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Abstract

Aims: There are reports that ataxia telangiectasia mutated (ATM) can activate

the AMP-activated protein kinase (AMPK) and also Akt, two kinases that play

integral parts in cardioprotection and metabolic function. We hypothesized that

chloroquine and resveratrol, both known ATM activators, would also activate

AMPK and Akt.

Main methods: Phosphorylation of AMPK and Akt was assessed after C2C12

myotubes were exposed to chloroquine or resveratrol. Additional experiments

were done in cells expressing shRNA against ATM or in the presence of the

ATM inhibitor KU55933. The effects of chloroquine on intracellular calcium

were assessed with the fluorescent probe Calcium Green-1 AM.

Key findings: 0.5 mM chloroquine increased AMPK phosphorylation by nearly

four-fold (P < 0.05), and 0.25 mM chloroquine roughly doubled Akt

phosphorylation (P < 0.05). Chloroquine also increased autophosphorylation of

ATM by ∼50% (P < 0.05). Resveratrol (0.15 mM) increased AMPK

phosphorylation about three-fold (P < 0.05) but in contrast to chloroquine

sharply decreased Akt phosphorylation. Chloroquine increased AMPK and Akt

phosphorylation in myotubes expressing shRNA against ATM that reduced
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ATM protein levels by about 90%. Likewise, chloroquine-stimulated

phosphorylation of AMPK and Akt and resveratrol-stimulated phosphorylation

of AMPK were not altered by inhibition of ATM. Chloroquine decreased

intracellular calcium by >50% concomitant with a decrease in glucose transport.

Significance: These ATM-independent effects of chloroquine on AMPK and

Akt and the additional effect to decrease intracellular calcium are likely to

partially underlie the positive metabolic effects of chloroquine that have been

reported in the literature.

Keywords: Applied sciences, Therapeutics in cell biology, Animal metabolism

1. Introduction

Ataxia Telangiectasia (A-T) is an autosomal disease caused by mutations in the

ataxia telangiectasia mutated (ATM) gene [1]. The ATM gene codes for a protein

that is a serine-threonine kinase and a member of the phosphatidylinositol 3 kinase

like kinase (PI3KK) family. In addition to ATM’s well-known functions in cell

cycle control and response to DNA damage, ATM has increasingly been found to

display a variety of metabolic functions. For example, ATM plays antioxidant

roles by stimulating the pentose phosphate pathway [2] and through increasing

uptake of dehydroascorbic acid (DHA) [3], the oxidized form of the potent

antioxidant ascorbate. Mitochondrial dysregulation has been reported for

ATM-null thymocytes, with features including disorganized mitochondrial

structure, increased mitochondrial reactive oxygen species (ROS), and decreases in

whole-cell ATP despite an increase in mitochondrial volume [4]. ATM has also

been shown to play a role in insulin-stimulated glucose transport in cultured

muscle cells and in skeletal muscle [5,6, 7].

Two critical metabolic regulators in particular, the AMP-activated protein kinase

(AMPK) and Akt seem to be central mediators of ATM’s metabolic functions.

AMPK is a sensor of cellular energy status and responds to metabolic stress by

activating diverse responses including an increase in fat oxidation [8] and an

increase in expression and activity of mitochondrial proteins [9, 10]. ATM and

AMPK appear to work in concert in response to cellular stress. For example,

activity of both ATM and AMPK is required for the increase in insulin action in

cultured muscle cells in response to serum starvation [11]. Further, activation of

AMPK concomitant with ATM has been reported for a wide variety of cell

types [12, 13, 14, 15, 16] with stimuli including depletion of mitochondria,

hydrogen peroxide, and ionizing radiation. Similarly, activation of Akt—a

protein with diverse functions in cell survival, protection of cardiac cells from

hypertrophic stimuli, and fuel uptake and storage—by ionizing radiation requires

functional ATM [17]. Likewise, activation of Akt by insulin-like growth factor
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1 (IGF-1) and insulin is impaired in many cell types by inhibition or genetic

ablation of ATM [5, 6, 7, 17, 18].

