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Abstract

Modeling the local absorption and retention patterns of membrane-permeant small molecules in a cellular context could
facilitate development of site-directed chemical agents for bioimaging or therapeutic applications. Here, we present an
integrative approach to this problem, combining in silico computational models, in vitro cell based assays and in vivo
biodistribution studies. To target small molecule probes to the epithelial cells of the upper airways, a multiscale
computational model of the lung was first used as a screening tool, in silico. Following virtual screening, cell monolayers
differentiated on microfabricated pore arrays and multilayer cultures of primary human bronchial epithelial cells
differentiated in an air-liquid interface were used to test the local absorption and intracellular retention patterns of selected
probes, in vitro. Lastly, experiments involving visualization of bioimaging probe distribution in the lungs after local and
systemic administration were used to test the relevance of computational models and cell-based assays, in vivo. The results
of in vivo experiments were consistent with the results of in silico simulations, indicating that mitochondrial accumulation of
membrane permeant, hydrophilic cations can be used to maximize local exposure and retention, specifically in the upper
airways after intratracheal administration.
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Introduction

Local administration of therapeutic agents or bioimaging probes

is commonly used to maximize concentrations at a desired site of

action and to minimize side effects or background signals

associated with distribution in off-target sites. However, in the

specific case of inhaled, small molecule therapeutic agents or

bioimaging probes, cell impermeant molecules may rapidly

disappear from the sites of deposition via mucociliary clearance

[1,2]. Conversely, cell- permeant small molecules can rapidly

diffuse away and disappear from the site absorption, down their

concentration gradient [3]. Therefore, we decided to explore an

integrative simulation approach (Figure 1) to study how the

physicochemical properties of small molecule probes may be

optimized to maximize local targeting and retention in the upper

respiratory tract.

Previously, we constructed multiscale, cell-based computational

models of airways and alveoli to predict the relative absorption,

accumulation and retention of inhaled chemical agents [4]. In

these models, the transport of small molecules from the airway

surface lining to the blood or from the blood to the airway surface

lining were modeled using ordinary differential equations (ODEs)

[5,6]. These ODEs described the transport of drug molecules

across a series of cellular compartments bounded by lipid bilayers

(Figure 1A,), which form the surface of each airway generation,

modeled as a tube (Figure 1B). For a monoprotic base, the

concentration of molecule in each subcellular compartment was

divided into two components: neutral and ionized [7,8].

Accordingly, two drug specific properties were used as input to

simulate the transport process across each lipid bilayer: the

logarithms of the octanol:water partition coefficient of the neutral

form of the molecule (i.e., logPn) and the pKa of the molecule. The

logarithm of the octanol:water partition coefficient of the ionized

form of the molecule (i.e., logPd) can be derived from logPn or it

can be incorporated as an independent input parameter that can

be measured or calculated with cheminformatics software. For

different compartments with different pHs and lipid fractions, the

free fraction of the neutral and ionized forms of molecules was

calculated according to the molecule’s pKa, logPn, and logPd, using

the Henderson-Hasselback equation and the laws of mass action.

Anatomically, the structure of the airways was modeled as a

tree-like branching system of cylinders with progressively narrow-

ing diameter [9] (Figure 1C). Starting with the trachea as the trunk

of the tree and ending in the alveoli as the leaves, each branching

segment corresponded to an airway ‘generation’ characterized by

a particular surface area, blood flow, and cellular organization
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[4,10]. Histologically, the walls of the airways or alveoli were

modeled as multiple layers of epithelial, interstitial and endothelial

cells separating the air from the blood. Several structural and

functional differences between the airways and alveoli are

noteworthy: 1) cartilage and smooth muscle are present only in

the interstitium of the airways; 2) the surface area of the alveoli is

two orders of magnitude larger than airways; and 3) while the

blood flow to the alveoli corresponds to 100% of cardiac output

from the right ventricle, the blood flow of the airways is

approximately 1% of the cardiac output from the left ventricle

[11,12].

To predict a molecule’s absorption and retention in each airway

generation, the transport properties of small molecules across

cellular membranes, as well as the local partitioning of molecules

into lipid in different subcellular compartments can be calculated

with the Fick and Nernst-Planck equations to describe the

transport of the neutral and charged species of the molecule [4].

In simulations, combinations of logP and pKa spanning a range of

values were used as input to simulate the changes in concentration

of molecules of varying chemical structure, as they are absorbed

from the airway surface lining liquid into the blood or vice versa.

Here, we applied this cell-based transport model as a virtual

screening tool, to identify compounds with differential distribution

profiles in airways and alveoli, after intratracheal (IT) or

intravenous (IV) administration. In addition, two innovative in

vitro cell based assays were developed to assess the absorption and

retention of molecules across multiple layers of cells along the

lateral (Figure 1 D–F) and transversal planes of a cell monolayer

(Figure 1G)). Finally, in vivo microscopic bioimaging experiments

were performed to visualize the distribution of fluorescent probes

in the lung after either IT or IV administration (Figure 1H). The

results revealed that the mitochondrial sequestration of hydrophil-

ic, cell-permeant cations can provide an effective mechanism for

maximizing their local exposure and retention at a site of

absorption. Accordingly, mitochondriotropic cations may be

useful as fiduciary markers of local, inhaled drug deposition

patterns in the upper respiratory tract.

