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Abstract

Many studies have examined the associations between paraoxonase-1 (PON1) genetic polymorphisms (Q192R, rs662 and L55M, rs854560)
and the susceptibility to type 2 diabetes mellitus (T2DM) across different ethnic populations. However, the evidence for the associations
remains inconclusive. In this study, we performed a meta-analysis to clarify the association of the two PONT variants with T2DM risk. We car-
ried out a systematic search of PubMed, Embase, CNKI and Wanfang databases for studies published before June 2017. The pooled odds ratios
(ORs) for the association and their corresponding 95% confidence intervals (Cls) were calculated by a random- or fixed-effect model. A total of
50 eligible studies, including 34 and 16 studies were identified for the PON7 Q192R (rs662) and L55M (rs854560) polymorphism, respectively.
As for the PON1 Q192R polymorphism, the 192R allele was a susceptible factor of T2DM in the South or East Asian population (OR > 1,
P < 0.05) but represented a protective factor of T2DM in European population (OR = 0.66, 95% CI = 0.45-0.98) under a heterozygous genetic
model. With regard to the PON7 L55M polymorphism, significant protective effects of the 55M allele on T2DM under the heterozygous
(OR = 0.77, 95% Cl = 0.61-0.97) and dominant (OR = 0.80, 95% Cl = 0.65-0.99) genetic models were found in the European population,
while no significant associations in the Asian populations under all genetic models (P > 0.05). In summary, by a comprehensive meta-analysis,
our results firmly indicated that distinct effects of PON7 genetic polymorphisms existed in the risk of T2DM across different ethnic back-
grounds.
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Introduction

The rise of diabetes prevalence poses one of the important challenges
to global health. It is estimated that approximately 422 million adults
were diagnosed with the disease in 2014 worldwide [1]. Diabetes is
one of the main causes of cardiovascular disease, blindness and kid-
ney failure and is the sixth leading driver of disability [2]. Therefore,
the prevention and control of diabetes are growing up to be an ever-
increasing global health priority [3]. Type 2 diabetes mellitus (T2DM)
comprises the majority of cases of diabetes around the world. T2DM
is a metabolic disorder of multifactorial aetiology involving many
environmental factors and genetic variants [4,5].
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Human paraoxonase-1 (PON1) is a calcium-dependent 45-kD glyco-
protein composed of 355 amino acids. The esterase is synthesized
mainly by the liver and secreted into the circulation where it associates
with high-density lipoprotein (HDL) and assists in the antioxidant effect
of preventing oxidation of low-density lipoprotein (LDL). PON1 in human
beings is encoded by the PONT gene which maps to the long arm of
chromosome 7 (g21-22). It has been observed that serum PON1 activity
has an important role in susceptibility and progression of T2DM [6,7].

Single nucleotide polymorphisms (SNPs) in the PONT gene can sig-
nificantly account for the catalytic ability of the enzyme. A missense
SNP at position 192 (glycine (Q) to arginine (R) substitution) (rs662) is
an important determinant of the PON1 activity [8]. Although the R-
alloenzyme is more active towards some substrates, for example para-
oxon, other substrates such as diazoxon and sarin are hydrolysed more
rapidly by the Q-alloenzyme [9]. In addition, the PON7 Q192R
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polymorphism was the major determinant of individual variation in the
ability of HDL in protecting LDL against lipid peroxidation. For example,
the Q-alloenzyme confers least ability [10]. Another SNP in the coding
region causes a leucine (L) to methionine (M) substitution at position
55 (rs854560), which may also affect the PON1 activity and levels [11].

As lkeda et al. first found that serum PON activity was signifi-
cantly decreased in the patients with T2DM [12], a large number of
studies have been conducted over the last two decades to investigate
the association of Q192R (rs662) and L55M (rs854560) polymor-
phism in PONT gene with susceptibility to T2DM. However, the previ-
ously published results remain controversial. Hence, to firmly
elucidate the association between PONT genetic polymorphisms
(Q192R, rs662 and L55M, rs854560) and the risk of T2DM, we con-
ducted a systematic review and meta-analysis of data from 50 studies
and also established the association according to the ethnicity.

