
lc

iu
m

 
al

gi
na

te

Co
va

le
nt

 
bi

nd
in

g
N

A
N

A
Be

tt
er

 p
H

 a
nd

 t
he

rm
al

 s
ta

bi
lit

y
Re

m
ov

al
 o

f 
ac

ry
la

m
id

e 
fr

om
 r

oa
st

ed
 c

of
fe

e
[5

8]

10
.

M
al

ta
se

B.
 li

ch
en

ifo
rm

is
Ag

ar
-a

ga
r

En
tr

ap
m

en
t

N
A

N
A

Re
ta

in
ed

 1
00

%
 o

f 
ac

tiv
ity

 a
ft

er
 2

 h
r 

at
 5

0°
C

M
al

to
se

 h
yd

ro
ly

si
s

[1
24

]
11

.
Am

yl
as

e
Ba

ci
llu

s 
am

yl
ol

iq
ue

fa
ci

en
s

Al
gi

na
te

En
tr

ap
m

en
t

N
A

N
A

Re
ta

in
ed

 6
0%

 o
f 

in
iti

al
 a

ct
iv

ity
 a

ft
er

 5
 c

yc
le

s 
of

 
re

us
e

St
ar

ch
 h

yd
ro

ly
si

s
[1

22
]

12
.

Pe
ct

in
as

e
Ba

ci
llu

s 
lic

he
ni

fo
rm

is
Ch

ito
sa

n
Co

va
le

nt
 

bi
nd

in
g

N
A

N
A

En
ha

nc
ed

 p
H

 a
nd

 t
he

rm
al

 s
ta

bi
lit

y
Pe

ct
in

 p
ol

ym
er

 
de

gr
ad

at
io

n
[1

31
]

13
.

In
ul

in
as

e
As

pe
rg

ill
us

 N
ig

er
Ch

ito
sa

n
Co

va
le

nt
 

bi
nd

in
g

N
A

N
A

Im
pr

ov
ed

 p
H

 a
nd

 t
em

pe
ra

tu
re

 t
ol

er
an

ce
In

ul
in

 h
yd

ro
ly

si
s

[1
32

]

14
.

G
lu

co
se

 o
xi

da
se

As
pe

rg
ill

us
 N

ig
er

Al
gi

na
te

En
ca

ps
ul

at
io

n
N

A
N

A
Re

ta
in

ed
 9

2%
 o

f 
ac

tiv
ity

 a
t 

pH
 4

.0
 a

nd
 r

eu
se

d 
up

 
to

 7
 c

yc
le

s
Re

du
ct

io
n 

of
 

fe
rm

en
ta

bl
e 

su
ga

r 
in

 
th

e 
m

us
t

[1
33

]

15
.

Tr
an

sg
lu

ta
m

in
as

e
Se

rr
at

ia
 p

ly
m

ut
hi

ca
Al

gi
na

te
Cr

os
s-

lin
ki

ng
N

A
N

A
En

ha
nc

ed
 s

ta
bi

lit
y 

an
d 

is
om

al
tu

lo
se

 y
ie

ld
Su

cr
os

e 
co

nv
er

si
on

 in
to

 
is

om
al

tu
lo

se
[1

34
]

16
.

Pe
ct

in
as

e
As

pe
rg

ill
us

 
ac

ul
ea

tu
s

Ca
lc

iu
m

 a
lg

in
at

e 
be

ad
s

En
tr

ap
m

en
t

16
.4

5
6.

07
Ex

ce
lle

nt
 o

pe
ra

tio
na

l s
ta

bi
lit

y 
re

ta
in

ed
 8

0%
 o

f 
ac

tiv
ity

 u
p 

to
 t

hr
ee

 c
yc

le
s 

of
 r

eu
se

Fr
ui

t 
ju

ic
e 

cl
ar

ifi
at

io
n

[1
35

]

18
.