Methods

General methodology
All of the equations and default parameter values were based on

our published model [4]. The ODEs that describe this lung

pharmacokinetic (PK) model were solved numerically in a

MatlabH simulation environment (Version R2009b, The Math-

works Inc, Natick, MA). The ODE15S solver was used to address

the issue of the stiffness in ODEs, and the relative and absolute

error tolerance was set as 10212 to minimize numerical errors. The

Matlab scripts used for virtual screening and simulation purposes

are provided, together with detailed instructions for running them,

in the Supplementary Materials (Text S1, S2, S3, S4, S5, S6). The

results of detailed parameter sensitivity analysis are also provided

in the Supplementary Materials (Text S7).

Virtual screening of small monobasic molecules targeting
the airways after IT instillation

For virtual screening, the airway and alveoli were linked to a

systemic pharmacokinetic model through their respective blood

compartments using a single compartment PK elimination model

(eq. 1) [13]:

Vb

dCb

dt
~{CbCL ð1Þ

Where Vb is the volume of the blood compartment; Cb is the

concentration in the blood; and CL is the clearance. The same

initial dose (1 mg/kg) was used as an input parameter to simulate

IT instillation experiments in the airways and alveoli, respectively.

For virtual screening, clearance in the systemic circulation was set

to zero. The logPn (22 to 4 with interval of 0.1 units) and the pKa

(5 to 14 with interval of 0.2 units) of monobasic compounds were

independently varied and used as input parameters, in all possible

combinations. For each set of physicochemical input parameters

(logPn and pKa) two important pharmacokinetic indexes were

calculated: 1) the percentage of mass deposited in the airways and

alveoli (relative to the total mass in whole lung); and, 2) the

concentration in the alveolar and airway regions, calculated as the

sum of the masses in all the compartments in said regions of the

lung divided by the sum of all the compartment volumes in that

region. The area under the tissue concentration curve (AUC) for

the airways and alveoli was calculated using the trapezoidal rule.

The AUC ratio of airways to alveoli after inhalation was calculated

by dividing the AUC of the airways by the AUC of the alveoli for

every combination of logPn and pKa that were used as input.

For comparison, simulations were also run to simulate an

intravenous (IV) bolus injection, with the initial concentration in

venous blood as calculated with eq. 2:

C0,vb~Dose=Vvb, ð2Þ

The volume of venous and artery blood was set to 13.6 and 6.8 ml,

respectively [13,14]. The concentration in the blood was fixed

(clearance set to 0) with the assumption of no significant plasma

protein binding and a drug concentration blood to plasma ratio of

1.

Detailed simulation analysis of fluorescent probe
distribution in the airways and alveoli after local and
systemic administration

Based on the results of virtual screening, two fluorescent probes

were selected for further testing: HoechstH 33342 (Hoe, Molecular

Probes, CA, USA) to represent a highly hydrophobic, weakly basic

molecule that can serve as a reference marker for a readily

absorbed probe with limited intracellular retention; and, Mito-

trackerH Red (MTR, Molecular Probes, CA, USA) to represent a

more hydrophilic cation that could serve as a candidate fiduciary

Author Summary

We have developed an integrative, cell-based modeling
approach to facilitate the design and discovery of chemical
agents directed to specific sites of action within a living
organism. Here, a computational, multiscale transport
model of the lung was adapted to enable virtual screening
of small molecules targeting the epithelial cells of the
upper airways. In turn, the transport behaviors of selected
candidate probes were evaluated to establish their degree
of retention at a site of absorption, using computational
simulations as well as two in vitro cell-based assay systems.
Lastly, bioimaging experiments were performed to exam-
ine candidate molecules’ distribution in the lungs of mice
after local and systemic administration. Based on compu-
tational simulations, the higher mitochondrial density per
unit absorption surface area is the key parameter
determining the higher retention of small molecule
hydrophilic cations in the upper airways, relative to
lipophilic weak bases, specifically after intratracheal
administration.
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marker for local inhaled drug deposition and absorption patterns.

MTR was modeled with a single, fixed positive charge and a

logPd = 0.16. Hoe was modeled as a lipophilic, monobasic molecule

with a pKa = 7.8 and a logPn = 4.49 (calculated with ChemAxon,

www.chemaxon.com). These physicochemical properties were used

as input parameters to calculate the time dependent changes of the

probe concentrations in the airways and alveoli, respectively. For

simulations of IT instillation, the same initial concentration (1 mM)

of MTR and Hoe was assumed as the initial condition for the

airways and alveoli. The same initial dose used for IT instillation

was also used for IV administration. Blood clearance was fixed to 0

for simulations, unless otherwise noted.