Materials and methods

Search strategy and inclusion criteria

A systematic search was conducted in the electronic databases
PubMed, Embase, China National Knowledge Infrastructure (CNKI) and
Wanfang Data, and all relevant articles were published in English or Chi-
nese from their starting dates to June 2017. The search strategy used
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the following keywords relating to the paraoxonase-1 gene (‘paraoxo-
nase-1’, ‘PON1’) or variations (e.g. ‘mutation’, ‘polymorphism’, ‘single
nucleotide polymorphism’, ‘SNP’, ‘variant’, ‘variation’) in combination
with TD2M (e.g. ‘Diabetes Mellitus, Type 2’, ‘Noninsulin-Dependent Dia-
betes Mellitus’, ‘Type 2 Diabetes’, ‘Diabetes Mellitus, Noninsulin-Depen-
dent’). We supplemented this search by reviewing the cited references
for all possible studies.

All identified abstracts were carefully reviewed by two investigators
(J. Q. Luo, H. Ren) independently for eligibility. The inclusion criteria
were as follows: (/) case-control design, regardless of sample size; (i)
study assessing the associations between Q192R (rs662) and L55M
(rs854560) of PONT gene and type 2 diabetes; (i) numbers for the
PONT genotypes could be available or calculated in case and control
groups; and (/v) genotype distribution in the controls was in Hardy-
Weinberg equilibrium (HWE). If the two investigators (J. Q. Luo, H.
Ren) disagreed about the eligibility of an article, it was resolved by con-
sensus with a third reviewer (M. Z. Liu).

Data extraction

For the eligible articles included in this study, data were also extracted
by two reviewers (J. Q. Luo, H. Ren), who reached a consensus on all
of the data extraction items. The following information was extracted
from each study: name of the first author, publication year, country of
the study, ethnicity of the population, genotype and allele distributions
in case and control groups, and also sample size, mean age and gender
distribution in case and control groups.
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Statistical analysis