Chloroquine (CQ), a compound that activates ATM without causing DNA

damage [19], has excitingly been shown to protect mice against aortic root

atherosclerosis in high-fat fed mice [20]. Long-term CQ treatment also improved

glucose tolerance in mouse genetic models of obesity [18] as well as decreased

the risk of diabetes in patients with rheumatoid arthritis [21]. To understand the

nature of CQ’s effects, especially in regard to a role for ATM, it is important to

determine whether ATM is required for CQ’s actions. Accordingly, we
hypothesized that CQ would activate the key metabolic regulators AMPK and

Akt and that ATM would be required for these effects. This work also

investigated effects of another ATM activator, resveratrol (RE), which like CQ

has been reported to improve systemic glucose control in both mice and humans

[22, 23].

Surprisingly, in our hands CQ activated both AMPK and Akt even in the

presence of an ATM inhibitor or in cells expressing shRNA against ATM. CQ

also decreased intracellular calcium levels and did not cause an increase in

glucose uptake. Interestingly, while RE increased AMPK phosphorylation, it

decreased Akt phosphorylation. Thus, the data suggest that CQ and RE could

have metabolic effects beyond simple activation of ATM.

2. Materials and methods

2.1. Materials

Dulbecco’s modified Eagle’s medium (DMEM), trypsin/EDTA and phosphate-

buffered saline (PBS) were purchased from Sigma-Aldrich (St. Louis, MO, USA).

Penicillin/streptomycin (10,000 U penicillin/ml, 10 mg streptomycin/ml, and

0.025 mg fungizone/ml) was purchased from Gemini Bio-Products (Woodland,

CA, USA). Antibodies against AMPK catalytic subunit, phosphorylated AMPK

T172 (P-AMPK), phosphorylated acetyl Coenzyme A carboxylase (P-ACC), and

phosphorylated Akt (P-Akt) S473 and T308 were purchased from Cell Signaling

Technology (Beverly, MA, USA). Antibodies against phosphorylated ATM S1981

(P-ATM) were from EMD Millipore (Billerica, MA, USA). Horseradish

peroxidase-linked streptavidin and antibodies against ATM and tubulin were

obtained from Sigma-Aldrich Corporation (St. Louis, MO, USA). Horseradish

peroxidase-conjugated goat anti-rabbit and goat anti-mouse IgG were obtained

from Pierce Biotechnology (Rockford, IL, USA). Chloroquine diphosphate (CQ),

resveratrol (RE), and 1,2-Bis(2-aminophenoxy) ethane-N,N,N′,N′-tetraacetic acid
tetrakis acetoxymethyl ester (BAPTA-AM) were purchased from Sigma-Aldrich.

Dr. Graeme Smith (KuDOS Pharmaceuticals, Cambridge, UK) generously
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provided the ATM inhibitor KU55933 (KU). Calcium Green-1 AM was from

Invitrogen Life Technologies (Grand Island, NY).

2.2. Cell culture

C2C12 myoblasts were obtained from the American Type Culture Collection

(Rockville, MD, USA). C2C12 cells were cultured in Dulbecco’s Minimum

Essential Medium (DMEM) containing 10% FetalPlex (Gemini Bio-Products,

Woodland, CA) and 1% penicillin/streptomycin. C2C12 cells were passaged by

using a 5% trypsin, 0.02% EDTA solution every one to two days. Cells were

differentiated for two days by incubating with DMEM containing 2% horse serum

and 1% penicillin/streptomycin. Cells were grown in a humidified incubator with

5% CO2 at 37 °C. For some experiments, myotubes were serum-starved by

incubation with DMEM with antibiotic but without FetalPlex for three hours.

C2C12 cell lines expressing green fluorescent protein (GFP) or short hairpin RNA

to reduce ATM expression were described previously [5, 18].

2.3. Effects of CQ and resveratrol on phosphorylation of
AMPK and Akt

Western blots were used to measure phosphorylation of AMPK and Akt after

exposure to CQ and RE. Myotubes were incubated in DMEM containing 0 μM,

250 μM, 500 μM, or 750 μM CQ for 60 min. In separate experiments, myotubes

were incubated in DMEM with 0 μM (vehicle: 0.1% DMSO), 50 μM, 100 μM, or

150 μM RE for one hour after a three hour serum starvation. After incubation,

myotubes were placed on ice, media was aspirated, and cells were washed twice

with phosphate-buffered saline. Cells were scraped in ice cold buffer containing

50 mM HEPES, pH 7.4, 2 mM Na3VO4, 150 mM NaF, 10 μg/ml leupeptin,

10 μg/ml aprotinin, 0.5 μg/mL pepstatin and 1 mM phenylmethylsulfonyl fluoride.