M
an

ga
ne

se
 

pe
ro

xi
da

se
G

an
od

er
m

a 
lu

ci
du

m
G

el
at

in
En

ca
ps

ul
at

io
n

N
A

N
A

Im
pr

ov
ed

 t
he

rm
al

 s
ta

bi
lit

y 
an

d 
re

us
ab

ili
ty

Fr
ui

t 
Ju

ic
e 

Cl
ar

ifi
ca

tio
n

[1
23

]

10528 T. SHARMA ET AL.



reuse, the decrease in catalytic performance was 
observed which might be due to the interference 
of free radical in the enzyme active site, which 
leads to enzyme inhibition. Previously, Ali and 
Husain entrapped ginger peroxidase in alginate/ 
agarose blended with gum for decolorization of 
textile effluent (Figure 7). The immobilized 
enzyme was effective in decolorizing 90% of 
color from the textile industry up to 10 days of 
operation which might be due to the hydrophilic 
nature of gum which increases the molecular 
dimension of an enzyme by forming a complex 
with it and retained inside the support for a long 
time [145]. Furthermore, Zhou and coworkers 
immobilized rhodanese on alginate beads and 
employed it for the biodegradation of cyanide 

from cassava wastewater. Along with thermo-
stability, the immobilized enzyme showed 75% 
of cyanide biodegradation efficiency [146].

17α-ethinylestradiol is a synthetic hormone 
used in oral contraceptives, but it reaches in the 
aquatic system due to anthropogenic activities and 
through pharmaceutical effluents, hence causing 
great environmental impact. Previously, the lac-
case was immobilized on the copper and calcium 
chitosan–alginate composite for degradation of 
17α-ethinylestradiol. The degradation of 17α- 
ethinylestradiol was more effective in a wider tem-
perature and pH range as compared to free laccase 
[147]. Moreover, Bisphenol A is an endocrine- 
disrupting compound and is found in the sewage 
sludge, surface water, and industrial effluents. 

Figure 5. A) Schematic representation for the synthesis of enzyme inorganic nanoflower/alginate beads. reproduced with permission 
from Zhao et al. 2017., process biochemistry, 57, 87–94 [114]. B) immobilization of manganese peroxidase on glutaraldehyde- 
activated gelatin for fruit juice clarification. Reproduced with permission from Bilal et al. 2016., Catalysis letter, 146, 2221–2228 [123].

Figure 6. Illustration of N-succinyl chitosan preparation and its application strawberry preservation. Reproduced with permission 
from Niu et al. 2020., Food Control, 106, 829. [125].
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Previously, laccase absorbed on the anionically 
activated agarose was applied for the elimination 
of bisphenol A. The immobilized laccase showed 
more degradation of bisphenol A (BPA) at 
100 mg/l concentration than of the free form of 
the enzyme and of initial able to degrade >90% 
BPA after 15 cycles [148]. From these results, it 
can be concluded that polymer immobilized lac-
case is a promising candidate for the degradation 
of BPA in terms of efficiency and reusability.

In another study, crude laccase was entrapped 
inside the calcium alginate beads for the degradation 
of BPA. They reported that immobilized laccase 
retained up to 70% of removal efficiency up to 10 
cycles of reuse, and after that starts it starts declining 
[149]. The decrease in removal efficiency by immobi-
lized laccase was due to leakage of an enzyme from the 
alginate matrix. In a previous study, Bilal et al. [150] 
immobilized laccase on chitosan beads for the degra-
dation of BPA, and it showed complete degradation of 
BPA (approximately 99%) after 150 min. This enzy-
matic bioremediation system could be helpful in the 
degradation of dyes present in the wastewater efflu-
ents. Previously, Horn and his coworkers immobi-
lized a lacasse on the hydrogel containing itaconic 
acid for the reduction of trace compounds (e.g., 
BPA, triclosan, p-chlorophenol, paracetamol, diclofe-
nac) in wastewater. The immobilized enzyme showed 

a maximum reduction of triclosan (>90%) (Figure 8) 
[151]. Furthermore, a proteolytic enzyme known as 
papin having the ability to bind with metal ions due to 
the presence of sulfhydryl group in the active center 
was immobilized in alginate beads for removal of lead. 
The immobilized enzyme was found to remove 
98.88% of lead at 10 mg/mL of total concentration 
[152]. Indeed, Qu and his worker entrapped 
a microbial lipase onto chitosan nanoparticles for 
removing nickel impurities from waste water. The 
immobilized enzyme was re-used up to 20 cycles for 
the removal of nickel [153]. Based on these results, the 
polymer immobilized enzyme can be highly recom-
mended for bioremediation of pollutants released 
from industrial wastewater, due to substantial 
improvement in water quality after treatment with 
an immobilized enzyme. Future research should 
focus on developing a novel biocatalytic system for 
bioremediation of large-scale textile wastewater in 
a sustainable way.

