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Abstract 

Aberrant folate metabolism is closely related to tumorigenesis. Genetic variations in the Reduced 
folate carrier 1 (RFC1) may alter the progress of folate metabolism, and thereby cause the initiation 
and progress of the cancer. Considerable studies have performed to investigate the association 
between RFC1 G80A (rs1051266) polymorphism and cancer susceptibility, but the conclusions 
were conflicting. Therefore, we conducted a meta-analysis to reevaluate the association of RFC1 
G80A polymorphism with cancer risk. PubMed and EMBASE were searched for eligible studies. 
The association of RFC1 G80A polymorphism and cancer risk was evaluated by the pooled odds 
ratios (ORs) and corresponding 95% confidence intervals (CIs). The significant association was 
found between RFC1 G80A polymorphism and hematological malignance susceptibility (A vs. G: 
OR=1.11, 95%CI=1.003-1.23, P=0.045; GA vs. GG: OR=1.18, 95%CI=1.06-1.31, P=0.002; AA+GA 
vs. GG: OR=1.18, 95%CI=1.07-1.29, P=0.001). Stratified analysis by ethnicity indicated that the 
association became more prominent among Caucasians (GA vs. GG: OR=1.28, 95%CI=1.12-1.45, 
P＜0.001; AA+GA vs. GG: OR=1.21, 95%CI=1.08-1.36, P=0.001). In term of the cancer type, this 
polymorphism significantly increased the risk of acute lymphoblast leukemia (GA vs. GG: 
OR=1.13, 95%CI=1.001-1.28, P=0.048; AA+GA vs. GG: OR=1.28, 95%CI=1.13-1.46, P＜0.001) 
and acute myeloid leukemia (GA vs. GG: OR=2.57, 95%CI=1.37-4.85, P=0.003). No significant 
association between RFC1 G80A polymorphism and overall solid cancer risk was observed, but a 
protective association with digestive cancer risk was found (GA vs. GG: OR=0.89, 95%CI= 
0.81-0.99, P=0.030). The comprehensive meta-analysis encouraged the notion that RFC1 G80A 
polymorphism may play an important role in hematopoietic system malignance. These findings 
need further validation in the large multicenter investigations. 
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Introduction 
Cancer, one of the leading causes of death all 

around the world, is a result of multiple environ-
mental and genetic risk factors, as well 
as gene–environment interactions. According to the 

cancer statistics, approximately1658370 new cancer 
may occur in USA in 2015 [1]. Although substantial 
resources have been dedicated to cancer research, 
cancer is still a huge threat to human. It is well known 
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that both environmental and hereditary factors play 
critical roles in the initiation and progression of cancer 
[2]. Among genetic factors, genetic mutation and ep-
igenetic change such as DNA methylation can lead to 
carcinogenesis [3]. One-carbon metabolism is closely 
related to DNA methylation, in which folate, a mem-
ber of water-soluble B vitamins family [4], plays an 
important role [5, 6]. Folate is an essential material in 
cell proliferation and tissue regeneration [7, 8], which 
cannot be synthesized in the mammalian cell, and 
must be obtained from extracellular environment to 
support one-carbon transfer biosynthetic reactions [9]. 
Folate deficiency can result in DNA hypomethylation 
and gene instability and subsequently induce disease 
by changing gene expression and increasing DNA 
impairment. Studies have shown that folate metabo-
lism dysfunction are implicated in a variety of dis-
eases, such as neuroblastoma [10], breast cancer [11], 
non-Hodgkin lymphoma [12, 13], and neural tube 
defect [14]. Given the crucial role of folate, its trans-
porters including folate receptors (FRs), pro-
ton-coupled folate transporter (PCFT) and reduced 
folate carrier (RFC) are of great importance to the 
maintenance of hemostasis humans [15]. 