Cells were centrifuged at 14,000×g for 10 min, and supernatant was kept. Protein

concentration of the supernatant was measured using a bicinchoninic assay from

Thermo Scientific (Rockford, IL, USA).

To determine whether ATM plays a role in response to CQ and RE, C2C12

myotubes expressing shRNA against ATM or myotubes that were pretreated

with the ATM inhibitor KU-55933 (KU) [24] were used. C2C12 cells

expressing shRNA against ATM or GFP as a control were incubated in the

presence or absence of 500 μM CQ for one hour. In separate experiments,

C2C12 myotubes were pretreated for 30 min with either 10 μM or 5 μM
KU-55933 (DMSO vehicle). Myotubes were then incubated in the absence or

presence of 500 μM CQ or 150 μM RE with KU-55933 still present if it had

been present in the pre-incubation. After an one hour exposure to CQ or RE,

cells were lysed as described above.
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2.4. Western blotting

Western blot procedures have been previously described [11]. Aliquots of cell

lysates were diluted in Laemmli sample buffer containing dithiothreitol, boiled

for 5 min, and separated on 4–20% Tris-HEPES-SDS polyacrylamide gels

(Thermo Scientific) or 3–8% Tris-acetate gels (Life Technologies, Grand Island,

NY, USA) alongside HiMark (Life Technologies) high molecular weight protein

standards for analysis of ATM and P-ATM. After transfer to nitrocellulose and

blocking in 5% nonfat dry milk in Tris-buffered saline, membranes were probed

with the primary antibodies described in the Materials section, probed with

secondary antibodies conjugated to horseradish peroxidase, and subjected to

enhanced chemiluminescence analysis with Western Lightning reagents (Perkin

Elmer, Waltham, MA, USA). ACC was detected with horseradish peroxidase

conjugated to streptavidin, which binds the biotin moiety of ACC.

2.5. Glucose transport

Glucose transport assays were done as measured previously [5]. Myotubes were

serum-starved for three hours before incubation in serum-free medium for

30 min in the presence or absence of 10 μM KU55933. After the preliminary

incubation with vehicle (DMSO) or KU55933, the myotubes were incubated for

one hour with 0 μM or 500 μM CQ, with DMSO or KU55933 still present.

Myotubes were then rinsed with glucose-free HEPES-buffered saline and then

assayed for rates of 2-deoxyglucose (2DG). Glucose transport assays were

performed by incubating cells with glucose-free HBS containing radiolabeled

2-DG (3 μCi/ml, American Radiolabeled Chemical, Inc., St. Louis, MO, USA)

for 10 min at room temperature. 10 μM cytochalasin B was used to measure

GLUT independent glucose transport. After the 10 min incubation, the medium

was aspirated, and the cells were rinsed twice with ice-cold saline. Cells were

lysed in 0.2 N NaOH containing 0.2% SDS and 3H in samples was measured

with a Tri-Carb 3110 TR Liquid Scintillation Analyzer (PerkinElmer, Waltham,

MA). Glucose transport was normalized to protein concentrations of cell lysates

measured by bicinchoninic acid (BCA) assay method (Pierce, Rockford, IL).

2.6. Intracellular calcium

Calcium measures were essentially as described for a plate reader-based

intracellular calcium assay using Calcium Green-1 AM [25]. Myotubes in 96

well plates were incubated for 20 min at room temperature in phosphate

buffered saline containing 5 mM glucose and 4 μM Calcium Green-1 AM, a

membrane permeable fluorophore that increases in fluorescence emission as

[Ca2+] increases. Cells were washed with PBS, and then cells were incubated in

a humidified 5% CO2 incubator at 37 °C for 20 min in DMEM containing
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DMSO (vehicle) or 30 μM BAPTA-AM, a membrane permeable Ca2+ chelator.