Cell–based transport assays on microfabricated pore
arrays

A customized transwell insert system was constructed using a

polyester membrane with microfabricated pore arrays precisely

machined using a focused ion beam (Hitachi FB-200A) [15]

(Figure 1 E). These membranes support cell growth and the pores

Figure 1. General methodology of integrative, cell based transport modeling. A) For computational simulations at the cellular level, a
monobasic compound diffuses across a phospholipid bilayer and undergoes ionization and partition/binding in each compartment. The neutral form
of the monobasic molecule is indicated as [M], and the protonated, cationic form of the molecule is indicated as [MH+]. B) For computational
simulations at the histological level, each airway generation is modeled as a tube lined by epithelial cells; as molecules are absorbed over time, the
drug concentration in the lumen decreases accompanied by an increase in drug concentration in the circulation C) For computational simulations at
the organ level, the lung is modeled as a branching tree, with airway generation modeled as a cylinder, from the trachea to the alveoli. D)
Experimental design of insert system with patterned pore arrays on membrane support for viewing lateral transport of fluorescent molecules along
the plane of a cell monolayer, away from a point source. E) Transmitted light image of a 565, 3 mm diameter pore array (20 mm spacing) on a
polyester membrane. F) Transmitted light image of an MDCK cell monolayer above a membrane support with 363, 3 mm diameter pore array (40 mm
spacing). Scale bar: 40 mm. G) 3D reconstruction of confocal images of the distribution of three fluorescent probes added to the uppermost surface of
NHBE cell multilayers grown on air-liquid interface cultures on porous membrane support. Each 3D plane is composed of the image with the
fluorescent channel; red (MTR), blue (Hoe), and green (LTG). H) Illustration of the tiling algorithm used to visualize and quantify the distribution of
Hoe and MTR in lung cryosections, after IT and IV coadministration of the probes.
doi:10.1371/journal.pcbi.1002378.g001
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serve as a point source for compound administration to single cells

on a cell monolayer (Figure 1F)). The pore arrays were comprised

of 3 mm diameter cylindrical pores, arranged 20 mm apart in a 5-

by-5 square array. Pores were also arranged 40, 80 and 160 mm

apart in 3-by-3 symmetrical arrays. The pores were individually

machined using a high brightness Ga liquid metal ion source

coupled with a double lens focusing system. The perforated

membranes were glued (Krazy GlueH) to the bottom of hollow

TranswellH holder (Costar 3462 or 3460), creating a permeable

support for cell growth (Figure 1D). The integrity of the insert

system was tested by adding 5 mM Trypan Blue (dissolved in

Hank’s balanced salt solution; HBSS) to the insert wells [15]. The

insert was considered intact if there was no evidence of Trypan

Blue leakage from the edge of the insert membrane. For assessing

lateral cell-cell transport, Madin-Darby canine kidney (MDCK)

cells were purchased from ATCC (CCL-34TM) and grown (37uC,

5% CO2) in Dulbecco’s modified Eagle’s medium (DMEM, Gibco

11995) containing 10% FBS (Gibco 10082), 16 non-essential

amino acids (Gibco 11140) and 1% penicillin/streptomycin (Gibco

15140). MDCK cells were seeded on polyester membranes

containing the pore arrays at a density between 16105–26105

cells/cm2 and were grown until a confluent cell monolayer formed

(Figure 1F). To evaluate the effect of pore arrays on cell monolayer

intactness, MDCK cells were washed and incubated in transport

buffer (HBSS buffer supplemented with 25 mM D-glucose,

pH 7.4) for 30 min followed by transepithelial electrical resistance

(TEER) measurement using Millipore MillicellH ERS. Cell

monolayers were used for experiments only if the background

subtracted TEER values were higher than 100 V?cm2 and if the

cells covering the pore arrays appeared as an intact monolayer.

Measurement of lateral cell-to-cell transport and
retention using microfabricated pore arrays

To assess cell-to-cell transport along the plane of the monolayer

(Figure 1D–F), fluorescent dyes were added into the basolateral

compartment of the transwell system (at time 0). The dynamic

staining pattern in the cells was imaged (Nikon TE2000S

epifluorescence microscope equipped with a triple-pass DAPI/

FITC/TRITC filter set (Chroma Technology Corp. 86013v2)).

The 12-bit grayscale images were acquired using a CCD camera

(Roper Scientific, Tucson, AZ). For measurements, individual cells

or nuclei in these images were manually outlined using the region

tool in MetaMorphH software (Molecular Devices Corporation,

Sunnyvale, CA). The average and standard deviation of cellular or

nucleus fluorescence intensity was measured using MetaMorphH,

after subtracting the background fluorescence intensity estimated

from the unstained regions of the monolayer distant to the pores.

The rate of Hoe staining in the nucleus was measured as the slope

of fluorescence increase normalized by the slope of increase in the

first nucleus (closest to the pore).

Measurement of intracellular retention using Normal
Human Bronchial Epithelial cell multilayers differentiated
on air-liquid interfaces

Normal human bronchial epithelial (NHBE) cells (CloneticsTM,

passage 1; Lonza, Walkersville, MD) were cultured (37uC, 5%

CO2) and seeded (passage 2) at 2.56105 cells/cm2 on a

TranswellH insert (Corning Inc., Lowell, MA; area: 0.33 cm2,

pore size: 0.4 mm) in NHBE differentiation media (Lonza,

Walkersville, MD) The apical media was aspirated after 24 h of

cell seeding and the cells on the polyester membrane were

maintained in media only in the basolateral compartment of the

air-liquid interface culture (ALC) [16,17]. On day 8 of ALC, the

integrity of the cell layers on the membrane was assessed by light

contrast microscope and by transepithelial electrical resistance

(TEER) [18]. After equilibration of the cell layers on the insert

with pre-warmed HBSS buffer (10 mM HEPES, 25 mM D-

glucose, pH 7.4) for 30 min (37uC, 5% CO2), TEER values were

obtained and cells with TEER values of ,600 VNcm2 were used

for the transport and retention assays [16,17,19,20,21].