Reduced folate carrier 1 (RFC1)/solute carrier family 
19 members 1 (SLC19A1) gene, located on chromosome 
21, encodes a folate transport protein that has been 
considered as one of the major components of folate 
transport system [15, 16]. Besides, RFC1 also plays a 
part in antifolate transportation during chemotherapy 
[17], and RFC1 gene variation can affect the outcome 
and toxicity of methotrexate (MTX) therapy in leu-
kemia [18]. RFC1 G80A polymorphism located in ex-
on 2 leads to an amino acid substitution of histidine 
for the arginine at codon 27 (H27R) of RFC1.This 
polymorphism may influence the function of RFC and 
one-carbon metabolism, thereby inducing tumor-
igenesis [19]. Lack of folate leads to DNA synthesis 
disorders and therefore causes genomic instability. 
Thus, RFC1 G80A polymorphism can affect DNA 
synthesis in the pathogenesis of cancer. Previously, 
RFC1 G80A polymorphism had been proven to be a 
risk factor of acute lymphoblastic leukemia in some 
studies [20], but other studies showed that RFC1 
G80A polymorphism was not related to the risk of 
acute lymphoblastic leukemia [21]. Moreover, the 
impact of RFC1 G80A polymorphism on solid cancer 
risk was not definitely known. Recently, several 
studies have explored the association between RFC1 
G80A polymorphism and solid tumor, including col-
orectal cancer [22-25], gastroesophageal cancer [26], 
bladder cancer [27], breast cancer [28-31] and nervous 
system cancer [32]. Naushad et al. [30] found that 
RFC1 G80A polymorphism conferred increased sus-
ceptibility to breast cancer, while De Cassia Carvalho 

Barbosa et al. [31] indicated that the same polymor-
phism had the protective effect on breast cancer. The 
association between RFC1 G80A polymorphism and 
cancer risk was controversy. Therefore, it is necessary 
to conduct a comprehensive analysis to clarify the 
association. 

Materials and Methods 
Literature search strategy 

The PubMed and EMBASE were searched thor-
oughly without any language restriction to seek po-
tential studies. The following keywords were used for 
literature search: “RFC, reduced folate carrier gene, 
rs1051266, RFC1 G80A, or SLC19A1”, “polymorphism, 
variant, or variation”, and “cancer, neoplasm, or car-
cinoma”. Additionally, literature was searched by 
manually screening the reference lists of the eligible 
studies and reviews. The last search was performed 
on March 31, 2015. 

Inclusion and exclusion criteria 
The articles included met the following criteria: 

(a) studies focused on the association between RFC1 
G80A polymorphism and cancer risk; (b) case-control 
studies or other observational studies; (c) studies 
providing the genotype distribution data or other 
original data that can be used to calculate genotype 
distribution. Exclusion criteria were as follows: (a) 
duplicate studies; (b) lack of enough data of genotype 
distribution or data for deducing genotype distribu-
tion; (c) not case-control studies. 

Study selection and Data extraction 
Two investigators extracted data from eligible 

articles separately. The following data were extracted 
from the original articles: (1) authors, (2) year of pub-
lication, (3) country in which study was conducted, (4) 
ethnicity, (5) type of cancer, (6) sample size, and (7) 
alleles and genotypes distribution. When argument 
occurred between the two investigators, the disa-
greements were solved by the third investigator. The 
disagreements were fully discussed by all the three 
investigators and then vote by ballot among all the 
researchers. 

Statistical analysis 
All genotypes frequency of RFC1 G80A poly-

morphism was calculated and chi-square test was 
employed to assess the Hardy-Weinberg Equilibrium 
(HWE) in control subjects for every study. The asso-
ciation between RFC1 G80A polymorphism and can-
cer risk was assessed by calculating pooled odds ratio 
(OR) and 95% confidence interval (CI) under the five 
genetic models: comparisons of allele frequencies, 
homozygous, heterozygous, dominant, and recessive 
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models. All the statistical tests were two-sided and the 
result with P<0.05 was regarded as a statistically sig-
nificant. Q value and I2 were used to evaluate the 
between-study heterogeneity in the heterogeneity 
test. The random effects model were hired to calculate 
the pooled OR and 95% CI when I2>50%. Otherwise, 
the fixed effect model was adopted. Moreover, sub-
group analyses were performed according to ethnicity 
and cancer type. Subsequently, the sensitivity analysis 
was performed by successively removing one study at 
a time to recalculate OR and 95% CI. Publication bias 
was assessed by funnel plots and Egger’s linear re-
gression test. If the funnel plots were asymmetry or 
P<0.1, publication bias was considered significant. All 
the results above were performed by STATA 12.0 
(STATA Corporation, College Station, TX). 