2 <t
IER-
The goodness-of-fit chi-square analysis was used to test the HWE of
2 the genotype distribution of controls. The distribution was considered
g\: = g deviated significantly from HWE with P < 0.05. The pooled odds ratio
(OR) with 95% confidence interval (Cl) was used to evaluate the
- strength of association in the allelic, homozygous, heterozygous, reces-
= sive and dominant models, respectively. The statistical significance of
§ = the pooled estimates of the OR was determined by the Z test. The
Cochran’s Q test and / metric were performed to examine the possibil-
& | T «© ity of between-study heterogeneity. Heterogeneity was considered to be
statistically significant at P < 0.05 for the Q statistic and /> 50% for
NS the £ metric [13]. If substantial heterogeneity existed, random effect
S g model (the DerSimonian and Laird method) was selected as the pooling
L method. Otherwise, the fixed-effect model (the Mantel-Haenszel method)
- was adopted. Subgroup analysis based on ethnicity (categorized as
2 g Europeans, East Asians, South Asians and Canadian Aboriginal) and
N meta-regression with restricted maximum likelihood estimation were
conducted to assess the sources of heterogeneity across the studies.
= | Potential publication bias was assessed by Begg’s test and Egger’s test
&\: 8 & [14, 15], with P < 0.05 considered representative of significant publica-
=2 (7 7 tion bias. All statistical analyses were performed with STATA version
BI1S| 3 12.0 (Stata, College Station, TX, USA).
=2 <2
2|2 8
o |o. o o
sz 8% Results
n_‘.g o o g
. .|z Description of eligible studies
= & g
| = 2 The initial screening yielded 332 articles, and 1 article was found to
£ be eligible by reviewing the cited references. A total of 111 articles
= 3 were excluded because of duplicate publication. Then, 57 articles
;5 (. g were excluded from screening based on the titles and/or abstracts.
= Finally, 37 articles [16-52] involving 50 eligible studies were
e |~ ® ;& included in the current meta-analysis according to the study inclu-
s s sion criteria (Fig. 1). All the included articles were case-control
S gl 4 2 designs with sample sizes varied from 61 to 593. A total of 34 and
e S 2 g 2 v 16 eligible studies were identified for the PONT Q192R (rs662) and
o § E L55M (rs854560) polymorphism, respectively. The general charac-
S & |3 g "E’ teristics of the studies included in the meta-analysis are presented in
N 1§ E£3 Table 1.
- E 28
Sl s a|3 5=
=€|q 2|28 £= Quantitative synthesis of the association
5|3 5| 2% between PONT Q912R polymorphism and T2DM
S|z S|= =F
§ E:_ E % % % g The results of the meta-analysis of PON7 Q912R polymorphism are
5 5 = summarized in detail in Table 2 and Figure 2. In the overall popula-
- é 5 g tion, the pooled meta-analysis revealed that there were no significant
f::% . e ol| 8 E g associations between the PON7 Q912R genetic polymorphism and
El 8 |8 8|S =8 T2DM under all genetic models: allelic (OR = 1.02, 95% Cl = 0.87-
3 2 §’ fg” g £ % 1.20; P=0.786), homozygous (OR = 1.08, 95% Cl = 0.81-1.45;
?; 2 o §§ § = P=10.596), heterozygous (OR =093, 95% Cl=0.75-1.17,
S| 2 |& I |evE & P = 0.544), recessive (OR = 1.12, 95% Cl = 0.92-1.35; P = 0.259)
— S CrFy and dominant (OR = 0.99, 95% Cl = 0.78-1.26; P = 0.921).
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Study %
ID OR(95% Cl)  Weight
European :
Mackness(1998) —— 1.67 (0.96, 2.91) 3.77
Sampson (2001) —_— 0.46 (0.07, 3.00) 0.89
Koch ag {2001§ + : 0.79(0.17, 3.63) 1.22
Koch(b) (2001 + T 0.23 (0.01, 4.12) 0.40
Letellier (2002 —_— 0.32(0.13,0.80) 2.47
IraceFOOS% ———— 0.81(0.31, 2.09) 2.34
Unur (2008 —_— 1.04 (0.31, 3.48) 1.74
Flekac (20088 | 0.07 (0.03, 0.20) 2.22
Gorshunska (2009) A 2.04(0.90,4.62) 2.74
Ergun (2011) —— 1.33(0.63, 2.82) 2.99
Elnoamany %2012) | ——————— 6.24 (1.40, 27.92)1.26
Gokcen (2013) - 0.45 (0.14, 1.40; 1.87
Subtotal (I-squared = 77.2%, P = 0.000) :Ib- 0.77 (0.41, 1.46) 23.92
Canamanabongnal :
Fanella (2000) —_—— 0.76 50.29, 2.02; 2.27
Subtotal (I-squared =.%, P =) - 0.76 (0.29, 2.02) 2.27
. I
South Asian |
Bupta (2011) T 25 E?%' 3-82; 387

. ~ upta | ——— ; 40, 4.

Fig. 2 Forest plot for PONT Q192R poly Subtotal (I-squared = 0.0%, P = 0.365) <> 2.04 (1.36, 3.06) 7.32

morphism under a recessive genetic : :