Cells were washed with PBS and then incubated in the absence or presence of

0.5 mM CQ and in the presence or absence of BAPTA-AM for 60 min in

HEPES-buffered saline (HBS: 5 mM glucose, 20 mM HEPES, 140 mM NaCl,

5 mM KCl, 2.5 mM MgSO4, and 1 mM CaCl2). Fluorescence readings were

taken with an excitation of 485 nm and emission of 590 nm and corrected for

background fluorescence for cells treated identically except for preloading with

Calcium Green-1 AM. In an additional experiment, cells were preloaded with

Calcium Green-1 AM, incubated in the presence or absence of BAPTA-AM,

and then exposed to CQ in calcium-free medium (PBS with 5 mM glucose).

2.7. Statistics

Data were analyzed by one-way ANOVA with post hoc Least Significant

Difference (LSD) comparisons when P < 0.05 for the ANOVA.

3. Results

3.1. Effects of chloroquine on AMPK and Akt

As it has been suggested that ATM is upstream of AMPK [12, 13, 14, 15, 16], we

hypothesized that the ATM activator CQ [19] would stimulate AMPK

phosphorylation. Fig. 1A shows that myotubes incubated in concentrations of 250

and 500 μM CQ had a two and three fold increase of P-AMPK respectively, when

compared to control cells (P < 0.05 and P < 0.001, n = 3/group). There was no

further increase in P-AMPK for 750 μM CQ compared to 500 μM CQ. A direct

downstream target of AMPK is ACC, the phosphorylation of which was measured

as a marker for increased AMPK activity. Fig. 1B illustrates that 500 μM CQ

caused better than a two fold increase in P-ACC compared to cells without CQ

(P < 0.05, n = 3/group).

Phosphorylation of Akt was also measured since it has been reported that ATM

plays a role in Akt activation by insulin or ionizing radiation [17]. Shown in

Fig. 1C, exposure to 250 μM CQ caused a two fold increase in P-Akt at Ser

473 compared to the control cells (P < 0.05, n = 3/group). Fig. 1D shows that

250 μM CQ and 500 μM CQ also caused an increase in P-Akt at Thr 308

(P < 0.05, n = 3/group). Phosphorylation of S1981, ATM’s autophosphorylation
site, was assessed as a marker for ATM activation. Fig. 2E shows that myotubes

exposed to 500 μM CQ had an increased amount of phosphorylated ATM

compared to the control (P < 0.05, n = 6/group), indicating that CQ activates

ATM in myotubes.

In summary, Fig. 1 provides evidence that CQ is an ATM activator and

increases phosphorylation of AMPK, ACC, and Akt in C2C12 myotubes.
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3.2. Effects of resveratrol

We then used another reported ATM activator, RE, to examine whether results

shown above were specific to CQ or could be generalized to other ATM

activators. Fig. 2A shows that 150 μM RE increased phosphorylation of AMPK

compared to vehicle treated controls (P < 0.05, n = 3/group). Phosphorylation

of Akt at Thr 308 and Ser 473 in response to RE was also measured. Panels 2B

[(Fig._1)TD$FIG]

Fig. 1. Chloroquine increases phosphorylation of AMPK and Akt in C2C12 myotubes.
Myotubes were incubated in indicated concentrations of chloroquine (CQ) for one hour. Proteins

were extracted and subjected to western blot with specific antibodies for (A) phosphorylated AMPK

(P-AMPK) normalized to AMPK, (B) P-ACC, normalized to streptavidin, (C) P-Akt S473

normalized to Akt, (D) P-Akt T308 normalized to Akt, and (E) P-ATM normalized to tubulin.

Streptavidin was used to detect the biotin moiety of ACC. Representative blots are shown. Data are

means ± SE; Symbols indicate statistical difference from control not exposed to CQ: *P < 0.05, †P
< 0.001; n = 3/group for panels A–D and n = 6/group for panel E. Full images of western blots for

Fig. 1 are available in the supplementary material as supplementary Figs. 1A–E.
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and 2C illustrate that RE treatment does not increase phosphorylation of Akt at

Ser 473 or T308 (n = 3/group), suggesting that incubation of myotubes with a

purported ATM activator, RE, is not sufficient to stimulate phosphorylation of

Akt. RE treatment not only did not increase Akt phosphorylation, but caused its

inhibition (P < 0.05, n = 3/group). This phenomenon has been reported

previously, though not in myotubes to our knowledge [26, 27].