Results 
Search results and study characteristics 

Using the keywords, 454 and 240 articles were 
retrieved from PubMed and EMBASE, respectively. 
Most of studies were excluded after carefully reading 
the titles and abstracts. The remaining articles were 
further evaluated by reading through the text. As a 
result, 28 eligible articles were included in the me-
ta-analysis. Additionally, 2 articles were found 
through manually searching the reference lists of the 
eligible studies and reviews. In total, the me-
ta-analysis contained 30 articles consisting of 33 
studies with 12020 cases and 14343 controls, focusing 
on the relationship between RFC1 G80A polymor-
phism and cancer risk (Figure 1). The characteristics 
of the studies included in the meta-analysis are shown 
in Table 1. 

 

Table 1. The characteristics of the included studies on RFC1 G80A polymorphism and cancer risk 

Author Year Ethnicity Country Cancer type Sample size Cases Controls 
     Cases/Controls GG GA AA GG GA AA 
Whetstine[44] 2001 Caucasian USA ALL 54/51 10 24 20 9 25 17 
Skibola[45] 2004 Caucasian USA non-Hodgkin lymphoma 334/729 109 158 67 266 331 132 
Ulrich[22] 2005 Mixed USA colorectal cancer 1600/1962 513 788 299 585 976 401 
Lightfoot[46] 2005 Caucasian USA non-Hodgkin lymphoma 589/755 199 277 113 263 369 123 
Wang[26] 2006 Asian China oesophageal cancer 216/673 66 67 83 193 313 167 
Wang[26] 2006 Asian China gastric cancer 633/673 177 242 214 193 313 167 
Moore[27] 2007 Caucasian Spain bladder cancer 1084/1032 301 520 263 313 500 219 
Xu[28] 2007 Caucasian USA breast cancer 1066/1108 247 532 287 237 561 310 
Gast[47] 2007 Caucasian Germany ALL 542/542 125 251 79 178 256 108 
Eklof[23] 2008 Caucasian Sweden colorectal cancer 219/410 70 93 56 116 190 104 
Kotsopoulos[29] 2008 Caucasian Canada breast cancer 937/764 304 440 193 243 347 174 
Liu[48] 2008 Asian China lung cancer 499/504 127 250 122 137 250 117 
Sirachainan[32] 2008 Asian Thailand central nervous system tumors 73/205 18 38 17 44 104 57 
Di[40] 2009 Asian China cervical cancer 107/107 31 48 28 18 46 43 
de Jonge[49] 2009 Caucasian Netherland ALL 241/495 69 120 52 186 241 68 
Kurzwelly[50] 2010 Caucasian Germany primary central nervous system 

lymphoma 
185/212 68 87 30 76 91 45 

Yeoh[51] 2010 Asian Malay-
sia-Singapore 

ALL 210/319 62 108 40 72 170 77 

Curtin[24] 2011 Mixed USA colorectal cancer 724/922 226 351 147 280 459 183 
Galbiatti[41] 2011 Caucasian Brazil head and neck aquamous cell 

carcinoma 
322/531 92 137 93 126 221 184 

Jokic[25] 2011 Caucasian Croatia colorectal cancer 300/300 85 160 55 90 155 55 
Naushad[30] 2011 Asian India breast cancer 244/244 87 107 50 96 122 26 
Chan[20] 2011 Asian Singapore ALL 184/177 43 98 43 61 75 41 
Metayer[21] 2011 Caucasian USA ALL 348/422 106 188 54 132 205 85 
Yang[52] 2011 Asian China ALL 361/367 93 172 96 105 191 71 
Zhao[53] 2011 Asian China ALL 98/135 21 53 24 53 52 30 
De Cassia[31] 2012 Caucasian Brazil breast cancer 156/156 58 71 27 30 89 37 
Silva[38] 2013 Caucasian Brazil AML 21/137 4 10 7 49 56 32 
Silva[38] 2013 Caucasian Brazil ALL 95/137 21 38 36 49 56 32 
De Miranda[37] 2014 Caucasian Brazil central nervous system tumors 30/92 4 14 12 31 43 18 
Karathanasis[54] 2014 Caucasian Greece ALL 35/48 9 16 10 15 18 15 
Suthandiram[55] 2014 Asian Malaysia non-Hodgkin lymphoma 372/722 99 182 91 187 354 181 
Montalvao[39] 2015 Caucasian Brazil nephroblastoma 77/222 13 38 26 76 103 43 
Montalvao[39] 2015 Caucasian Brazil central nervous system tumors 64/222 11 33 20 76 103 43 
ALL, acute lymphoblast leukemia; AML, acute myeloid leukemia 
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Figure 1. Flow chart of the study selection and inclusion process. 