NHBE cell multilayers grown on the inserts were examined with

a Zeiss LSM 510-META laser scanning confocal microscope (Carl

Zeiss Inc., Thornwood, NJ) with a 606water immersion objective

on day 8 of ALC culture. For the confocal analyses, three different

cell-permeant dyes were prepared by dilution with HBSS buffer

10 mg/ml Hoe; 2.5 mM LysoTrackerH Green (LTG, Molecular

Probes, CA); and 1 mM MTR). After the cell multilayers were

washed with HBSS, 240 ml of dye mixture (80 ml of each dye in

HBSS) was added to the apical compartment and 600 ml of HBSS

was added to the basolateral side. After 30 min, transport of the

dyes across the cell layers was measured by placing the insert into a

two-chambered slide (Lab-TeKH; Thermo Scientific Nunc co.,

Rochester, NY) and acquiring images along the Z-axis (interval,

1 mm) in three fluorescence channels (coherent enterprise laser

(364 nm) for Hoe, Argon laser (488 nm) for LTG, and Helium

neon 1 laser (543 nm) for MTR). The distribution of probes

applied in the apical compartment of the NHBE cell multilayer

cultures was assessed in 3D reconstructions of the acquired images

of probe distribution, using MetaMorphH software (Figure 1G).

The relative distributions of MTR, Hoe, and LTG dyes across the

multilayers were assessed by imaging analyses through multiple Z-

stacks. After background subtraction, the integrated intensity of

each fluorescence channel per cell was summed in each cell layer

and divided by the total integrated intensity in all the layers to

calculate the percentage of relative distribution of the integrated

fluorescence signal of each dye associated with inner layer or the

exposed surface layer of the NHBE cell multilayer.

Visualizing probe distribution in mice lungs after IT
instillation or IV administration

The distribution of MTR and Hoe in airways and alveoli after

IT and IV injection in live mice were determined by microscopic

imaging of cryopreserved lung tissue sections and confirmed by

visual inspection followed by quantitative imaging of high

resolution tiled mosaics assembled from fluorescence images of

tissue sections (Figure 1H). For these experiments, male C57BL/6J

mice (Jackson Laboratory, Bar Harbor, ME; 8 weeks, 20–30 g)

were used and the protocol was approved by the University of

Michigan’s animal care and use committee in accordance with the

National Institutes of Health Office of Laboratory Animal Welfare

‘‘Principles of Laboratory Animal Care.’’ MTR (50 ug in 10 ul

DMSO) and Hoe (90 ul of 10 mg/ml in ddH20) were mixed so

that the final concentration of MTR and Hoe was 0.94 and

14.61 mM, respectively. Mice received either 50 ml of dye mixture

or 50 ml saline (control) via IV tail veil injection or IT instillation

[22]. For IV administration, conscious mice were briefly restrained

and for IT instillation mice were anesthetized with isoflurane gas,

and the dose was delivered to the airway via the oral route as

previously described.

In order to study the differential regional distribution of

fluorescent dyes in the lung, mice were anesthetized with

ketamine/xylazine 40 minutes after dosing. A thoracotomy was

performed and a heparinized blood sample was acquired by

cardiac puncture. The trachea was cannulated (20G luer stub)

after which the lungs were inflated with ,1 mL of a 30% sucrose-

optimal cutting temperature (OCT; Tissue-Tek, Sakura Finetek

USA, Torrance, CA USA) mixture and removed en bloc. The lungs

A Computational Approach to Site-Directed Probes
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were immersed in OCT and were immediately frozen (at 280uC)

[23].

For microscopy, coronal lung sections (7 mm) were imaged using

an epifluorescence Olympus BX-51 microscope equipped with the

standard DAPI, FITC and TRITC filter sets. A series of low-

magnification (64) left and right lung section images were

electronically captured with an Olympus DP-70 high-resolution

digital camera using Image J software (ImageJ 1.44b, National

Institutes of Health, USA; http://rsb.info.nih.gov/ij). In order to

permit comparisons of image brightness and fluorescence, images

for each lung section were acquired using the same illumination

and image acquisition settings. Mosaics of the entire lung were

tiled using PhotoshopH (version 4; Adobe Systems Inc., San Jose,

CA) and quantitative image analysis was carried out using the

integrated morphometric analysis function of MetaMorphH.

Background subtracted fluorescence intensity values over the

airways and alveoli were measured, as the integrated value of all

pixels per unit area of the manually selected airway and alveolar

tissue regions, using the images acquired with the DAPI channel.

In turn, the same airway and alveolar tissue regions were used to

measure the MTR fluorescence signal using the images acquired

with the TRITC channel.