3.3. Role of ATM in CQ and RE effects

To examine the role that ATM plays in CQ-stimulated phosphorylation of AMPK

and Akt, we used C2C12 cell lines that expressed either shRNA against ATM

(expression knocked down, KD) or green fluorescent protein (GFP). Fig. 3A

shows that the KD cell line had an 80% decrease in ATM protein levels compared

to protein levels in cell lines transduced with GFP (P < 0.05, n = 4/group).

Fig. 3B shows that even in the KD cell lines, 500 μM CQ stimulated

phosphorylation of AMPK (P < 0.05, n = 5/group). The shRNA against ATM also

did not have an effect on CQ stimulated phosphorylation of Akt at Thr 308, as

shown in Fig. 3C. (P < 0.05, n = 3/group). In summary, Fig. 3 shows that a

decrease of ATM protein does not have an effect on CQ-stimulated

phosphorylation of AMPK and Akt.

To confirm results that were shown with the KD cell line, a specific ATM

inhibitor was used, KU55933 (KU), that has an IC50 concentration of 13 nM

[(Fig._2)TD$FIG]

Fig. 2. Resveratrol stimulates phosphorylation of AMPK but not Akt. Myotubes were incubated

with either DMSO (vehicle) or the indicated concentration of RE for one hour and analyzed by

Western blot. Blots were probed for (A) P-AMPK normalized to AMPK, (B) P-Akt (SER473)

normalized to Akt, and (C) P-Akt (THR308) normalized to Akt. Representative blots are shown.

Data represent means ± SE. Symbols indicate statistically significant difference from control;

*P < 0.05, **P < 0.005, ***P < 0.0005; n = 3/group for all panels. Full images of western blots

for Fig. 2 are available in the supplementary material as supplementary Figs. 2A–C.
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[24]. We used the compound at 10 μM, because previous research has shown

that this concentration was sufficient to inhibit ATM [28]. In our hands, 1 μM
KU is also sufficient to prevent ATM action in myotubes [11]. Pretreatment

with 10 μM KU did not prevent CQ stimulated phosphorylation of AMPK,

shown in Fig. 4A. (P < 0.05, n = 3/group). The addition of KU did not inhibit

the phosphorylation of the downstream target of AMPK, ACC (P < 0.01,

n = 3/group), as shown in Fig. 4B. Fig. 4C displays that KU did not interfere

with CQ stimulated phosphorylation of Akt at Thr 308 (P < 0.05, n = 3/group).

As shown in Fig. 4D, 5 μM KU had no effect on the increased phosphorylation

of AMPK stimulated by RE (P < 0.05, n = 3/group). In summary, Fig. 4

demonstrates that the presence of ATM inhibitor, KU, does not have an effect

on CQ and RE stimulated phosphorylation of AMPK or CQ stimulated

phosphorylation of Akt.

Taken together, these results in Fig. 3 and Fig. 4 suggest that stimulation of

AMPK and Akt by CQ is ATM-independent in C2C12 myotubes.

[(Fig._3)TD$FIG]

Fig. 3. Chloroquine stimulates phosphorylation of AMPK and Akt in ATM deficient cells. To
assess whether CQ’s effects were dependent on ATM, a C2C12 cell line was used that expressed

shRNA against ATM (expression knocked down, KD). C2C12 myotubes transduced with green

fluorescent protein (GFP) was used as a control. GFP and KD myotubes were incubated in indicated

concentrations of CQ for one hour. Proteins were extracted and subjected to Western blot. Blots

were probed for (A) ATM normalized to tubulin, (B) P-AMPK normalized to AMPK, and (C) P-Akt

T308 normalized to Akt. Representative blots are shown. Data are means ± SE. n = 4/group for

panel A, n = 4/group for panel B, and n = 3/group for panel C. *indicates statistically difference,