ifi icity i i East Asian

m_odel strat|f_|ed by ethnlmty in studies Sakai (1998 0.89 (058, 1.35) 4.35

with type 2 diabetes patients. Zhang (2003) —_— 0.57 (0.29, 1.12) 3.26
Hu YM (2003 .—— 1.44 (0.84, 2.47) 3.82
Ma RX (2003 1—— 1.56 (0.94, 2.60) 3.97
Wang' g003) T 1.79(0.60, 5.33) 1.98
Hao YL (2003) —— 0.61(0.36, 1.03) 3.88
Ren T (2003) —— 1.17 (0.68, 2.01) 3.83
Pu X (2003) —— 1.00 (0.55, 1.83) 3.55
Deng YG (2004) —— 2.02 (1.19, 3.42) 3.89
Li SY (2004 -h_‘_ 2.14(0.80, 5.69) 2.26
Zhan 2004) —— 2.03(1.13, 3.66) 3.62
Sun D (2006) —— 1.15(0.69, 1.91) 3.98
Shi GH 2007) ——— 1.22(0.71,2.08) 3.84
Qi L (2007) —— 0.87 (0.50, 1.49) 3.80
Chen XJ (2011) —— 1.18 (0.72, 1.93) 4.03
Zheng YQ (2012) — 1.41(0.90, 2.20) 4.24
Shao ZY%DM) —— 1.17 (0.83, 1.66) 4.65
Du WL (201 ——— 1.09 (0.59, 2.02) 3.53
Subtotal (I- squared =33.4%, P =0.084) 1.18(1.01, 1.38) 66.49
Overall (| squared = 62.6%, P = 0.000) 1.12 (0.92, 1.35) 100.00

T
0125 1 80.3

When we performed subgroup analyses stratified by ethnicity, the
distinct effects in different ethnic populations were observed under all
genetic models. Significant associations between PON7 Q912R
genetic polymorphism and T2DM presented in the South Asian sub-
group (under all genetic models) and East Asian subgroup (under four
genetic models), while no significant associations were shown in the
Canadian Aboriginal subgroup and in the European subgroup under
the allelic, homozygous, recessive and dominant genetic models. By
contrast, the significant association for the European subgroup under
the heterozygous genetic model showed the 192R allele represented a
protective factor of T2DM (OR = 0.66, 95% Cl = 0.45-0.98;
P =0.037), but a risk factor for T2DM in South Asian subgroup.

Quantitative synthesis of the association
between PONT L55M polymorphism and T2DM

The results of the meta-analysis of PONT L55M polymorphism
are summarized in detail in Table 2 and Figure 3. In the overall

© 2018 The Authors.

population, the associations between the PONT L55M genetic
polymorphism and T2DM did not reach statistically significant
under the allelic genetic model (OR = 0.91, 95% Cl = 0.81-1.02;
P=10.118), homozygous genetic model (OR =0.92, 95%
Cl =0.69-1.23; P=10.577) and recessive genetic model
(OR =1.05, 95% Cl = 0.81-1.35; P =0.729). However, signifi-
cant associations were found under a heterozygous genetic
model (OR = 0.82, 95% Cl = 0.70-0.97; P=0.017) and a domi-
nant genetic model (OR=10.85 95% Cl =0.73-0.99;
P =10.032).

In subgroup analyses based on ethnicity, the distinct effects in
different ethnic populations were also presented for the PONT
L55M genetic polymorphism. There were significant protective
effects of L allele on T2DM in the European subgroup under the
heterozygous (OR = 0.77, 95% Cl = 0.61-0.97; P =0.025) and
dominant (OR = 0.80, 95% Cl =0.65-0.99; P =0.036) genetic
models, while no significant results were found in the South Asian,
East Asian and Canadian Aboriginal subgroup under all genetic
models.
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Fig. 3 Forest plot for PON1 L55M poly-
morphism under a dominant genetic
model stratified by ethnicity in studies
with type 2 diabetes patients.

Study %
ID OR (95% Cl) Weight
European : |
Malin (1999) —_— 1.02 (0.57, 1.82) 6.12
Letellier (2002) —_—— 0.97 (0.59, 1.61) 8.36
Agachan (2004) —_—— 0.74(0.47,1.19) 1113
Sampson (2005) R e —— 0.92 (0.43, 1.99) 3.69
Flekac (2008) ——o—I— 0.72(0.44, 1.19) 10.25
Uniir (2008) —_—— i 0.21 (0.08, 0.53) 5.61
Altuner (2011) —_— 0.96 (0.48, 1.91) 451
Ergun (2011) —_— 0.97 (0.50, 1.88) 4.84
Subtotal (-squared = 31.9%, P =0.173) 0.80 (0.65, 0.99) 5452
1
East Asian <::>‘
lkeda (1998) —_— 1.02(0.48, 2.17) 3.64
Ren T (2003) — 1.38 (0.28, 6.83) 0.75
Sun YD (2006) —_— 1.03 (0.64, 1.65) 9.04
Shao HQ (2006) —_—— 0.82(0.30, 2.19) 2.39
Zheng YQ (2012) - 0.98 (0.45, 2.15) 3.42
Shao ZY (2014) —_— 0.99(0.57,1.71) 6.92
Subtotal (I-squared =0.0%, P =0.997) '§> 1.00 (0.75,1.33) 26.17
Canadian aboriginal !