Results

For virtual screening experiments, molecules with maximal

tissue exposure (AUC) in the airways after inhalation were

identified by using combinations of logPn and pKa as input

parameters in a multiscale, cell-based lung transport model

(Figure 2). For weak bases, lower lipophilicity and higher pKa

promoted intracellular retention and led to greater local exposure

relative to the alveoli (Figure 2A, B). The calculated airway/alveoli

exposure ratio (Figure 2C) ranged from 100 to 700 and increased

with lowered logPn (increasing hydrophilicity) and higher pKa

(greater positively charged fraction at physiological pH) Essential-

ly, cell-permeant, hydrophilic molecules harboring a fixed positive

Figure 2. Virtual screening of monobasic compounds based differential tissue distribution in the airways and alveoli. The
combinations of logPn and pKa were used as input. For simulations, the initial dose was set to 1 mg/kg for airways and alveoli. Contour lines indicate:
A) The calculated AUC (unit: mg/ml*min) in airways; B) The AUC (unit: mg/ml*min) in alveoli; C) The AUC contrast ratio of airways to alveoli; D) The
mass percentage (%) in alveoli relative to the total mass in lung; E) The mass percentage (%) in airways relative to the total mass in lung; F) The mass
ratio of alveoli to airway. Matlab scripts used to generate plots A–C (Text S1) and D–F (Text S2) are included in the supplementary materials.
doi:10.1371/journal.pcbi.1002378.g002
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charge showed the greatest accumulation and retention in the cells

of the upper airway relative to the alveoli, following IT

administration.

To probe the role of the route of administration, simulations

were also performed by independently varying logPn and pKa to

calculate the mass deposition pattern in the airways and alveoli

under steady state conditions after IV administration (Figure 2D–

F). In this manner we established the relationship between the

physicochemical properties of small molecules and absolute and

relative mass distribution in the airways (Figure 2D) and alveoli

(Figure 2E). Following IV administration, the majority of the mass

was deposited in the alveoli irrespective of the physicochemical

properties of the molecules (Figure 2F); the airways held less than

20% of total drug mass in the lungs. Compounds with low logPn

and high pKa tended to exhibit the largest airway to alveoli mass

ratios, which paralleled the results obtained after IT administra-

tion.

In order to validate the results of these virtual screening

experiments, two fluorescent bioimaging probes, MTR and Hoe,

were selected for more detailed analysis. MTR is a cell-permeant,

hydrophilic cation, and Hoe is a cell permeant, hydrophobic weak

base. Based on the screening results (Figure 3) and more detailed

simulations (Figure 3), the concentration profiles of these two

fluorescent molecules in the airways and alveoli were markedly

different after IT (Figure 3 A, B) and more similar after IV

(Figure 3 C, D) administration. When given IT, the predicted

MTR concentration, 40 to 60 min after administration, was nearly

10-fold higher in the airways than in the alveoli (Figure 3A).

Conversely, the predicted concentration of Hoe in the airways was

two-fold higher in alveoli than in airway (Figure 3B). When given

IV, the predicted concentration of MTR in the airways was almost

the same as that in alveoli (Figure 3C). However, the predicted

concentration of Hoe in the airways was higher in alveoli

(Figure 3D). Thus, MTR should be retained in the airways

specifically after IT administration, whereas Hoe should not be

retained in airways relative to alveoli regardless of the route of

administration.

Next, cell based assays were used to establish the intracellular

retention of MTR and Hoe at a site of absorption. For this

purpose, a transwell insert system with micro-fabricated pores was

constructed. After seeding MDCK epithelial cells on the patterned

pore arrays and adding hydrophobic fluorescent compounds in the

basolateral side of cell monolayer, the time course dye uptake in

the cells sitting above the pores and the kinetics of lateral transport

from the cells lying on top of the pore to the neighboring cells was

visualized by fluorescence microscopy.

Three hours after the addition of Hoe to the basolateral

compartment, only cells that were within close vicinity of pores

were stained, indicating that the cells formed a tight seal with the

pores such that each pore fed almost exclusively into cells that

were in immediate contact with the pores (Figure 4). Monitoring of

the cell-to-cell diffusion of Hoe over time, indicated that the pores

served as point sources of sustained dye supply to the adjacent cells

(Figure 4A–D) and for cells grown on membranes with pores

spaced by 80 mm (Figure 4C) or 160 mm (Figure 4D), each pore

could be considered as the single point source of dye molecules.

Quantitative image analysis revealed that the rate of staining

rapidly decreased as the distance of the cells from the pores

Figure 3. Simulations of local pharmacokinetics of MTR and Hoe after IV an IT administration. A) The simulated tissue concentration in
airways (dash line) and alveoli (solid line) of MTR administered by IT instillation (Matlab script used to generate this plot is included as Text S3 in the
supplementary materials); B) The simulated tissue concentration in airways (dash line) and alveoli (solid line) of Hoe administered by IT instillation
(Matlab script used to generate this plot is included as Text S4 in the supplementary materials); C) The simulated tissue concentration in airways
(dash line) and alveoli (solid line) of MTR administered by IV injection (Matlab script used to generate this plot is included as Text S5 in the
supplementary materials); D) The simulated tissue concentration in airways (dash line) and alveoli (solid line) of Hoe administered by IV injection
(Matlab script used to generate this plot is included as Text S6 in the supplementary materials).
doi:10.1371/journal.pcbi.1002378.g003
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increased (Figure 4E, F). Remarkably, only cells in the vicinity of

each pore were labeled.

As controls, cells were stained with Hoe plus BCECF-AM from

the basolateral compartment (Figure 4G–I). BCECF-AM is a

nonfluorescent cell-permeant ester, which generates a cell-

impermeant, fluorescent molecule upon intracellular hydrolysis.