 

Meta-analysis results 
Since the pathogenesis of solid cancer and he-

matological malignance vary greatly, we explored the 
association of RFC1 G80A polymorphism with solid 
cancer and hematological malignance separately. The 
pooled ORs and 95% CIs indicated that there was no 
significant association between RFC1 G80A poly-
morphism and overall solid cancer risk (Figure 2). 
When stratified by cancer type, subgroup analysis 
indicated that RFC1 G80A polymorphism was associ-
ated with the decreased risk of digestive system can-
cer under the heterozygous model (OR=0.89, 
95%CI=0.81-0.99, P=0.03 ), while no significant asso-
ciation was detected for other cancer types (Table 2). 
However, RFC1 G80A polymorphism was shown to 
significantly increase the risk of developing hemato-
logical malignance (comparisons of allele frequencies: 
A vs. G: OR=1.11, 95%CI=1.003-1.23, P=0.045; heter-
ozygous: GA vs. GG: OR=1.18, 95%CI=1.06-1.31, 
P=0.002; dominant: AA+GA vs. GG: OR=1.18, 
95%CI=1.07-1.29, P=0.001), as are shown in Figure 3. 
Moreover, stratification analysis was performed by 
cancer type and ethnicity, as shown in Table 3. The 
association became stronger among Caucasians, but 
not valid among Asians (GA vs. GG: OR=1.28, 
95%CI=1.12-1.45, P＜0.001; AA+GA vs. GG: OR=1.21, 

95%CI=1.08-1.36, P=0.001). With respect to cancer 
type, the studied polymorphism imparted increased 
genetic susceptibility to ALL (GA vs. GG: OR=1.13, 
95%CI=1.001-1.28, P=0.048; AA+GA vs. GG: OR=1.28, 
95%CI=1.13-1.46, P＜0.001) and AML (GA vs. GG: 
OR=2.57, 95%CI=1.37-4.85, P=0.003). 

Sensitive analysis and publication bias 
The funnel plot and Egger’s test were conducted 

to test publication biases. The funnel plots of the as-
sociation between RFC1 G80A polymorphism and 
solid cancer and hematological malignance were 
symmetrical in the allele model (Figure 4 and Figure 
5). The Egger’s test value indicated that there was no 
significant publication bias in our meta-analysis 
(P=0.304; 0.287; 0.768; 0.476 and 0.273 for allele, ho-
mozygous, heterozygous, dominant ,and recessive 
models of RFC1 G80A polymorphism and solid can-
cer risk respectively; P=0.219; 0.374; 0.183; 0.201; 0.686 
for allele, homozygous, heterozygous, dominant, and 
recessive models of RFC1 G80A polymorphism and 
hematological malignance respectively). The sensitive 
analyses indicated that no single study could qualita-
tively change the results, suggesting the robustness of 
the meta-analysis.  
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Table 2. Meta-analysis of RFC1 G80A polymorphism and solid cancer 

Variables A vs. G AA vs. GG GA vs. GG AA+GA vs. GG AA vs. AG+GG 
 OR 95%CI P OR 95%CI P OR 95%CI P OR 95%CI P OR 95%CI P 
Overall 1.04 0.94-1.14 0.439 1.08 0.90-1.29 0.432 0.94 0.88-1.01 0.102 0.98 0.87-1.10 0.727 1.12 0.96-1.30 0.155 
Ethnicity  
Mixed 0.94 0.87-1.02 0.144 0.89 0.76-1.05 0.164 0.93 0.82-1.05 0.249 0.92 0.82-1.03 0.161 0.94 0.82-1.07 0.343 
Caucasian 1.06 0.91-1.23 0.469 1.10 0.83-1.47 0.500 0.99 0.90-1.09 0.838 1.04 0.83-1.29 0.760 1.06 0.89-1.28 0.510 
Asian 1.07 0.89-1.27 0.485 1.15 0.82-1.62 0.429 0.87 0.74-1.01 0.063 0.99 0.84-1.16 0.899 1.24 0.88-1.75 0.213 
Cancer type  
Digestive system cancer 1.04 0.93-1.17 0.456 1.07 0.88-1.31 0.497 0.89 0.81-0.99 0.030 0.94 0.86-1.03 0.200 1.18 0.92-1.51 0.194 
Urinary system cancer 1.41 0.85-2.63 0.187 1.97 0.72-5.51 0.190 1.15 0.95-1.39 0.165 1.60 0.73-3.53 0.245 1.49 0.86-2.59 0.159 
Breast cancer 0.94 0.77-1.15 0.539 0.91 0.59-1.40 0.677 0.91 0.79-1.04 0.163 0.86 0.64-1.14 0.285 1.02 0.74-1.40 0.903 
Central nervous system tumors 1.48 0.82-2.68 0.194 2.16 0.66-7.09 0.206 1.50 0.96-2.35 0.078 1.78 0.74-4.27 0.197 1.53 0.74-3.16 0.248 
Others 0.81 0.66-0.98 0.204 0.72 0.43-1.22 0.224 0.93 0.75-1.15 0.513 0.82 0.56-1.19 0.289 0.81 0.57-1.14 0.226 