Fanella (2000) 1.19(0.24,5.81) 0.72
Subtotal (-squared=.%,P=.) — 1.19(0.24,5.81) 0.72
1

South Asian !
Gupta (2011) —— 0.76 (0.53, 1.09) 18.59
Subtotal (I-squared=.%,P=.) L 0.76 (0.53, 1.09) 18.59
Overall (I-squared=0.0%, P =0.628) <|> 0.85(0.73, 0.99) 100.00
1
: h
0824 1 1214

Sources of heterogeneity

There was significant heterogeneity in the overall meta-analysis of
PON1 Q912R polymorphism under all of the genetic models (Pretero-
qencity < 005, /- > 50%). Subgroup analysis stratified by ethnicity indi-
cated that heterogeneity was significantly reduced in the South Asian
and East Asian subgroup, while was increased in the European sub-
group. Therefore, ethnicity may be one of the sources of heterogene-
ity between studies for the PONT Q912R polymorphism in the overall
meta-analysis.

Because substantial heterogeneity still existed in the European sub-
group under all genetic models, meta-regression was used to explore
the source of this heterogeneity. The following three covariates were
taken into consideration: publication year, MAF (minor allele frequency)
in controls and sample size in the subsequent meta-regression
(Table 3). The results of meta-regression analysis showed that MAF in
the control group could explain the observed between-study hetero-
geneity. The proportion of between-study variance explained by the
MAF covariate ranges from 67.81 to 93.06%, depending on the genetic
models. However, no significant effects were accounted for by the
covariates sample size and publication year under all genetic models.

In contrast, no significant heterogeneity in the overall meta-analy-
sis of PONT L55M polymorphism was showed under all genetic mod-
els (Preterogeneity > 0.1, P= 0%). Subgroup analysis stratified by
ethnicity also indicated that no substantial between-study heterogene-
ity was found in the Asian subgroup (Preterogeneity > 0.1, P = 0%)
and in the European subgroup (Preterogeneity > 0.05, P < 50%) under
all genetic models.
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Publication hias evaluation

Publication bias of the individual articles was evaluated by using the
Begg’s funnel plot (Fig. 4) and Egger’s test. For the PONT Q192R
meta-analysis (Fig. 4A), no obvious publication bias was visualized in
the shape of the funnel plot under all genetic models. Additionally, no
evidence of significant publication bias was detected by the Egger’s
test (P = 0.257 for allelic genetic model; P = 0.452 for heterozygous
genetic model; P = 0.527 for dominant genetic model; and P = 0.197
for recessive genetic model). However, there was marginal significant
publication bias for the homozygous genetic model (P = 0.047).

For the PON1 L55R meta-analysis (Fig. 4B), there is also no obvi-
ous publication bias in the shape of the funnel plot under all genetic
models. No evidence of significant publication bias was also detected
by the Egger’s test (P = 0.961 for allelic genetic model; P = 0.719
for heterozygous genetic model; P = 0.309 for homozygous genetic
model; P = 0.871 for dominant genetic model; and P = 0.628 for
recessive genetic model) yet.

Discussion

So far, the associations between PONT genetic polymorphisms and
T2DM were conflicting in the previous studies. This is partly because
some previous case-control studies have been too small to be reli-
able. Thus, our meta-analysis could overcome the limitations of single
study by pooling the individual dataset and provide more reliable
results.