While the extent of Hoe diffusion was dependent on the distance

from the pores (Figure 4G), the green fluorescence of the

hydrophillic ester hydrolysis product (BCECF) was exclusively

restricted to the first layer of cells that were in direct contact with

pores (Figure 4H, I).

Similar to the Hoe staining pattern, MTR also exhibited a

highly constrained diffusion pattern with most of the staining

restricted to the vicinity of each pore (Figure 5). After two-hours of

staining from the basolateral compartment with both Hoe

(Figure 5A) and MTR (Figure 5B), only cells within 60 microns

of the pore being stained with both probes (Figure 5C). The

normalized fluorescence intensity of MTR and Hoe were similar

in the first and second layers of cells, but MTR showed higher

penetration into the third layer (Figure 5D).

In the transversal direction, the absorption and retention of

MTR and Hoe across multiple layers of cells was also assessed in

primary NHBE cells differentiated as multilayers in ALC

(Figure 6). For the experiments, MTR and Hoe were simulta-

neously added in the apical side of the cells and intracellular

accumulation was assessed using 3D reconstructions of the cell

multilayers (Figure 6). As a positive control, LTG was also

included in the apical HBSS buffer. Thirty minutes after the

addition of probes to the apical compartment, both MTR and

Hoe staining were constrained to the first, outer surface layer of

cells (Figure 6, left). The cells beneath the surface layer of cells

were stained with LTG (Figure 6, right), indicating that the limited

penetration of both MTR and Hoe. Different transport patterns of

MTR, Hoe and LTG across the cell multilayers were verified by

image quantitation using MetaMorphH software in the multiple Z-

stack images of NHBE cell multilayers. Approximately

96%62.76% of MTR or 96%62.48% Hoe of the dye was

retained in the surface cell layer whereas 50%615.62% of LTG

fluorescence was associated with the surface cell layer. Tukey’s

multiple comparison test following ANOVA (one-way analysis of

variance) test showed statistically significant difference between

MTR and LTG (p-value,0.0001) and also between Hoe and

LTG (p-value,0.0001), but not between MTR and Hoe with p-

value larger than 0.05 (a= 0.05).

As an ultimate test of the results of in silico virtual screening

experiments, mice were administered a mixture of MTR and Hoe

by either IV tail vein or IT instillation and the distribution of the

molecules in the lungs was assessed by fluorescent microscopy

(Figure 7). Hoe distributed throughout the lungs regardless of

route of administration (Figure 7A, B) with fluorescence in both

alveoli and airways (Figure 7C, D)). Following IV administration,

MTR also distributed throughout the lung in both airways and

alveoli (Figure 7E). Conversely, IT administered MTR resulted in

highly uneven fluorescence distribution (Figure 7F). Most

importantly, the airway regions showed comparable MTR

fluorescence in airway vs. alveoli after IV (Figure 7G) but higher

MTR fluorescence intensity in airways compared with the alveoli

following IT delivery (Figure 7H).

To confirm these observations quantitative image analysis was

performed to compute background subtracted integrated intensity

of alveolar and airway regions, to quantify the relative, differential

fluorescence intensity distribution of Hoe and MTR in airway and

Figure 4. Probing the intracellular retention of Hoe along the plane of a cell monolayer. For the experiments, Hoe was added to the
basolateral compartment and incubated for 3 hrs, with cell monolayers sitting on top of patterned pore arrays. Red spots indicate the location of
pores; Scale bar: 80 mm. Cells were imaged using the DAPI channel of an epifluorescence microscope. A) 565 array of 3 mm pores with 20 mm
spacing; B) 363 array of 3 mm pores with 40 mm spacing; C) 363 array of 3 mm pores with 80 mm spacing; D) 363 array of 3 mm pore array with
160 mm spacing; E) Fluorescent images of a cell monolayer incubated for 3 hours in the presence of Hoe in the basolateral compartment; F)
corresponding measurements of fluorescence intensity of cells in A), showing the average fluorescence of each nucleus normalized by the average
fluorescence of the nucleus closest to the pore at the 3 hr time point, and plotted as mean 6 s.d. (n = 6). G) Fluorescence image of cell monolayer on
a 363 array of 3 mm pores with 40 mm spacing after 2 hr incubation with Hoe and BCECF-AM in the basolateral compartment; H) FITC channel
corresponding to BCECF staining of the same cells as in; I) Image overlays of C and D.
doi:10.1371/journal.pcbi.1002378.g004
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alveoli. The fluorescence MTR/Hoe ratio ranged from 2.42 to

3.27 for IT administration. For MTR and Hoechst, the mean (6

s.d.) percent airway delivery was 23.9%65.8% and 8.8%62.7%,

respectively (based on 422 region measurements from a single

lung). For IV administration, the fluorescence MTR/Hoe ratio

ranged from 0.95 to 1.45. The mean (6 s.d) percent airway

delivery for MTR and Hoe were 7.5%62.5% and 7.1%61.8%,

respectively (based on 383 region measurements from a single

lung). The images and measurements were consistent with local

intracellular retention of MTR in the airways compared with Hoe,

following IT (but not IV) instillation. These in vivo results paralleled

the in silico simulation results (Figure 3).