5.3.2. Greenhouse gas capture using polymeric 
matrics immobilized enzyme

The constant rise in greenhouse gases (GHGs) is 
causing serious threats to living beings and the envir-
onment. CO2 is one of the main contributors to 
greenhouse effect and the emissions of CO2 from 

Figure 7. a) The scheme of ginger peroxidase (GP) immobilization in ANGG/AGG b) Effluent decolorization in stirred batch reactor 
and reusability of immobilized GP in ANGG/AGG c) Schematic representation of continuous reactor. Reproduced with permission 
from Ali et al. 2018., International Journal of Biological Macromolecules, 116, 463–471 [145].
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electric power generation, coal-burning stations, and 
automobiles increase the atmospheric CO2 concen-
tration, thus impart in global warming [154–156]. In 
this context, CO2 conversion into value-added pro-
ducts, such as methanol, calcium carbonates, formic 
acid using microbial enzymes could be effective to 
meet the energy demand of industries [14,157,158]. 
Notably, in 2020, the atmospheric CO2 concentra-
tion was found to be 417 ppm, which critically affects 
human beings’ health [141,159–161]. Enzymes, such 
as carbonic anhydrase (CA), alcohol dehydrogenase 
(ADH), formaldehyde dehydrogenase (FaldDH), 
and formate dehydrogenase (FDH) have been uti-
lized for the conversion of CO2 into value-added 
products [3,162]. The polymeric matrices should 
have a good affinity for substrate and mass transfer 
of CO2 for enhancing its capture. For example, 
ADH, FaldDH, FDH were immobilized in the poly-
meric membrane using co-immobilization and 
sequential immobilization method for the produc-
tion of methanol from CO2. The sequential immo-
bilization method displayed higher methanol 
production, as this method allows the operational 
conditions to be optimized at each step and over-
come the diffusion resistance among enzymes 
(Figure 9) [163,164]. Furthermore, Sharma et al. 
[165] immobilized CA of P. fragi on chitosan for 
biomimetic CO2 sequestration. Notably, a more 
than two-folds increase in the formation of calcium 
carbonate was observed with the immobilized 
enzyme. The calcium carbonate formed during 
CO2 conversion can be used as raw material for 
cement, iron, ceramics, steel, and glass production 
units.

Furthermore, Xu and his coworkers [166] encap-
sulated alcohol dehydrogenase, formate dehydro-
genase, and formaldehyde dehydrogenase in silica 
alginate hybrid gel for conversion of CO2 to metha-
nol. The resultant biocatalyst exhibited enhanced 
methanol yield that might be due to the formation 
of a suitable immobilization microenvironment i.e., 
high hydrophilicity, ideal diffusion, and moderate 
flexibility required for a substrate. Methanol, 
exploited as an energy source for manufacturing 
daily need products, can be used in electricity gen-
eration and important raw material for industrial 
applications [167]. A novel method for encapsula-
tion of formate dehydrogenase in alginate-silica gel 
for conversion of CO2 into formic acid was reported. 
The resultant biocatalyst exhibited a high yield of 
formic acid i.e., 95.6%, which indicates that biocata-
lyst retained the conformational flexibility after 
immobilization [168]. Recently, Pietricola and his 
coworkers immobilized Candida boidinii formate 
dehydrogenase onto mesoporous silica and catalyzed 
the reduction of CO2 into formic acid. The immobi-
lized enzyme exhibited higher immobilization yield, 
thermal stability but the low yield of formic acid was 
obtained. As the enzymatic reduction reaction of 
CO2 is reversible, so formed formic acid is converted 
back into CO2 which results in a low yield of formic 
acid [169]. To upscale the CO2 conversion experi-
ment various challenges need to be overcome such as 
various impurities present in flue gas including 
nitrous oxide and sulfur trioxide that may affect the 
enzyme performance [170,171]. Furthermore, it is 
necessary to study the complex interaction between 
polymeric matrices and enzymes especially 