© 2018 The Authors.
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Table 3 The meta-regression results among the European population under all genetic model for the PON1 Q192R genetic polymorphism

g;'::‘lic Covariates Coefficient g:::rdard T-value P-value ?;Z:vca(:nﬁdence gd;:f;i d
Heterozygous MAF in controls —6.03742 1.641809 —3.68 0.004* —9.6956 ~ —2.37924 81.00%
Sample size —0.00028 0.001466 —0.19 0.854 —0.00354 ~ 0.002991 —14.64%
Publication year —0.04524 0.03562 —1.27 0.233 —0.12461 ~ 0.034129 13.01%
Allelic MAF in controls —6.41229 1.281261 -5 0.000* —9.23233 ~ —3.59225 80.80%
Sample size —0.00045 0.001437 —0.32 0.759 —0.00366 ~ 0.002749 —11.10%
Publication year —0.00646 0.037309 —0.17 0.866 —0.08858 ~ 0.075655 —9.84%
Homozygous MAF in controls —12.2995 3.278749 —3.75 0.004* —19.605 ~ —4.99395 73.94%
Sample size —0.00058 0.003051 —-0.19 0.853 —0.00738 ~0.006216 —13.55%
Publication year 0.023242 0.081639 0.28 0.782 —0.15866 ~ 0.205145 —13.07%
Dominant MAF in controls —7.93603 1.488279 —5.33 0.000* —11.2521 ~ —4.61994 93.06%
Sample size —0.00049 0.001638 —-03 0.771 —0.00414 ~0.003161 —12.29%
Publication year —0.02767 0.042206 —0.66 0.527 —0.12171 ~0.066367 —4.49%
Recessive MAF in controls —10.0113 3.071858 —3.26 0.009* —16.8558 ~ —3.16679 67.81%
Sample size —0.00047 0.002671 —0.18 0.864 —0.00642 ~ 0.005483 —14.87%
Publication year 0.035213 0.071726 0.49 0.634 —0.1246 ~ 0.19503 —13.82%
*P < 0.05.

MAF, minor allele frequency; Coefficient: regression coefficient. The regression coefficients were the estimated increase in the InOR per unit
increase in the covariates.

Begg's funnel plot with pseudo 95% confidence limits Begg's funnel plot with pseudo 95% confidence limits
A B
2 -
1
o 1
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s.e. of: logor s.e. of: logor

Fig. 4Begg’s funnel plot for studies of the association between type 2 diabetes and PON1 Q192R polymorphism under a dominant genetic model
(A) and PON1 L55M polymorphism under a heterozygous genetic model (B).

In the overall meta-analysis of the PONT Q192R polymorphism,  ethnicity yielded a significant association of the PONT Q192R poly-
no significant association, but strong between-study heterogeneity, — morphism with T2DM in South Asian and East Asian populations and,
was observed. To address the substantial heterogeneity, we divided  conversely, no association of the PON7 Q192R polymorphism with
the total samples into four subgroups, that is white European, Cana- ~ T2DM in European populations under the allelic, homozygous, reces-
dian Aboriginal, South and East Asians. Stratified analyses by  sive and dominant genetic models. In addition, the 192R allele was a
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Fig. 5The frequency of PON1 Q192R and L55M among the different
ethnicities. The data were summarized according to the 1000 genomes
database. East Asian referred to the Chinese and Japanese; South Asian
was from India; European referred to Utah Residents (CEPH) with
Northern and Western European Ancestry; African was from Yoruba in
Ibadan, Nigeria.

susceptible factor of T2DM in the Asian population but represented a
protective factor of T2DM in European population under a heterozy-
gous genetic model.