In order to identify the most important parameters that might

explain the differences in local retention of MTR and Hoe, a

parameter exchange analysis was performed using computational

simulations. For this purpose, individual parameters of the airway

were exchanged with those of the alveoli, one at a time, and the

simulations were rerun to calculate the exposure (AUC) of MTR

and Hoe. Based on the results of this simulation analysis (Table 1)

the volume of interstitial smooth muscle cells together with the

volume of mitochondria were the primary factors determining the

retention of MTR in the upper airways relative to alveoli.

Secondarily, the surface areas of epithelial and endothelial cell

layers were important, affecting retention in opposite directions.

Taken together, these results suggest that the mitochondrial

density per unit absorption surface area is the key histological

organization parameter responsible for the higher retention of

MTR in upper airways after IT administration.

Discussion

In traditional pharmacokinetic studies, drug distribution in the

lungs is analyzed in a homogeneous and well-stirred compartment

[13,24]. Here, we have elaborated an integrated, cell-based

approach to model local drug absorption and transport phenom-

ena, aimed at identifying cell-permeant molecules that are retained

in the cells of the upper airway upon local pulmonary

administration via the inhaled route. This integrated approach

can be exploited for bioimaging probe development or for

optimizing the local concentration of pulmonary medications

[25,26].

Locally acting, inhaled medications are of considerable interest

for treating various pulmonary ailments, including asthma,

chronic obstructive pulmonary disease (COPD) and pulmonary

Figure 5. Probing the intracellular retention of MTR along the plane of a cell monolayer. Cell monolayers on pore arrays were incubated
for 2 hr with Hoe and MTR in the basolateral compartment. White spots indicate the location of pores; Scale bar: 20 mm. A) Fluorescent image
acquired with the DAPI channel showing Hoe diffusing on a cell monolayer sitting on top of a single pore of a 363 array of 3 mm pores with 160 mm
spacing; B) Same field as in A, visualized with the TRITC channel to show the staining of MTR; C) Overlay of A and B showing the overlapping Hoe
(blue) and MTR (red) staining patterns. D) Plots of the fluorescence intensity of Hoe and MTR, separated by 0, 1, 2 or 3 layers of cells from a pore, and
normalized by the fluorescence intensity of the cell closest to the pore; asterisk indicates a statistically significant difference using Student’s T-test;
p,0.05; n = 6).
doi:10.1371/journal.pcbi.1002378.g005
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hypertension [11,27,28]. The therapeutic benefits of inhaled

medications include targeted drug delivery, rapid onset of action,

low systemic exposure with a resultant reduction in systemic side

effects [29,30]. Nevertheless, measuring local drug concentrations

in the lungs is challenging. Previously, regional differences in local

lung exposure have received little attention in the context of small

molecule targeting and delivery. Inhaled drug development efforts

ignore the possibility that local differences in drug exposure could

influence regional differences in drug transport properties that are

associated with structural and functional characteristics of the

airways and alveoli [31,32,33]. Accordingly, the approach

presented here is significant because it furthers our understanding

of how inhaled drug molecules and bioimaging probes behave

after local administration to the lungs. These findings have

important implications in pulmonary drug development.

Our simulations and experiments indicate that route of

administration, histological organization and circulatory parame-

ters can affect the retention and distribution of different molecular

agents in various regions of the lung based on the lipophilicity and

ionization properties of molecules, and as such, may be of pivotal

importance for the optimization of drug targeting [25,26].

Specifically, we considered two major and clearly distinguishable

regions of the lungs: the airways and the alveoli, which are

histologically and physiologically distinct. Extensive studies have

demonstrated that the regional lung deposition of drugs is largely

dependent on the aerodynamic particle size generated by delivery

devices [28,31,34,35]. Here, we introduce the concept that other

parameters (e.g., the chemical properties of molecules) may be as

important for predicting the behavior of pulmonary delivered of

drugs. This is evidenced from our simulations which indicated

that, after absorption into the blood, the majority of drug mass

(.80% of total mass in lungs) is predicted to accumulate in the

alveoli because of its larger volume and higher lipid content and

compounds with high lipophilicity and low pKa will accumulate to

even a greater extent in the alveoli. Although inhaled drug

targeting leads to most of the drug mass deposited in the upper

airways, without significant intracellular retention, the molecules

can be rapidly absorbed and circulate back to the lung to

accumulate in the alveoli. In theory, only molecules that are

retained in the cells of the upper airways at the local site of

administration can be effectively targeted to the upper airways.

To study the transport properties of small molecules in airways

and in alveoli, we conducted simulations concentrated on charac-

terizing the behavior of two fluorescent compounds, MTR or Hoe,

because they exhibited large differences in simulated transport

behaviors. In addition, two in vitro cell based assays were developed to

test the local cellular uptake and retention properties of small

molecules: 1) primary NHBE cell cultures comprised of cell

multilayers differentiated on transwell insets in the presence of an

air-liquid interface; and 2) MDCK cell monolayer cultures on

microfabricted pore arrays to establish the lateral cell-to-cell

transport kinetics of small molecules, along the plane of the cell

monolayer. In the case of Hoe and MTR, both in vitro assays

confirmed that the probes were taken up and largely retained by cells

in the immediate vicinity of site of absorption and that the extent of

diffusion followed a dye concentration gradient from the pores. Our

in vitro findings indicated that the lateral cell-to-cell diffusion of MTR

and Hoe was highly constrained. These in vitro results confirmed that

both Hoe and MTR were retained intracellularly at a significant

level in the presence of a transcellular concentration gradient both in

the apical-to-basolateral and lateral directions. These results were

also informative in terms of the time scale of intracellular

accumulation and the relative labeling intensity afforded by these

two fluorescent probes in the presence of a transcellular gradient.