 

Table 3. Meta-analysis of RFC1 G80A polymorphism and hematological malignance 

Variables A vs. G AA vs. GG GA vs. GG AA+GA vs. GG AA vs. AG+GG 
 OR 95%CI P OR 95%CI P OR 95%CI P OR 95%CI P OR 95%CI P 
Overall 1.11 1.00-1.23 0.045 1.21 0.99-1.47 0.063 1.18 1.06-1.31 0.002 1.18 1.07-1.29 0.001 1.07 0.90-1.27 0.439 
Ethnicity 
Caucasian 1.12 0.99-1.26 0.070 1.24 0.97-1.58 0.092 1.28 1.12-1.45 <0.001 1.21 1.08-1.36 0.001 1.09 0.86-1.38 0.493 
Asian 1.10 0.90-1.34 0.372 1.17 0.80-1.71 0.424 1.01 0.84-1.22 0.898 1.11 0.94-1.31 0.212 1.05 0.82-1.34 0.696 
Cancer type 
ALL 1.15 0.99-1.34 0.069 1.29 0.96-1.79 0.095 1.13 1.00-1.28 0.048 1.28 1.13-1.46 <0.001 1.09 0.84-1.40 0.537 
NHL 1.06 0.96-1.17 0.245 1.13 0.93-1.38 0.228 1.16 0.88-1.52 0.285 1.06 0.92-1.23 0.425 1.10 0.93-1.31 0.266 
PCNSL 0.89 0.67-1.18 0.398 0.75 0.42-1.31 0.308 1.34 0.94-1.91 0.102 0.96 0.64-1.45 0.851 0.72 0.43-1.20 0.204 
AML 1.71 0.89-3.30 0.109 2.68 0.73-9.90 0.139 2.57 1.37-4.85 0.003 2.37 0.75-7.43 0.140 1.64 0.61-4.42 0.327 
ALL, acute lymphoblast leukemia; NHL, Non- Hodgkin leukemia; PCNSL, primary central nervous system lymphoma; AML, acute myeloid leukemia 

 
 

 
Figure 2. Forest plot of solid cancer risk related with RFC1 G80A polymorphism stratified by ethnicity in allele model (A vs. G) 
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Figure 3. Forest plot of hematological malignance risk related with RFC1 G80A polymorphism stratified by ethnicity in allele model (A vs. G) 

 

 
Figure 4. Funnel plot for RFC1 G80A polymorphism and solid cancer risk 

 
Figure 5. Funnel plot for RFC1 G80A polymorphism and hematological 
malignance risk 

 
 

Discussion 
RFC is a typical facilitative transmembrane pro-

tein delivering 5-methyltetrahydrofolate from plasma 
into cells. The dysfunction of RFC has been shown to 
be related to several disease such as neural tube de-
fects [33], congenital heart defect [34], Alzheimer’s 
Disease [35] and homocysteinemia [36]. Moreover, 
RFC is also responsible for transporting Methotrexate 
from extracellular fluid into intracellular fluid, which 