In the overall meta-analysis of the PONT L55M polymorphism,
no significance between-study heterogeneity was observed. The dis-
tinct effects across different ethnic backgrounds also presented in
the subgroup analysis based on ethnicity. For example, significant
protective effects of the 55M allele on T2DM under the heterozy-
gous and dominant genetic models were found in the European
population, while no significant results in the Asian populations
under all genetic models. Interestingly, the associations of the two
PONT SNPs in our study were generally very similar in South and
East Asians, although Asia is known to harbour genetically different
origins [53]. In Canadian population, only one study investigated
the association between the two PONT SNPs and risk of T2DM, and
no significant associations were found in all genetic models. There-
fore, it was inferred that the 192R or 55M allele may decrease the
risk of developing T2DM in European ancestry population, whereas
the 192R increase the risk of T2DM in the South Asian and East
Asian populations.

To our knowledge, this is the largest study to underline the
importance of ethnicity in the association between PON7 genetic
variations and T2DM by a comprehensive meta-analysis. The ques-
tion remaining to be addressed is how the PON7 Q192R and L55M
variants can exert an impact on T2DM with ethnic difference. One
potential explanation is that different populations might have expe-
rienced very diverse lifestyle and environmental factors during their
long-period evolution. The PONT activity may be influenced by sev-
eral environmental and lifestyle impacts, such as cigarette smoking
[54], alcohol intake [55] and physical activity [56]. Another possi-
ble explanation may be the ethical differences in the distribution of
the PONT Q192R and L55M (rs854560) polymorphisms. Neverthe-
less, the precise mechanism deserves to be investigated in the
future.
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According to the included studies among different countries [16—
52] and the 1000 genomes database (https://www.ncbi.nim.nih.
gov/variation/tools/1000genomes/), there are huge racial and regional
differences in the distribution of the PONT Q192R (rs662) and L55M
(rs854560) genetic polymorphisms (Fig. 5). For the PONT Q192R
polymorphism, the R allele predominates in the East Asian popula-
tions (>60%), which is significantly higher than in the South Asian
populations (about 40%) and the European populations (<35%). For
the PONT L55M polymorphism, the M allele frequency is rare in the
East Asian populations (<5%), which is significantly lower than in the
South Asian populations (about 20%) and European populations
(>30%). Such heterogeneous genetic backgrounds could be, at least
in part, responsible for the heterogeneity of effect on the risk of
T2DM detected in our overall population meta-analysis. Furthermore,
subgroup analysis stratified by ethnicity also indicated that the
heterogeneity in the Asian group was significantly decreased.

The meta-analysis results in the current study should be inter-
preted with particular caution when large between-study heterogene-
ity existed. Obvious heterogeneity was present in all the genetic
models for the PONT Q192R polymorphism in the European popula-
tion subgroup. Meta-regression was performed to evaluate the poten-
tially important covariates exerting substantial impact on
heterogeneity. Our findings have proved that the proportion of hetero-
geneity explained by the MAF in controls can reach as high as
93.06%. One of the reasons may be the small number of subjects in
the control group. For example, the study of Elnoamany et al. [45]
included 40 control subjects and the MAF of PONT Q192R was 0.213,
while the study of Gokcen et al. [47]. included 30 control subjects
and the MAF of PON7 Q192R was 0.5. Accordingly, studies with large
sample size are needed to be investigated in the future.

There are some shortcomings in our current meta-analysis. First,
our included studies were limited to English and Chinese language,
with some data published in other languages excluded, which may lead
to some publication bias and thus affect the pooled results in the meta-
analysis. Second, although there are 34 eligible studies for the PONT
Q192R polymorphism meta-analysis and 16 eligible studies for the
PONT L55M polymorphism, the populations were restricted to Asians,
Europeans and Canadian Aboriginals. Studies from other populations
should be conducted to confirm the findings. Last but not the least, the
information about exposure to environmental substrates was not avail-
able in the included studies. This may explain some between-study
heterogeneity in our meta-analysis. In addition, the gene xenvironment
interactions are needed to be further evaluated in the future.

In conclusion, we have firmly established that the PONT genetic
polymorphisms (Q192R and L55M) play important roles in the risk of
T2DM with distinct effects across European and Asian populations.
Further studies from other populations are needed to confirm these
results.
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