P < 0.05, from GFP-expressing cells (panel A) or different from corresponding cell line not treated

with CQ (panels B and C). Full images of western blots for Fig. 3 are available in the

supplementary material as supplementary Figs. 3A–C.
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[(Fig._4)TD$FIG]

Fig. 4. Chloroquine and resveratrol stimulate phosphorylation of AMPK and chloroquine
stimulates phosphorylation of Akt when ATM is inhibited. C2C12 myotubes were placed in

medium containing either 10 μM KU or vehicle (DMSO) for 30 min. 500 μM CQ (CQ) was added

to both KU-and DMSO-incubated cells. C2C12 lysates were analyzed by Western blot and probed

for (A) P-AMPK normalized to AMPK, (B) P-ACC normalized ACC, (C) and P-Akt (THR308)

normalized to Akt. (B) After serum starvation, myotubes were placed in medium containing either

5 μM KU or 1 vehicle (DMSO) for thirty minutes. Myotubes were then incubated with either

DMSO (vehicle) or 150 μM RE for one hour. Myotubes were lysed and probed for P-AMPK

normalized to AMPK. Representative blots are shown. Data are means ± SE; *indicates a

statistically different value from corresponding cells not exposed to CQ, P < 0.05. n = 3/group for

all panels. Full images of western blots for Fig. 4 are available in the supplementary material as

supplementary Figs. 4A–D.
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3.4. Effect of CQ on glucose uptake

CQ’s effect on glucose uptake in C2C12 myotubes was also measured. While

the long term effects of CQ improving whole body metabolism is dogma [20,

21, 29, 30], research on CQ’s acute effects in cell culture have produced

conflicting data. It has been reported that 100 μm CQ increases glucose

transport in myotubes [31]. However, other papers have shown that 200 μM CQ

inhibits insulin-stimulated GLUT4 translocation to the in cell membrane in fat

cells, and three hour CQ treatment had no effect on glucose uptake in human

forearm muscle [32, 33]. Other researchers have shown that CQ has no effect

on insulin-stimulated glucose transport in adipocytes [34]. In our hands, 500 μm
CQ did not cause an increase in basal glucose transport and actually slightly

inhibited it (Fig. 5A, P < 0.005, n = 9-10/group). The ATM inhibitor KU also

inhibited glucose transport, a finding we have reported previously [3].

3.5. Effect of chloroquine on intracellular [Ca2+]

Recently, CQ has been identified as a ligand for MAS-related G protein coupled

receptors (Mrgpr), including family members A3, A1, and X1 [35]. Binding of CQ

to these receptors activates Ca2+ flow via transient receptor potential (TRP) cation

channels and also activates phospholipase C activity that would stimulate IP3-

mediated Ca2+ from intracellular calcium stores. At least two Mrgpr-responsive

TRP cation channels, TRPA1 and TRPC3 are expressed in mouse skeletal muscle

[36]. Increases in cytosolic calcium levels have been shown to activate Akt in

myotubes [37, 38, 39], and there are Ca2+−dependent pathways for activation of

AMPK [40]. Accordingly, we assessed intracellular Ca2+ using Calcium Green-1

AM, a membrane permeable fluorophore with fluorescence emission increasing as

Ca2+ concentration increases. As shown in Fig. 5, CQ actually decreased

intracellular calcium to the level achieved with BAPTA-AM, a membrane

permeable Ca2+ chelator. This reduction of intracellular Ca2+ by CQ occurs even

in Ca2+-free medium, suggesting that CQ decreases Ca2+ release from intracellular

Ca2+ stores, such as the sarcoplasmic reticulum or lysosomes. Because CQ

decreases intracellular Ca2+ – which is opposite from what would be expected if

CQ were to act through a Mrgpr – a receptor mediated role of CQ in the activation

of AMPK and Akt in myotubes seems unlikely. It seems likely that in our hands

CQ inhibits glucose uptake by decreasing the abundance of intracellular calcium.

This is consistent with a previous finding that BAPTA-AM suppresses glucose

transport [41].