However, the in vitro assays did not reveal a major difference in the

local retention of MTR and Hoe. Based on this observation, the

behavior of these probes in these in vitro assays appeared most

consistent with the predicted behavior of the probes in the alveoli.

Nevertheless, the results of in vivo studies closely paralleled those

obtained in silico, in that MTR was retained in airways upon local

IT administration while Hoe distributed in both airways and

alveoli irrespective of the route of administration. Although in vitro

Figure 6. Fluorescent confocal images of NHBE cell multilayers on the porous membrane with Z-stacks. Cell multilayers were stained
with MTR, Hoe and LTG. Each compartment (membrane inserts (bottom), inner cell layers, surface cell layer, and apical compartment (top)) through z-
axis were indicated with the red arrows in x–z planes while cell nuclei and cytoplasm in x–y planes. The panel to the left shows an x, y cross section
through the apical surface layer of the cell multilayer. The panel to the right shows an x, y cross section through the inner cell layer of the cell
multilayer. Scale bar: 20 mm.
doi:10.1371/journal.pcbi.1002378.g006

A Computational Approach to Site-Directed Probes

PLoS Computational Biology | www.ploscompbiol.org 9 February 2012 | Volume 8 | Issue 2 | e1002378



Figure 7. Tiled fluorescent micrographs of coronal cryosections obtained from the left lungs of mice. Mice received either an IV (A, C, E,
G) or IT (B, D, F, H) dose of a mixture of Hoe and MTR. A) DAPI channel fluorescence image showing Hoe distribution following IV administration; B) DAPI
channel fluorescence image showing Hoe distribution following IT administration; C) High magnification view of the boxed region in A; D) High
magnification view of the boxed region in B; E) TRITC channel fluorescence image showing MTR distribution following IV administration; F) TRITC channel
fluorescence image showing MTR distribution following IT administration; G) High magnification view of the boxed region in E; H) High magnification
view of the boxed region in F. Scale bar = 1 mm. Asterisks mark the cross-sections of the airways, apparent as ellipsoids at high magnification.
doi:10.1371/journal.pcbi.1002378.g007

A Computational Approach to Site-Directed Probes

PLoS Computational Biology | www.ploscompbiol.org 10 February 2012 | Volume 8 | Issue 2 | e1002378



results were useful to confirm the high, local intracellular retention

of the probes, the in silico model is a better representation of the

three-dimensional organization and physiological parameters of the

in vivo situation. Parameter sensitivity analysis indicates that

mitochondrial uptake of hydrophilic cations, in relation to the

surface area over which absorption occurs, is the critical histological

component responsible for high exposure of MTR when given via

IT instillation. This is because as MTR traverses from the lumen of

the airway into the interstitium, it is rapidly taken up into the

mitochondria, driven by the high negative membrane potential of

the mitochondrial inner membrane. Conversely, release of MTR

from the mitochondria out into the circulation is very slow because

the membrane potential slows its release. In the case of alveoli, the

alveolar epithelial cells have much higher apical and basolateral

plasma membrane surface areas relative to the mitochondrial

membrane surface area. The higher cell surface areas facilitate mass

transport of MTR across the cells and into the circulation, which

reduces MTR accumulation in mitochondria.

In contrast to MTR, Hoe is a lipophilic weakly basic compound

with a pKa of 7.5. Therefore, at physiological pH, half of the

Hoechst molecules exist in a highly membrane-permeant, neutral

form. Transmembrane diffusion of the neutral form of Hoe is

orders of magnitude faster than that of a cationic form. So there is

no significant accumulation or retention of Hoe in either the

airways or the alveoli. When administered by IV injection, the

direction of distribution is from blood to the tissue. The

distribution between blood and tissue is mostly a function of the

partitioning or binding of molecules from the circulation to the

tissue, which is dependent on the cell density of the tissue, the

membrane content of the tissue, and the affinity of the probes for

membranes and intracellular components in the tissue. Thus, after

IV administration, both Hoe and MTR tended to partition more

into alveoli than into the airways.

In conclusion, we have elaborated an integrated in silico-to-in

vitro-to-in vivo modeling approach which has applicability toward

the optimization of site-specific targeting of locally-administered

molecules. In the process, we have found that MTR is a candidate

fiduciary marker for local drug deposition and absorption patterns

in the airways. Due to the compartmental nature of the lungs,

computational simulations can be linked to upstream process, such

as pulmonary particle deposition, dissolution and mucus clear-

ance, as well as to downstream processes that can be captured by

pharmacodynamic models [36,37,38]. With additional effort this

approach can be expanded to include macromolecules, acidic,

zwitterionic molecules as well as molecules possessing multiple

ionization sites, to further development of probes of lung structure

and function [39,40].
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