Figure 8. Schematic illustration of hydrogel preparation containing itaconic acid immobilized laccase. Reproduced with permission 
from Horn et al. 2021., applied polymer materials, 3, 2823–2834 [151].
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stabilization of enzyme confirmation while design-
ing the immobilization system for CA. We expect 
that in the future, researchers might attain sustain-
able synthesis of value-added products using poly-
mer immobilized enzymatic systems.

6. Challenges and future directions

Moreover, several polymeric matrices and their 
composites with noteworthy properties and 
unique structures have been designed for enzyme 
immobilization and the utilization of suchad-
vanced materials could potentially enhance the 
biocatalytic properties. Despite of the huge success 
of immobilized enzymes, the main challenges that 
needed to be overcome:

● In up-scaling bioprocess using immobilized 
enzyme is mostly cost-driven, so before 
immobilization, the economic evaluation of 
all, such as enzyme, reactors, downstream 

processing, and matrices for immobilization, 
should be carefully investigated [115].

● The effective approaches for the development of 
enzyme immobilization-stabilization and avail-
ability of sustainable industrially applicable 
enzymes are a necessity of green enzyme 
processes.

● The environmental impact of the immobiliza-
tion process should be low, as crosslinking 
chemicals are often used in the immobiliza-
tion process.

● To expand the usage of polymeric matrices 
for the immobilization of enzymes, it is 
important to obtain a deeper insight into the 
effects of polymeric matrices on the function, 
structure and kinetics of an enzyme. This 
detailed study may prove to be helpful to 
develop a stable biocatalytic system.

● To attain such goals, future research should 
focus on developing new generations of immo-
bilized biocatalysts by taking the advantage of 

Figure 9. A) Conversion of CO2 to methanol using co-immobilization and sequential immobilization methods. B) The schematic 
representation of the sequential immobilization system. C) production of methanol using a free and immobilized enzyme. 
Reproduced with permission from Luo et al. 2015., New Biotechnology, 32, 319–327; .[163] and Cen et al. 2019., Advance synthesis 
and Catalysis, 361, 5500–5515 [164].
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genetic manipulations, bioinformatics, organic 
chemistry, and computational chemistry. Most 
importantly, the incorporation of these techni-
ques could help in better visualization of con-
formational changes that happen in 
immobilized enzymes, matrices, and enzyme 
binding sites. Before empirical techniques, 
applying molecular stimulations techniques 
can minimize costly trials, investigation error, 
and time consumption for the development of 
versatile immobilized enzymes. Hence, it will 
be simpler to develop a well functional immo-
bilized enzyme that can meet future needs.

7. Conclusion

The comprehensive review examined that the 
enzyme immobilization on polymeric matrices is 
a powerful way to create a novel biocatalytic system 
with various industrial applications. The utilization 
of biopolymers as matrices for enzyme immobiliza-
tion from the utmost plentiful and sustainable 
resources also addresses the rising global require-
ments. Polymers and their composite are emerging 
as host materials for the immobilization of enzymes 
because of their numerous features, such as non-
toxicity, unique structure, and stability. However, 
the use of only polymeric matrices cannot satisfy 
all the properties required for enzyme immobiliza-
tion, and so surface functionalization represents 
a successful approach to introduce ideal properties 
that are different from the native matrix. The poly-
meric matrices are often preferred for enzyme 
immobilization due to the high possibility of surface 
modification and availability. Additionally, enzyme 
immobilization on to functionalized polymers 
enhances the robustness and durability of the bio-
catalyst for its reuse. The modified polymers should 
be studied more to find better matrix for enzyme 
immobilization. We believe in the future, the poly-
mer immobilized enzyme will be more reusable, 
affordable and reliable, and widely available in 
industries and laboratory.
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