4. Discussion

Both CQ and RE are reported ATM activators [19, 42]. However, their roles in

phosphorylation of AMPK have not been previously addressed in skeletal
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muscle cells. This study provides evidence that CQ and RE increase

phosphorylation of AMPK independent of ATM in C2C12 myotubes. Consistent

with this, ATM did not play a role in CQ-stimulated phosphorylation of

AMPK’s downstream target, ACC. This study also showed that CQ increases

phosphorylation of Akt at S473 and T308 independent of ATM. The role of

ATM was assessed by using either the ATM specific inhibitor, KU [24] or

C2C12 cells expressing shRNA against ATM. Regardless of ATM inhibition or

ATM deficiency, incubation with CQ increased phosphorylation of AMPK and

Akt. Thus, CQ acts independently of ATM to activate AMPK and Akt in

myotubes. An additional, novel aspect of the study is the demonstration that CQ

decreases intracellular calcium concentration, probably through preventing Ca2+

[(Fig._5)TD$FIG]

Fig. 5. Chloroquine does not increase glucose transport but decreases intracellular [Ca2+]. (A)
Glucose transport was measured for 10 min in C2C12 myotubes. Both 1 hour of 0.5 mM CQ as

well as 10 μM KU caused a decrease in glucose transport compared to the DMSO alone treatment.

(B) Myotubes were preloaded with the fluorescent calcium sensor Calcium Green-1 AM and then

incubated in the absence or presence of BAPTA-AM, a cell permeable calcium chelator, before

exposure to 0.5 mM CQ for one hour. As indicated by Calcium Green fluorescence, CQ decreased

intracellular Ca2+ to about the same level as BAPTA-AM both in medium containing Ca2+ (left) and

Ca2+-free medium (right) Symbols indicate a significant difference from control, *P < 0.05, **P <

0.005, ***P < 0.0005; n = 9–12 per group.
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from intracellular stores. This decreased intracellular calcium possibly explains

the failure of CQ to stimulate glucose transport.

The AMP-activated protein kinase (AMPK) is a heterotrimeric kinase that

marshals responses to metabolic stress [40]. Downstream actions of AMPK

include insulin-independent glucose disposal, increased insulin action, increased

fat oxidation, and decreased fatty acid synthesis. Activation of AMPK with

metformin before ischemia or during reperfusion in mice is cardioprotective, as

demonstrated by substantial decrease in infarct size and preservation of ejection

fraction, perhaps through AMPK’s activation of endothelial nitric oxide synthase

(eNOS) [43]. The pre-ischemia protective effect of metformin was greater than

the effect of metformin during reperfusion, suggesting that chronic treatment

with an AMPK-activating compound could have cardioprotective value. In rats,

activation of AMPK with Abbot Compound A769662 during ischemia decreased

infarct size associated with increased glycogen synthase kinase 3β (GSK3β)
phosphorylation [44].

A few earlier studies reported that ATM is an upstream activator of AMPK

[13, 45]. For example, AMPK phosphorylation in response to insulin-like

growth factor 1 (IGF1) was decreased in ATM-deficient HeLa cells [12].

Additional evidence suggests that ATM is required for 5-Aminoimidazole-4-

carboxamide ribonucleotide (AICAR)−stimulated phosphorylation of AMPK

[13]. AICAR-stimulated phosphorylation of AMPK was blunted in ATM-

deficient mouse embryonic fibroblasts or in the presence of the ATM inhibitor

KU. AICAR-stimulated phosphorylation of AMPK was also inhibited in human

HeLa cells in the presence of KU [13].

Our data suggest that there is a mechanism other than activation of ATM

through which CQ and RE increase phosphorylation of AMPK. AMPK is

activated by an increase in the AMP:ATP ratio [40]. Consistent with this idea, it

has been shown that CQ inhibits mitochondrial proteins, such as cytochrome c

oxidase, which would lead to a decrease in ATP production [46]. CQ has also

been reported to be an uncoupling agent [47], and uncoupling of respiration

from ATP synthesis could be a means by which CQ induces metabolic stress.

Notably, in regard to the discussion of Akt that follows, mild uncoupling by use

of dinitrophenol has been reported to increase Akt phosphorylation three fold in

skeletal muscle [47]. RE exposure might also lead to decreased ATP production.

For example, previous research has shown that RE inhibits ATP synthase [48].

Thus, it seems probable that CQ and RE could both activate AMPK by causing

metabolic stress. If so, this would be a mechanism shared by a number of

AMPK-activating compounds, such as metformin, quercetin, and berberine [40].