is an effective treatment for rheumatoid arthritis and 
acute lymphoblastic leukemia. Although RFC1 G80A 
polymorphism, leading to a histidine-to-arginine 
substitution at position 27 of the RFC protein, was 
first identified in as early as 2000 [36], the effect of this 
alteration is not fully clarified. Chango et al. [36] in-
dicated that individuals carrying AA genotype had 
higher plasma folate levels than those carrying GG 
genotype. Recently, increasing evidences have high-
lighted the importance of RFC1 G80A polymorphism 
in the pathogenesis of malignance [37-39]. 
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To the best of our knowledge, this is the first 
meta-analysis focusing on the association of RFC1 
G80A polymorphism and the susceptibility of solid 
cancer. Overall, there was no significant association 
between the RFC1 G80A polymorphism and solid 
cancers which was consistent with most of previously 
published results. On the contrary, some other studies 
considered RFC1 G80A polymorphism as a risk factor 
for tumorigenesis. The controversial results of these 
studies might be partially due to the variations among 
the different populations. In recent years, increasing 
researches have investigated the relationship of RFC1 
G80A polymorphism and cancer risk; however, the 
association remains inconclusive. Thus, it is urgent to 
perform a pooled analysis to clarify the association of 
interest and give a general envisage of the impact of 
RFC1 G80A polymorphism on tumorigenesis. In part, 
this conclusion maybe results from the small sample 
size in each study. Moreover, a significantly de-
creased risk of digestive system cancer related to 
RFC1 G80A polymorphism was observed. Surpris-
ingly, in the studies conducted by Xu et al. [28], Di et 
al. [40] and Galbiatti et al. [41] AA genotype was con-
sidered as wild type, while in the majority of studies 
GG genotype was regarded as wild type. This dis-
crepancy may lead to conflicting results which may 
affect the relationship between RFC1 G80A poly-
morphism and susceptibility of solid cancer in the 
pooled analysis.  

Previous studies have shown that RFC1 G80A 
polymorphism is related to children acute lympho-
blastic leukemia, and this polymorphism may affect 
the prognosis of acute lymphoblastic leukemia treated 
with MTX [18, 20]. Similarly, our meta-analysis 
demonstrated that the studied polymorphism in-
creased the risk of hematological malignance. Koppen 
et al. [42] and Vijayakrishnan et al. [43] also per-
formed comprehensive analysis on the influence of 
folate-related gene polymorphisms including the ef-
fect of RFC1 G80A polymorphism on susceptibility to 
leukemia. Koppen et al. [42] failed to find clear asso-
ciation between RFC1 G80A polymorphism and acute 
lymphoblastic leukemia partly because only one rel-
evant study was included in their meta-analysis. Vi-
jayakrishnan et al. [43] indicated that RFC1 G80A 
polymorphism was related with acute lymphoblastic 
leukemia. Compared to the two previous me-
ta-analyses, our study included more eligible studies 
and provided a more comprehensive and powerful 
evaluation on the relationship between RFC1 G80A 
polymorphism and hematological malignance. In the 
stratification analysis, RFC1 G80A polymorphism was 
found to be associated with increased leukemia risk in 
Caucasians under the heterozygous and dominant 
model, implying the interaction of the ethnic back-

ground and genetic variation in leukemia tumor-
igenesis. As for cancer type, RFC1 G80A polymor-
phism was associated with acute lymphoblastic leu-
kemia under the heterozygous and dominant model, 
but not non-Hodgkin lymphoma. These results sug-
gested that the RFC1 G80A polymorphism may play a 
different role in the pathogenesis of different type of 
hematological malignance. Besides, due to relatively 
small sample size of homozygous genotype AA car-
riers, the data presented in our meta-analysis cannot 
demonstrate more severe phenotype in homozygous 
non-synonymous mutation carriers than heterozy-
gous carriers. 

Despite the interesting results in our me-
ta-analysis, several limitations of the current study 
should be acknowledged. First, this meta-analysis 
only included published studies so that potential 
publication bias might not be avoided. Second, the 
influence of a single genetic variant on tumorigenesis 
is complicated by the gene-gene or gene-environment, 
which may lead to an unmeasurable deviation while 
evaluating the relationship between RFC1 G80A 
polymorphism and cancer risk in this meta-analysis. 
Third, we performed this meta-analysis with crude 
ORs since studies included in this meta-analysis 
lacked sufficient data for adjustment for confounding 
factors, which might affect the stability of our results. 
Last, random effect model were used in some genetic 
models, which might present unstable results. There-
fore, validation for our findings from large, 
well-designed studies is needed in the future. 

In conclusion, the comprehensive meta-analysis 
confirmed the notion that RFC1 G80A polymorphism 
may play a significant role in hematopoietic system 
malignance. In addition, the relationship between 
RFC1 G80A polymorphism and cancer grade and pa-
tient prognosis can be a promising research to clarify 
the role of RFC1 G80A polymorphism in pathogenesis 
of cancer. Although the mechanism of how RFC1 
G80A polymorphism contributes to cancer risk is not 
entirely clear, it is may be used as a potential bi-
omarker for cancer diagnosis in the future. 
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