In addition to possibly inhibiting ATP production, our findings suggest that at

higher concentrations, CQ and RE inhibit Akt. It could simply be that an
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increase of AMPK activation could lead to direct inhibition of Akt. This finding

that AMPK agonists regulate Akt activation has been reported previously.

Phenformin as well as AICAR both increased AMPK phosphorylation while

decreasing Akt phosphorylation in neuroblastoma cells [49]. The AMPK agonist

metformin also inhibits Akt phosphorylation in cervical cancer cells [50]. Our

results and previous reports [51, 52, 53] have shown that RE does not increase

phosphorylation of Akt and actually inhibits it. Other labs have also discovered

this finding of RE inhibiting Akt phosphorylation in both breast cancer and liver

cell lines [54, 55]. A possible explanation of how RE inhibits Akt is its effect of

inhibiting cAMP phosphodiesterases [52]. Inhibition of phosphodiesterases leads

to an increase in cAMP, which would inhibit localization of PDK1 at the

plasma membrane, thus decreasing Akt activation [56].

Akt plays a central role in regulation of glucose transport in insulin-responsive

tissues [57] and is a key positive regulator of glycogen synthesis through

inhibition of glycogen synthase kinase 3β (GSK3β). In cardiomyocytes, GSK3β
with a mutation preventing its activation by Akt is protective against cardiac

hypertrophy and suppresses the protective effects of ischemic preconditioning

[58]. In some tissue or cell types, ATM appears to be an upstream activator of

Akt. For example, activating phosphorylation of Akt in response to insulin

signaling is ATM dependent in human fibroblast cells [17], and IGF-1 failed to

stimulate Akt phosphorylation in cultured myotubes when ATM was inhibited or

knocked down with shRNA [18]. Likewise, Akt phosphorylation was reduced in

the liver and aorta of mice heterozygous for a truncation mutation of ATM gene

[30]. Finally, insulin-stimulated phosphorylation of Akt was blunted in fast

twitch muscle of mice deficient in ATM [6], and ATM was reportedly required

for full activation of Akt by insulin in cultured muscle cells [7]. Taken together,

the reported roles of ATM upstream of Akt make activation of ATM an

attractive strategy for improving a number of factors relevant to cardiovascular

disease, including glucoregulation and cardioprotection.

On the surface, it is surprising that CQ stimulation of AMPK and Akt

phosphorylation did not result in an increase in glucose transport. However,

when taken in the light of CQ’s effects on intracellular calcium, this makes

sense. Multiple labs have shown that chelation of intracellular calcium actually

blocks insulin action in adipocytes and fibroblasts [41, 59, 60]. It has also been

reported that basal glucose transport through GLUT1 requires cytosolic calcium

ions in rat epithelial cells [61]. Thus, the decrease in intracellular calcium in the

presence of CQ is a likely explanation for the lack of positive effect of CQ on

glucose transport.

Given its ability to activate ATM, AMPK, and Akt—which together play

prominent roles in responsive to genotoxic, oxidative, and metabolic stress, are
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central regulators of fuel uptake, storage, and oxidation, and play key

cardioprotective roles—CQ can exert positive metabolic effects, even in cell

types in which ATM does not activate AMPK or Akt. The additional novel

finding that CQ decreases intracellular calcium levels suggests that CQ could

have important calcium-dependent vascular effects. For example, increased

intracellular calcium has been linked to increased vasoconstriction and heart

failure [62, 63]. In summary, cellular effects of CQ and RE are not limited to

their activation of ATM. CQ especially can serve as an example compound able

to modify disparate metabolic regulators, including ATM, AMPK, Akt, and

intracellular calcium.

5. Conclusions

In summary, we have demonstrated that the ATM activator chloroquine

stimulates AMPK and Akt phosphorylation in a manner that does not require

ATM. Likewise, stimulation of Akt phosphorylation by the ATM activator

resveratrol is independent of ATM. We have also shown that chloroquine causes

a decrease in cytosolic Ca2+ concentration. Thus, we have uncovered multiple

chloroquine effects that are separate from chloroquine’s activation of ATM.
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